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Abstract  

 

In this paper, a new lifetime distribution called modified Burr XII-inverse Weibull (MBXII-IW) distribution is 

developed from T-X family technique. The MBXII-IW distribution is very flexible and its hazard rate function 

accommodates various shapes.  The density function of the MBXII-IW is exponential, left-skewed, right-skewed 

and symmetrical shaped. To show the importance of the proposed distribution, we derive mathematical properties 

such as ordinary moments, generating function, residual life functions, reliability measures and characterizations. 

We address the maximum likelihood estimation technique for the model parameters. We evaluate the performance 

of the maximum likelihood estimators via a simulation study. We consider an application to a real data set to 

clarify the potentiality and utility of the MBXII-IW model.  
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1. Introduction 

 

Data analysis is imperious in every aspect of statistical analysis. The statistical characteristics such as skewness, 

kurtosis, bimodality, monotonic and non-monotonic failure rates are obtained from datasets. The selection of a 

suitable model for data analysis is challenging task because it depends on the nature of the dataset. However, if a 

wrong model is applied to analyze the dataset it leads to loss of information and invalid inferences. It is obligatory to 

identify the most suitable model for the given dataset.  In the recent decade, many continuous distributions have 

been introduced in statistical literature. Some of these distributions, however, are not flexible enough for data sets 

from survival analysis, life testing, reliability, finance, environmental sciences, biometry, hydrology, ecology and 

geology. Hence, the applications of the generalized models to these fields are clear requisite. The generalization 

techniques such as either inserting one or more shape parameters or transforming of the parent distribution are useful 

to (i) increase the applicability of a parent distribution; (ii) explore skewness and tail properties and (iii) improve the 

goodness-of-fit of the generalized distributions.  

A flexible model for the analysis of lifetime data sets is often attractive to the researchers. The inverse Weibull (IW) 

distribution is of interest due to its flexibility and simplicity. The IW distribution (Keller and Kanath, 1982) was 

developed to study the decay of mechanical components in survival and reliability analysis.  During the recent years, 

the inverse Weibull distribution has been of great interest in literature: beta inverse Weibull (B-IW) (Khan, 2010), 

Kumaraswamy-Inverse Weibull (Kw-IW) (Shahbaz et al., 2012), reflected generalized beta inverse Weibull (Elbatal 

et al., 2016), Topp-Leone inverse Weibull (Abbas et al., 2017), Odd Frechet inverse Weibull (OF-IW) (Fayomi, 

2019) and gamma-inverse Weibull(G-IW) (Abbas et al.,2020). 
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The idea here is to incorporate the IW distribution into a larger family through an application of the modified Burr 

XII (MBXII) distribution. In fact, based on the T-X transform defined by Alzaatreh et al. (2016), we construct the 

MBXII-IW distribution.  

The study of the MBXII-IW distribution is based on the following motivations: (i) to generate distributions with 

symmetrical, right-skewed, left-skewed and exponential shaped as well as high kurtosis; (ii) to have monotone and 

non-monotone failure rate function; (iii) to derive mathematical properties such as random number generator, 

ordinary moments, generating function, residual life functions, reliability measures and characterizations; (iv) to 

estimate the precision of the maximum likelihood estimators via a simulation study; (v) to reveal the potentiality of 

the MBXII-IW model; (vi) to work as the preeminent substitute model to other existing models; (vii) to deliver 

better fits than other models and (viii) to infer empirically. The contents of the article are structured as follows. 

Section 2 derives the MBXII-IW model from (i) the T-X family technique and (ii) linking the exponential and 

gamma variables. We study basic structural properties, random number generator and sub-models for the MBXII-

IW model. Section 3 presents certain mathematical properties such as ordinary moments, generating function, 

residual life functions, reliability measures and characterizations. In Section 4, we address the maximum likelihood 

estimation for the MBXII-IW parameters. We evaluate the precision of the maximum likelihood estimators via a 

simulation study. We consider an application to elucidate the potentiality of the MBXII-IW model. In Section 5, we 

offer some conclusions. 

 

2.  THE MBXII-IW DISTRIBUTION  

In this section, we derive the MBXII-IW distribution from the T-X family technique. The MBXII-IW model from 

link concerning the exponential and gamma variables is also obtained. Basic structural properties are studied. Then, 

we highlight the nature of the density and failure rate functions. 

2.1 T-X Family Technique  

The probability density function (pdf) and cumulative distribution function (cdf) of the IW are given, respectively, 

by   

 1g( ; , ) , 0, 0, 0xx x e x
−−− −  =       ,      

and 

( ; ) , 0, 0, 0.xG x e x
−− =             

The odds ratio for the IW random variable X is  

( ) ( )
1( ; )

( ) exp 1 .
( ; ) 1

x

x

G x e
W G x x

G x e

−

−

− −
−

−

  = = =  −
  −

   

The cdf of the T-X family (Alzaatreh et al., 2016) of distributions has the form 

( ) ( );
( ) ,                 ,

W G

a

x
F r t dt xx

  
=                          (1)

 
where ( )r t   is the pdf of the random variable (rv) T, where  ,  bT a  for   < b  a−    and ( );W G x     is a 

function of the baseline cdf of a rv X with the vector parameter , which satisfies the conditions:  

 i) ( )  ,  b;G axW    ,  

ii) ( );W G x    is differentiable and monotonically non-decreasing and  

iii) ( )lim ;
x

xW G a
→−

  →   and ( )lim ;
x

xW G b
→

  →  .  

The pdf of the T-X family can be expressed as 

( ) ( ) ( ) ,            ; ;  f W G r W Gx xx x
x

 
   =       

.   (2) 

We derive the cdf of the MBXII-IW distribution from the T-X family technique by setting   

   ( ) ( )
1

1 1 , 0, 0, 0, 0r t t t t


− −

−  =  +            

and  
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( ) ( )
1

( ) exp 1W G x x
−

− =  −
 

.  

Then, the cdf of MBXII-IW distribution is  

( )

1

1
1

1

0

( ) 1 ,

xe

F x t t dt

−
− 
−    − −

−  =  +   

or 

( )(x) 1 1 1 , 0xF e x
−


−

− 
 

= − +  −  
 

,      (3) 

where , , , , 0,       are parameters. The pdf corresponding to (3) is given by 

( ) ( ) ( )
1

1
1 1 1 1 , 0.x x xf x x e e e x

− − −


− −

−− − 
−−    

=  − +  −  
 

    (4) 

Hereafter, a rv with pdf (4) is denoted by X~MBXII-IW ( ), , , ,     . (i) For 1 = , the MBXII-IW distribution 

reduces to Burr XII-inverse Weibull (BXII-IW) distribution; (ii) For 1 =  = , the MBXII-IW distribution reduces 

to the Lomax -inverse Weibull (Lomax-IW) distribution; (iii) For 1 =  = , the MBXII-IW distribution reduces to 

the log-logistic-inverse Weibull (Log-Log–IW) distribution; (iv) For 0 → , the MBXII-IW distribution reduces to 

the generalized Weibull-IW distribution (GW-IW) distribution and (v) For 1 =
 

and 0 → , the MBXII-IW 

distribution reduces to the Weibull-IW distribution (W-IW) distribution. 

 

2.2 Nexus between the Exponential and Gamma Variable 

We derive the MBXII-IW distribution by linking the exponential and gamma rvs, i.e., ( )1 exp 1W  and 

( )2 ~ ,1W gamma   . 

Lemma. (i): If ( )1 exp 1W  and ( )2 ~ ,1W gamma   , then for ( )1 21xW e W
− −

=  − , we have that X  has density (4).   

Proof 

 

If ( )1 exp 1W , i.e.       ( ) 1
1 1 0e ,wf w w−=  . 

If ( )2 ~ ,1W gamma   , i.e.      ( )
( )

21
2

2 2

e
, 0

ww
f w w

− −

= 
  

. 

Then, the joint distribution of the two rvs is ( )
( )

2 11
2

1 2 1 2

e e
, , 0, 0

w ww
f w w w w

− − −

=  
  

. 

Let ( )1 21xW e W
− −

=  − . 

The joint density of the rvs X  and 2W  has the form 

( )
( ) ( )

2
2

1
1 1

12
2 2 2, 1 , 0, 0

xe w
w

x xw e e
f x w x e e w x w

−
−

− −

 
−  − − −   −−
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  

. 

The marginal density of X   takes the form 

( ) ( ) ( ) ( )
1

1
2 2 2

0

1
1 exp 1 1x x xf x x e e w e w dw

− − −−− −
−−     

   
=  − − +  −  

      
 . 

After simplification, we obtain (for x>0)  

( ) ( ) ( )
1

1
1 1 1 1 , 0,x x xf x x e e e x

− − −


− −

−− − 
−−    
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which is the MBXII-IW density. 
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2.3 Structural Properties 

For X~MBXII-IW ( ), , , ,     , the survival, failure rate, cumulative hazard, reverse hazard functions, Mills ratio 

and elasticity are given, respectively, by   

   ( ) ( )
1

1 1 ,xS x e
−


− −

− 
 
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                          ( ) ( ) ( )
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−

−− −
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− 


 
  

= − +  −  
  

 
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and

  

    ( ) ( )lnF( )
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−
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The quantile function of X (for 0 1q  ) follows from  

                                         
( )

1
1

1

1 1
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q
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,                                       

and its random number generator with Z ~  Uniform (0,1) is 

                                            
( )

1
1

1

1 1
ln 1

Z
X

−


−
 −


 
  
   − −   = +            

.      

2.4 Plots of the MBXII-IW Density and Failure Rate Functions 

We plot the density and failure rate functions of the MBXII-IW distribution for selected values of the parameters. 

Figure 1 displays that the MBXII-IW density can take various shapes such as exponential, symmetrical, left-skewed 

and right-skewed. Figure 2 shows that the failure rate function can be increasing, decreasing, increasing-decreasing, 

inverted bathtub and modified bathtub shaped. Therefore, the MBXII-IW distribution is quite flexible and can be 

applied excellently in evaluating numerous data sets. 



Pak.j.stat.oper.res.  Vol.16  No. 4 2020 pp 721-735  DOI: http://dx.doi.org/10.18187/pjsor.v16i4.2622 

 

On Modified Burr XII-Inverse Weibull Distribution: Properties and Applications 
 

725 

 

    
Fig. 1: Plots of pdf of the MBXII-IW density 

    
  Fig. 2: Plots of the MBXII-IW hazard rate 

 

3. Mathematical Properties 

 

Here, we present certain mathematical and statistical properties such as the ordinary moments, generating function, 

residual life functions, reliability measures and characterizations. 

 

3.1 Linear representation 

In this section, we provide a linear representation for the density of X to derive some mathematical quantities for the 

MBXII-IW model. The cdf (3) of X can be expressed as 

             

  
( )
( )

exp
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1
( ) 1 .
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x

x
F x


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(5) 

First, we will consider the following two power series 

( ) ( )
0

,1 2 1
c kc k

k

c
s s

k

− − −

=

− 
 


+ =


−                 (6) 
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
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Applying (6) for A in (5) gives 
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k
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  

Second, using the binomial expansion, the last equation can be expressed as 

0.5 1.0 1.5 2.0
x

0.5

1.0

1.5

2.0

f x

MBXII IW Distribution

2.50, 3.50, 1.00, 0.80, 1.10

3.00, 3.00, 3.00, 0.60, 0.95

0.50, 3.50, 0.05, 0.85, 1.20

1.50, 0.10, 4.00, 4.00, 0.80

0.85, 0.70, 5.00, 1.80, 0.25

0.5 1.0 1.5 2.0
x

0.2

0.4

0.6

0.8

1.0

1.2

h x

MBXII IW Distribution

2.50, 3.00, 3.00, 1.10, 0.80

0.35, 2.40, 0.10, 0.50, 0.50

1.10, 2.00, 1.00, 0.70, 0.70

2.00, 5.00, 0.10, 1.50, 0.80

5.00, 5.00, 5.00, 1.15, 0.07

2.70, 0.75, 2.50, 1.50, 0.60
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Third, applying (7) for B in the last equation gives 

( )
( )
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e( ) 1 ,xp
k i jk

i j k
j k i

F x xd −
− +
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= =
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where ( )cH x  is the cdf of the IW model with scale parameter c. 

( )  ( )
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−
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=
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. 

By differentiating (8), we obtain 

( ) ( )
( )

, ,
0, 0 1

( ) ,
k

i j k k i j
ij k j k

f x h x


− +
== + 

=  

     (9) 

where ( )ch x  denotes the pdf of the IW model with scale parameter c and , , , ,i j k i j kd = − . 

Equation (9) is the main result of this section. It reveals that the MBXII-IW density is a linear combination of IW 

density. So, some of its mathematical properties can be easily determined from those of IW model. 

 

3.2 Moments 

The rth ordinary moment of X say ( )r
r E X = , is determined from (9) as 
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   

The rth incomplete moment of X, say ( )r t , can be  determined from (9) as 

( ) ( ) ( )  ( )
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, ,
0, 0 1

1 , .
t k r

r
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r
t x f x dx b k i j
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where ( ), q   is the incomplete gamma function. 
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=
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+
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where  1 1F .,.,.  is a confluent hypergeometric function.   

 

 

The moment generating function (mgf)

 

( )tX( )  E eM t =  of X follows from (9) as 

( ) ( ) 
( )( )

, ,
0 0, 0 1

( ) / ! 1 .
k r

r
i j k

r ij k j k r

r
M t t b r k i j

 

= == +  

 
 =  − +  −    

    

Probability weighted moments (PWMs) 

The (s,r)th PWM of X denoted by s,r is formally defined by   

 , ( ) ( ) ( ) .s r s r
s r E X F X x F x f x dx



−

 = =   

Using (3), we have  
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 − −  

 
 

 

Expanding z   in Taylor series, we can write 

( )
( ) ( )

0 0

1
!

i ii
i

i i

s s f s
i

 


= =


= − =   ,     (10) 

Where ( ) ( 1) ( 1)i i =   −  − +  is the descending factorial and 

( )
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h
i

i

h
f

ih

−


=

−   
 =  

 
 . 

First, applying the Taylor series in s for ( ) ,rF x  we obtain 

( ) ( )
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F
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Second, using (4) and the last equation, we have 

( )
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( ) ( )
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1
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Applying (6) for C in the last equation, we obtain 
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1

, 0
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Third, using the binomial expansion for D, the last equation be rewritten as 
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( )

( )
( )
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1 1 1 1
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1 1
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Applying (7) for E in the last equation gives 
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and then 

( )
( )
, , 1

, 0 0

( ) ( ) ( ),
k

rr
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k m j

f x F x a h x


− + +
= =

=    

where                      
( )

, ,, , ( )
r k j

j k m ij k ma f r−=  ,     (11) 

and ( )if r  is defined in (10) then for ( j k ) 
 

( )  ( )
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( )1 1
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0 1 1

1 1 1
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  − + + + 

  

where ( )( ) / ( )na a n a=  +   denotes the rising factorial. 

 

 

 Finally, the (s,r)th PWM of X can be determined as 

( )  ( ) ( )
( )

, , , 1
, 0 0

1 1 1 .
k s

r
s r j k m s

k m j

a k j m s



= =

  =  − + + +  −    

Residual life and reversed residual life functions 

The nth moment of the residual life, say  ( )
( ), 1,2,,...

( ) ,
n

n
X t n

m t E x t
 =

= −  

Uniquely determines F(x). The nth moment of the residual life of X is given by 
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n
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n

x t dF x
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Therefore 
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where  
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0
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q
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

−


 = −  

( ) ( ) ( ), ,a q a q a +  =   

and 

, , , , (1 )n
i j k i j k t =  − . 

The mean residual life (MRL) or the life expectation at age t defined by 

                             ( ) ( )
( )1 X t, n  1

t   E [ X –  t ],m
 =

=                              

which represents the expected additional life length for a unit which is alive at age t. The MRL of X can be obtained 

by setting n=1 in the last equation. The nth moment of the reversed residual life, say 

( )
( ), 0, 1,2,,...

( ) ,
n

n
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= −  

uniquely determines F(x). We obtain 
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Then, the nth moment of the reversed residual life of X comes 
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where ( )**
, , , ,

0

1 .
n r n r

i j k i j k
r

n
t

r

−

=

 
 =  −  

 
  

The mean inactivity time (MIT), also called the mean reversed residual life function, is given by 

( )1 , 1
( ) [( ) ],

X t n
M t E t X

 =
= − û  

and it represents the waiting time elapsed since the failure of an item on condition that this failure had occurred in 

(0,t). The MIT of the MBXII-IW model is obtained easily by setting n=1 in the above equation.  

The rth central moment ( )r , coefficients of skewness ( 1 ) and kurtosis ( 2 ) of X are 

 

( ) ( )
1

1 ,
r

r
r r−

=

  = −   3
1 3 2 =    and ( )

2

2 4 2 =   . 

The numerical values for the mean ( )1 , median ( ) , standard deviation ( ) , skewness ( )1  and kurtosis ( )2  of 

the MBXII-IW distribution for selected values of , , , ,      are listed in Table 1.  

 

Table 1: Quantities 1 ,  ,  , 1  and 2 of the MBXII-IW Distribution 

, , , ,      
1      

1  2  

0.65,5,0.75,3.5,0.60 19.5487 16.7378 13.8215 16.2841 1152.47 

3.65,3.9,4.3,0.8,0.95 1.0207 0.9238 0.4718 7.174 209.223 

3.65,3.9,4.3,0.8,1.25 1.0017 0.9416 0.3233 3.8747 59.7261 

3.5,5,1.3,0.8,1.25 0.951 0.95 0.1404 0.1334 3.4778 

3.75,5,1.3,1.3,1.25 1.3896 1.3892 0.202 0.0869 3.4028 

5,5,1.5,0.5,0.5 0.3207 0.3103 0.1107 0.7517 4.5607 

5,5,1.5,1.0,0.5 1.2825 1.2411 0.4425 0.7518 4.5626 

5,5,1.5,2,0.5 5.1291 4.9642 1.7686 0.7424 4.4852 

5,5,1.5,0.5,3 0.8203 0.8228 0.0485 -0.2844 3.4174 

5,5,1.5,1.5,0.5 2.8853 2.7923 0.9957 0.749 4.58 

5,5,1.5,1.5,1 1.6735 1.6712 0.2918 0.1267 3.3422 

5,5,1.5,1.5,1.5 1.4048 1.4083 0.1646 -0.0755 3.3027 

5,5,1.5,1.5,2 1.2886 1.2927 0.1138 -0.181 3.3471 

5,5,1.5,1.5,2.5 1.2231 1.228 0.0868 -0.2443 3.3988 

5,5,1.5,1.5,3 1.1831 1.1866 0.0701 -0.2855 3.4321 

 

3.3 Reliability Estimation of Multicomponent Stress-Strength model 

Consider a system that has  identical components out of which s components are functioning. The strengths of 
components are X , 1,2...i i = with common cdf F while, the stress Y imposed on the components has cdf G. The 

strengths X , 1,2...i i =   and stress Y are i.i.d. The probability that the system operates properly is reliability of the 

system i.e. 

𝑅𝑠,𝜅 = 𝑃𝑟[𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ𝑠(𝑋𝑖 , 𝑖 = 1,2. . . 𝜅) > 𝑠𝑡𝑟𝑒𝑠𝑠(𝑌)], 

𝑅𝑠,𝜅 = 𝑃𝑟[at least"𝑠"𝑜𝑓(𝑋𝑖 , 𝑖 = 1,2. . . 𝜅) 𝑒𝑥𝑐𝑒𝑒𝑑𝑌]. 
Then, we can write this probability (Bhattacharyya and Johnson, 1974) as follows:  

𝑅𝑠,𝜅 = ∑ (
𝜅
ℓ

)𝜅
ℓ=𝑠 ∫ [1 − 𝐹(𝑦)]ℓ[𝐹(𝑦)]𝜅−ℓ𝑑𝐺(𝑦)

∞

−∞
.                                (12) 

Let X~MBXII-IW(𝛼1, 𝛽, 𝛾, 𝜆, 𝜂) and Y~MBXII-IW(𝛼2, 𝛽, 𝛾, 𝜆, 𝜂) with common parameters 𝛽, 𝛾, 𝜆, 𝜂
 
and unknown 

shape parameters 1 and 2 . The reliability that the system operates properly in multicomponent stress- strength for 

the MBXII-IW distribution is  
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, we obtain  
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
=

 
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   where 1

2
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Letting vu w=  , we have  

( )( )
11 1

,
0

1
1 ,   s

s

R w w w dw
 −− 


=

 
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 
   

,

1 1
, 1 .s

s

R B



=

   
= +  − +   
   
      (13)  

where ( ).,.B is the beta function. The probability in (13) is known as the reliability of multicomponent stress-

strength model. For s= 𝜅=1, the multicomponent stress-strength model reduces to the stress-strength model (Kotz et 

al., 2003) as    

     𝑅1,1 = 𝑃𝑟(Y < X) =
𝛼2

(𝛼1+𝛼2)
, 

 

where 𝛼1 + 𝛼2 > 0, 

which is independent of the parameters , ,   and .    

 

3.4 Characterizations based on Truncated Moment of a Function of the Random Variable 

In this subsection, we first present a characterization of the MBXII-IW distribution in terms of a simple relationship 

between truncated moment of a function of X and another function. This characterization result employs a version of 

the theorem due to Glänzel (1987); see Theorem G of Appendix A. Note that the result holds also when the interval 

H is not closed. Moreover, as mentioned above, it could be also applied when the cdf F does not have a closed form. 

As shown in Glänzel (1990), this characterization is stable in the sense of weak convergence. 

Proposition 3.4.1 Let  ( ): 0,X →   be a continuous random variable and let ( ) ( )
1

1 1 , 0.xg x e x
−

−
−

 
= +  −  
 

 

The rv X has pdf (4) if and only if the function ( )h x  defined in Theorem G has the form 

( ) ( )
1

1 1 , 0xh x e x
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−
−

 
= +  −  
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. 

Proof   If X has pdf (4), then for (x>0), 
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−

−
−

 
 = +  −  
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and  

( ) ( ) ( )
1

1 1 , 0.xh x g x e x
−

−
−

 
− = − +  −  
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Conversely, if ( )h x  is given as above, then   

( ) ( ) ( )
2
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1
1 1 1 0, 0,x x xh x e e e x

x
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and hence  
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In view of Theorem G, X has density (4). 

 

Corollary 3.4.1: Let ( ): 0,X →   be a continuous random variable. The pdf of X is (4) if and only if there exist 

functions ( )h x and ( )g x  defined in Theorem G satisfying the differential equation    

( )
( ) ( )

( )

( )

1

1
1

, 0.

1 1

x x

x

e e
h x x

x
h x g x

e

− −

−

−−
 

−

−


 
−

 
= 

−  
+  − 

 

   

Remark 3.4.1: The general solution of the differential equation in Corollary 3.4.1 is  

( ) ( )
( )

( )
( )

1

1

1

1

1 1

1 1

x x

x

x

e e
x

h x e g x dx D

e

− −

−

−

−−
 

− −



+

− 


 
  

−   
 = +  − − + 
  

  +  −  
  

 , 

where D is a constant. 

 

4. STATISTICAL INFERENCE 

 

First, we adopt the maximum likelihood estimation technique for the MBXII-IW parameters. We evaluate the 

behavior of the maximum likelihood estimators of the MBXII-IW parameters via a simulation study. We explain the 

utility of the MBXII-IW model among its family and class using serum-reversal time (in days) of 143 children born 

from HIV-infected mothers (Silva, 2004).  

4.1 Parameter Estimation 

Let ( ), , , ,
T

 =       be the unknown parameter vector. The log likelihood function ( ) for the MBXII-IW 

distribution is    

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
1 1

1 1

lnL ln ln ln ln 1 ln

1 ln 1 1 ln 1 1 .i i

n n

i i
i i

n n
x x

i i

n n n n x x

e e
− −

−

= =

−
 

= =

 =  =  +  +  +  − + +  −

  
+ − − + +  −   

   

 

 

    (14)    

We can compute the maximum likelihood estimators (MLEs) of , , ,    and   by solving equations (15)-(19) 

simultaneously, either directly or using quasi-Newton procedure, computer packages/ softwares such as R, SAS, Ox, 

MATHEMATICA, MATLAB and MAPLE.  
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( )
( )

1

1
ln 1 exp 1 0,

n

i
i

n
x

−
−

=

    = − +   − =      
                   (15) 

( )
( ) ( ) ( )

1

1 1

ln 1 1 ln 1 0,i i i

n n
x x x

i i

n
e e e

− −

 −


 

= =

     = − − +  +  − +   − =     
 

       (16) 

( ) ( ) ( )
1

2
1 1

ln 1 1 1 1 0,i i

n n
x x

i i

e e
− −

−
− 

 

= =

       
= +  − − + − +  =    

      
       (17) 
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( )

( )
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1

1 1 1

1 0,

1 1 1

i

i
i i

xn n n
i i

i
xi i i x x

x x en
x

e e e

−
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− −
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−
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= + − + +  +   =
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 
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1 1 1
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1 1
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e
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e e

−

−

− −

−
−

−= = =

−

+
=  

 
= − − + +  +

  −

 +   =
 

− +  − 
 

  



     (19) 

4.2. Simulation Study 

We evaluate the behavior of the MLEs of the MBXII-IW parameters with respect to the sample size n. We generate 

10000 samples of sizes n=50,100,200,300,500 from the inverse cdf of the MBXII-IW distribution with true 

parameter settings ( , , , , )     =(0.8, 0.9, 1.0,1.3, 0.5) and (1.5,2.0,1.5,1.5,0.75). We estimate the MLEs 

( , , , , )      for 10000 samples from the non-linear optimization techniques. We also compute the means, biases 

and mean squared errors (MSE) of the MLEs.  We infer from the simulation results (Table 2) that as the sample size 

n increases, the means approach the true parameter value, the estimated MSE decreases, and estimated biases drop 

to zero. We observe that as the shape parameter increases, MSE of estimated parameters increases. Finally, we infer 

that the MLEs for the MBXII-IW distribution are consistent.  

 

Table 2: Means, Bias and MSEs of MBXII-IW distribution  

Sample Statistics 0.8a =  0.9b =
  

1.0g =
 

1.3l =  0.5h =
 

50 

Means   0.8966 0.9511 0.784 1.2147 0.7145 

 Bias 0.0966 0.0511  -0.216 -0.0853  0.2145 

 MSE 0.908 1.296 4.5137 0.4022 0.7256 

100 

Means 0.913  0.944 0.8714 1.0981 0.6166 

 Bias 0.113 0.044  -0.1286 -0.2019 0.1166 

 MSE 0.7834 0.7403 4.2884 0.2312 0.4045 

200 

Means 0.9155 0.8967 0.8861 1.04  0.5549 

 Bias 0.1155   -0.0033  -0.1139  -0.26 0.0549 

 MSE 0.2938   0.2818 1.1419 0.1608 0.2258 

300 

Means 0.9171 0.8713 0.8949 1.0247 0.5306 

 Bias 0.1171  -0.0287  -0.1051  -0.2753 0.0306 

 MSE 0.2204 0.1328  0.2232  0.1387  0.1659 

500 Means 0.9307 0.8678 0.9475 1.0032 0.5091 

  Bias 0.1307 -0.0322 -0.0525 -0.2968 0.0091 

  MSE 0.1846  0.075  0.1341  0.1277 0.1102 
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Sample Statistics 1.5a =  2.0b =   1.5g =
 

1.5l =
 

0.75h =  

50 

Means   2.4159   2.0513 1.3691 1.1865 0.7906 

 Bias 0.9159 0.0513 -0.1309 -0.3135 0.0406 

 MSE 7.2562 4.006 8.4563 0.4718 0.3221 

100 

Means  2.3062 2.1084 1.5759 1.0659 0.7184 

 Bias 0.8062    0.1084 0.0759 -0.4341 -0.0316 

 MSE 4.4724 2.912  6.85  0.3554 0.1623 

200 

Means 2.2574 2.1194 1.6883 1.0032 0.6771 

 Bias 0.7574 0.1194 0.1883 -0.4968 -0.0729 

 MSE 3.0882 1.9918 3.8847 0.3335 0.1008 

300 

Means 2.234 2.1254 1.769 0.9784 0.6563 

 Bias 0.734 0.1254 0.269  -0.5216  -0.0937 

 MSE 2.4618 1.5797 2.7178 0.3328 0.0767 

500 Means 2.2214 2.0694 1.8303 0.9671 0.633 

  Bias 0.7214 0.0694 0.3303 -0.5329 -0.117 

  MSE 2.0706 0.9032 1.5074   0.3234 0.0574 

 

4.3 Data Applications for Selection and Comparison 

 

We consider an application to serum-reversal time (in days) of 143 children born from HIV-infected mothers (Silva, 

2004) for authentication of the potentiality of the MBXII-IW distribution. We compare the MBXII-IW distribution 

with BXII-IW, L-IW, LL-IW, OF-IW, Kw-IW, W-IW, MBXII and IW. For selection of the optimum distribution, 

we compute the estimate of various model selection criteria such as “likelihood ratio statistics ( 2− ), Akaike 

information criterion (AIC), corrected Akaike information criterion (CAIC), Bayesian information criterion (BIC), 

Hannan-Quinn information criterion (HQIC)” and goodness of fit statistics (GOFs) such as “Cramer-von Mises 

(W*), Anderson Darling (A*), and Kolmogorov- Smirnov statistics (K-S)” with p-values for all competing models. 

We estimate the MLEs for the parameters and their standard errors (SEs).  

Table 3 reports the MLEs (SEs) and measures W*, A*, K-S (p-values). Table 4 displays the values of measures

2− , AIC, CAIC, BIC and HQIC. 

Table 3: MLEs (SEs) and W*, A*, K-S (p-values) for Serum-reversal time data 

Model     
    


 W A 

K-S 

p-value 

MBXII-IW 154.9999 

(56.8548) 

17.2962 

(6.0595) 
1.0265 

(11.4959) 
0.0613 

(0.0219) 

1.2362 

(0.2308) 
0.9431 5.2974 

0.1588 

(0.0015) 

BXII-IW 58.5081  

(57.9404) 

11.1084 

(6.6059) 

1 0.0922  

(0.0482)
 

1.5695  

(0.6668)
 

1.0099  5.6729 
0.1593   

(0.0014) 

L-IW 674.5684 

(302.0037) 
1 

1 0.1850 

(0.0144) 

20.0969

(1.4271) 
1.6853  9.3650 

0.2071 

(9.363e-06) 

LL-IW 
1 

35.4684 

(10.6524) 

1 0.0402 

(0.0119) 

0.8799 

(0.0619) 
1.7189  9.5548  

0.1407 

(0.0069) 

OF-IW 
--- 

0.7290 

(0.0067) 

---- 0.0100 

(0.0018) 

40.0342

(7.2587) 
4.0321 21.0695 

0.2944 

(3.462e-11) 

Kw-IW 65.0000 

(18.4924) 

0.3611 

(0.1986) 

---  0.0158 

(0.0338) 

1.5081 

(0.8394) 
4.0445 21.1287 

0.2866 

(1.259e-10) 

W-IW 0.0034 2.3448 --- 2.2303 0.5375 1.1602 6.4979 0.2062 
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(0.0015) (4.5568) (2.5846) (0.9676) (1.042e-05) 

MBXII 0.0111 

(0.0009) 

86.6803 

(293.070) 

5.5000 

(21.2078) 

1 1 
3.9243  20.5617 

0.4548        

(< 2.2e-16) 

IW 
--- --- 

--- 16.7307 

(2.3641) 

0.5614 

(0.0289) 
4.0130  20.9785 

0.2924 

(4.835e-11) 

 

Table 4:  2− , AIC, CAIC, BIC and HQIC for Serum-reversal time data  

Model 2−  AIC CAIC BIC HQIC 

MBXII-IW 1982.877 1992.877 1993.315 2007.691 1998.897 

BXII-IW 1986.905 1994.905 1995.195 2006.756 1999.721 

L-IW 2029.848 2035.848  2036.021 2044.737 2039.46 

LL-IW 2037.754 2043.755 2043.927 2052.643 2047.367 

OFIW 2200.062 2206.061 2206.234  2214.95 2209.673  

Kw-IW 2211.198 2219.197 2219.487 2231.049 2224.013 

W-IW 1994.372 2002.372 2002.662 2014.224 2007.188  

MBXII 2420.664 2426.664  2426.836  2435.552 2430.276 

IW 2198.318 2202.317 2202.403 2208.243 2204.725 

 

The MBXII-IW distribution is best fitted model than all other competing models because the values of all criteria of 

goodness of fit are significantly smaller for MBXII-IW distribution. 

 

5. CONCLUDING REMARKS  

 

We propose the MBXII-IW distribution from (i) the T-X family technique and (ii) link between the exponential and 

gamma random variables. The MBXII-IW density highlights various shapes as exponential, left-skewed, right-

skewed and symmetrical shapes. Its hazard rate function has various shapes such as increasing, decreasing, 

increasing-decreasing, inverted bathtub and modified bathtub. We study some of its mathematical properties such as 

random number generator, ordinary moments, generating function, residual life functions, reliability measures and 

characterizations. We address the maximum likelihood estimation for the MBXII-IW parameters. We evaluate the 

precision of the maximum likelihood estimators via a simulation study. We consider an application to serum-

reversal times to illustrate the potentiality of the new model. The potentiality of the MBXII-IW model clarifies that 

it is flexible to other existing distributions. Hence it should be included in the distribution theory to help the 

researchers. 
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APPENDIX A 

Theorem G. Let  ( ), F,P  be a given probability space and let 1 2H [ , ]a a=
 
be an interval with 1 2a a   (

1 2,a a= − =  ). Let 1 2: [ , ]X a a→  be a continuous random variable
 
with distribution function F and 

Let ( )g x  be a real function defined on 1 2H [ , ]a a= such that ( ) ( )[ X x]E g X h x = for x H  is defined 

with some real function ( )h x should be in simple form. Assume that ( ) ( )1 2[ , ]g x C a a ,

( ) ( )2
1 2[ , ]h x C a a  and F is twofold continuously differentiable and strictly monotone function on the set

1 2[ , ]a a .We conclude, assuming that the equation ( ) ( )g x h x=  has no real solution in the inside of 1 2[ , ]a a

.Then F is obtained from the functions ( )g x  and ( )h x as ( )
( )

( ) ( )
( )( )exp

x

a

h t
F x k s t dt

h t g t


= −

−
 ,  where 

( )s t  is the solution of  equation  ( )
( )

( ) ( )

h t
s t

h t g t


 =

−
 and k is a constant, chosen to make

2

1

1.
a

a

dF =  

 


