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Abstract  

 

In a standard linear regression model the explanatory variables, X , are considered to be fixed and hence 

assumed to be free from errors. But in reality, they are variables and consequently can be subjected to errors. In 

the regression literature there is a clear distinction between outlier in the Y - space or errors and the outlier in the 

X-space. The later one is popularly known as high leverage points. If the explanatory variables are subjected to 

gross error or any unusual pattern we call these observations as outliers in the X - space or high leverage points. 

High leverage points often exert too much influence and consequently become responsible for misleading 

conclusion about the fitting of a regression model, causing multicollinearity problems, masking and/or swamping 

of outliers etc. Although a good number of works has been done on the identification of high leverage points in 

linear regression model, this is still a new and unsolved problem in linear functional relationship model. In this 

paper, we suggest a procedure for the identification of high leverage points based on deletion of a group of 

observations. The usefulness of the proposed method for the detection of multiple high leverage points is studied 

by a well-known data set and Monte Carlo simulations.  
 

Key Words: Errors in variable, Leverages, Masking, Swamping, Monte Carlo simulation  
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1. Introduction 

 

The linear functional relationship model (LFRM) is an extension of a linear regression model (LRM) which allows 

for sampling variability in the measurements of both the response and explanatory variables. In regression the model 

is poorly fitted because of the presence of outliers. It is a common practice over the years to use residuals for the 

identification of outliers. Residuals are in fact estimates of the true errors that occur in the Y-space. We anticipate at 

this point that fitting of the LFRM could be even more complicated because here outliers could occur in the X-space 

more frequently than the linear regression model. Outliers in the X-space are called high leverage points in the 

regression literature since they exert too much weight on the fitting of the model. When we use the ordinary least 

squares (OLS) or the maximum likelihood (ML) method for fitting a regression line, the resulting residuals are 

functions of leverages and true errors. Thus high leverage points together with large errors (outliers) may pull the 

fitted line in a way that the fitted residuals corresponding to those outliers might be too small and this may cause 

masking (false negative) of outliers. For the same reason the residuals corresponding to inliers may be too large and 

this may cause swamping (false positive). Peña and Yohai (1995) pointed out that high leverage cases are mainly 
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responsible for masking and swamping of outliers in linear regression. The unfortunate consequences of the 

presence of high leverage points in linear regression have been studied by many authors. The presence of a high 

leverage point could increase (often unduly) the value of 2R . Chatterjee and Hadi (1988) mentioned the existence of 

collinearity-influential observations whose presence could induce or break the collinearity structure among the 

explanatory variables. Kamruzzaman and Imon (2002) and Imon and Khan (2003a) pointed out that high leverage 

points may be the prime source of collinearity-influential observations. Imon (2009) pointed out that in the presence 

of high leverage points the errors not only become heteroscedastic, they might produce big outliers as well. Another 

way to deal with outliers is to use M-estimators (Mahdizadeh et al., 2020; Zamanzade et al.; 2020; Zamanzade et al., 

2019 and Zamanzade et al., 2018). This could make the procedures for the detection of heteroscedasticity very 

complicated. That is why the identification of high leverage points is essential before making any kind of inference.  

In this paper our main objective is to identify high leverage points in a linear functional relationship model. 

Although some efforts have been done on the identification of outliers and influential observations in LFRM e.g. 

(Abdullah,1995; Vidal, 2007; and Wellman, 1991), but so far as we know, there is no reported work in the 

identification of high leverage points in LFRM. Let us consider a simple linear regression model 

                                                                               = + +i i iy X                                                                                (1) 

 where 
iy  is the response,

 iX  is (supposed) explanatory variable assumed to be constant and specific assumption 

made on 
i . We feel that the assumption of 

iX  being constant in model (1) may not appropriate in reality, instead 

we introduce a linear functional relationship model.   

Consider the following model 

                                                                               
i i iy Y = + ,   

i i ix X = + ,  

                                                     and          
          i iY X = +   for 1,2,..., .i n=                                                       (2) 

where the two linearly related unobservable variables X and Y are considered as the true part and the corresponding 

random variables x and y are observed with random errors i and .i  The unobservable X and Y are fixed 

(nonstochastic) and (2) is called a functional relation. So the main difference between a LRM and a LFRM is that in 

LRM it is assumed that the explanatory variable is free from error but in LFRM it is subjected to error. In section 2, 

we discuss different measures of leverages. Since all conventional measures of leverages are based on fixed 

explanatory variable, in section 3 we introduce the estimated values of X in LFRM which can be considered as fixed. 

In section 4, we discuss a procedure of the identification of high leverage points in LFRM. The usefulness of this 

proposed measure is studied through real world data in section 5 and through Monte Carlo simulations in section 6. 

 

2. Measures of Leverages 

In regression analysis it is sometimes very important to know whether any set of X-values are exerting too much 

influence on the fitting of the model. According to Hocking and Pendleton (1983) "high leverage points are those 

for which the input vector 
i

x , in some sense, far from the rest of the data."  

 Let us consider a k variable regression model 

                                                         𝐘 = 𝐗𝛃 + 𝛆̂                        (3)                                                                        

A set of influential X-values is known as a high leverage point. The OLS residual vector can be expressed in terms 

of the true disturbance vector as 

                                                                                    𝛆̂ = 𝐘 − 𝐘̂ = (𝐈 −𝐖)𝛆                                                            (4)                                           

where the matrix T -1 T
W = X(X X) X given in (4) is generally known as weight matrix or leverage matrix. The weight 

matrix W reflects joint effect of k regressors on the fitted responses. Writing the data matrix of k explanatory 

variables as  ...
T

1 2 nX = x ,x , ,x , the i-th diagonal element of the weight matrix W  is defined as 

                                                                                   
iiw T T -1

i i
= x (X X) x                                                                   (5) 

For a perfect balanced design, iiw  can be written as   
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and thus the diagonal elements iiw  of the weight matrix W are considered as leverage values, which measure 

influence of each observation in the X-space.      
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  A good number of works have been done in the detection of a single high leverage point. It is easy to show that 

the average value of iiw  is nk , where k is the number of the regressors (including the intercept term) and n is the 

total number of observations. Data points having large iiw  values are generally considered as high leverage points. 

Since finding the theoretical distribution of iiw  is difficult, all of the high leverage detection techniques are based 

on rules of thumb. Hoaglin and Welsch (1978) considered observations to be unusual when iiw  exceeds nk2  

which is also known as the twice-the-mean (2M) rule. Vellman and Welsch (1981) preferred the thrice-the–mean 

(3M) rule where iiw  is considered to be large when it exceeds nk3 . Huber (1981) suggested breaking the range of 

possible values, )10(  iiw  into three intervals. Values 2.0iiw  appear to be safe, values between 0.2 and 0.5 

are risky, and values above 0.5 should be avoided. Well known Mahalanobis distances are also suggested to use as 

measures of leverages in the literature, however, Rousseeuw and Leroy (1987) showed that Mahalanobis distance 

for each of the points has a one-one relationship with iiw  and do not yield any extra information in the leverage 

structure of a data point. Hadi (1992) pointed out that traditionally used measures of leverages are not sensitive 

enough to the high leverage points. He introduced a single case deleted leverage measure, named as potential, which 

is believed to be more sensitive to the high leverage point. Imon and Khan (2003b) showed that in the presence of 

multiple high leverage points, observations are masked in such a way that even potential values may not focus on all 

of them. As a remedy to this problem, Imon (2002) proposed generalized potentials for the identification of multiple 

high leverage points in linear regression. Further developments of the generalized potentials are done by Habshah et 

al. (2009) and Bagheri et al. (2009).  

 

3. Estimation of the Fixed-X in LFRM 

All the leverage measures discussed in section 2 are designed for fixed- X model and hence cannot be readily 

applied to errors in variable models. In this section we obtain the estimated values of X so that these values can be 

used as fixed-X in the subsequent studies.  

Let us assume,                            iEE iiii ==== ,)var(,)var(,0)()( 22

   

jijiji == ,0),cov(),cov( 
 

                                                              
jiji ,,0),cov( =

                  
                                                            (6) 

Model (2) is also known as the unreplicated linear functional relationship when there is only one relationship 

between the two variables X and Y . There are )4( +n parameters to be estimated, which are 
22 ,,,  and

nXXX ,...,, 21 . Several methods of parameter estimation have been developed (Fuller, 1987) but our primary 

interest is the maximum likelihood (ML) method. Let (2) and (6) hold, and that i  and i are independent normal 

variables, viz.  

                                                                  ),0(~ 2

 Ni  and ),0(~ 2

 Ni                                                     (7) 

Since iX  are non-random variables,
 

02 =x and there are )4( +n  parameters, namely 
22 ,,,   and the n  

values of iX  to be estimated. The model (2) yields the 2-vector  
T

ii YX ),( , ni ,...,2,1=  distributed as 
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and the likelihood function is given by 
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If the ratio of the error variances 
2

2








 =  is known and taking log for (9) becomes 
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)loglog2(
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2loglog iiii XyXx
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Now differentiating (10) with respect to parameters  
2,,   and iX , we proceed to the ML solution 
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From (14) the estimator of 
2

  is derived as 

                                                              

  −−+−= 222 )ˆˆˆ()ˆ(
2

1
ˆ

iiii XyXx
n

                              (15) 

which is not consistent.  Kendall and Stuart (1979) showed a consistent estimator of 
2

 can be derived by 

multiplying 
2

2

−n

n
 to (15), that is   
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Using (11) and (13), we obtain the estimated values of X as 

                                                                     
)ˆ(

)ˆ(ˆˆ
2



+

−+
= ii

i

yx
X

                                                                   

 (17) 

                                                          where               xy  ˆˆ −=                                                                            (18) 

and   

              

( )
2

ˆ

ˆˆˆ
ˆ



 −
=

i

iii

X

XyX 


 ++++

++++
=

2224222

2232

ˆ2ˆˆˆ2

)ˆˆˆ)(ˆ(

xnxnSSy

xnxnSS

yyxyi

yyxy




 

gives 0ˆ)(ˆ 2 =−−+ xyyyxxxy SSSS   and that implies   

                                                          xy

xyxxyyxxyy

S

SSSSS

2

4)()(
ˆ

22 


+−+−
=                                          (19)                      

where,  


−=−=== 2222
,,, xnxSynyS

n

x
x

n

y
y ixxiyy

ii
and  −= yxnyxS iixy .

 

4. Identification of High Leverage Points in LFRM 

In this section we suggest a procedure for the identification of high leverage points in linear functional relation 

model. From a set of observed x  and y  (both assumed to be measured with error), we have estimated the fixed-X 

using the equation (17), i.e., using 
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Since we have a single explanatory variable here, the formula (5) for the computation of leverage values can be 

simplified as 

                                                             i
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Since the above formula contains mean and sum of squares of means which could be very sensitive to high leverage 

points. For this reason we propose a new formula for the leverages analogous to formula (20), but here the non-

robust components are replaced by their corresponding robust alternatives. Hence the formula is 

                                                                          
( )

( )i

ii
ii

XnMAD

XMedX

n
w

ˆ

|ˆˆ|1~ −
+=                                                        (21) 

It is easy to show from (20) and (21) that  

         mean ( iiŵ ) = median ( iiw~ ) = 2/n. 

We consider several measures of the identification of high leverage points, the twice the mean (2M) rule, the thrice-

the-mean (3M) rule, and then introduce a new cut-off point. Since it may not be easy to find the theoretical 

distribution of iiw~  and often excessive high leverage values can affect measures like mean and standard deviation, 

we define a confidence bound type cut-off point 

                                                                         iiw~  > Median( iiw~ ) + 3 MAD( iiw~ )                                                 (22) 

which is analogous to forms used by Hadi (1992), Imon (2002,2005) and others. 

In this paper, we consider five identification rules which are listed below: 

Rule 1 (Classical 2M): iiŵ  > 4/n   

Rule 2 (Classical 3M): iiŵ  > 6/n  

Rule 3 (New 2M based on Median): iiw~  > 4/n   

Rule 4 (New 3M based on Median): iiw~  > 6/n  

Rule 5 (New Median based Cut-off point): iiw~  > Median( iiw~ ) + 3 MAD( iiw~ )                                      

We compare the performances of the above rules in terms of correct identification of high leverage points and 

swamping rate of good leverages.  

 

5. Monte Carlo Simulations 

In this section we report a Monte Carlo simulation which is designed to investigate the performances of different 

measures of leverages in linear functional relation model. For four different sample sizes, n = 20, 30, 50 and 100, we 

generated the X values from Uniform (20, 40). Here we consider three different percentages, i.e., 10%, 20%, and 

30% high leverage points. The X value corresponding to the lowest high leverage value is then set at 100 and the 

next values have an increment of 5 each. To generate a model like (2), we then define ,iii Xx += where i  is N 

(0, 1). The values of iy  are generated as 

iii Xy ++= 220  

where i  is also N (0, 1). For each different sample we apply all five leverage identification rules mentioned in 

section 4 and compute the correct identification rate (IR) and the swamping rate (SR) in terms of percentages. We 

run 10,000 simulations for each combination and these results are presented in Table 1. When no high leverage point 

exists, we observe from Table 1 that for n = 20, all methods considered in the simulation perform well. However, 

rule 1, i.e., the traditional leverage measure based on the 2M rule has about 5% swamping rate. The newly proposed 

rule 4 performs the best as its swamping rate is the lowest followed by rule 2, rule 5 and rule 3. The performance of 

all these rules tend to improve with the increase in sample sizes but still rule 1 has relatively very high swamping 

rate which clearly shows that the 2M rule is too prone to declare low leverage points as points of high leverages. In 
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case of 10% high leverages, almost all methods perform very well. Each method maintains 100% identification rate 

with low swamping rate. Only when n = 100, the identification rate for rule 2 is 90%.  But when 20% or 30% high 

leverage points are present in the data both the 2M and the 3M rule break down. The rule 2, i.e., the 3M performs 

worst as often its correct identification rate is 0%. The performance of the rule 1 is also poor as it can identify 

around 13% cases correctly when there is 30% contamination. The performances of the newly proposed all three 

rules, i.e., rules 3, 4 and 5 are very satisfactory. They have almost 100% correct identification rate with very small 

swamping rates, if at all. 

 

Table 1. Identification and Swamping Rates of Different Leverage Detection Rules 

Sample 

Size 

Rules Percentages of High Leverage Points 

0 10 20 30 

IR(%) SR(%) IR(%) SR(%) IR(%) SR(%) IR(%) SR(%) 

 

 

n = 20 

Rule 1 ----- 4.4985 100.00 0.0000 84.01 0.0000 16.67 0.0000 

Rule 2 ----- 0.2315 100.00 0.0000 00.00 0.0000 0.0000 0.0000 

Rule 3 ----- 2.4510 100.00 1.1551 100.00 0.8081 100.00 0.1350 

Rule 4 ----- 0.1355 100.00 0.0689 100.00 0.0306 99.45 0.0043 

Rule 5 ----- 0.8765 100.00 0.3372 100.00 0.0712 100.00 0.0057 

 

 

n = 30 

Rule 1 ----- 4.1257 100.00 0.0000 82.95 0.0000 32.27 0.0000 

Rule 2 ----- 0.1390 100.00 0.0000 16.67 0.0000 0.00 0.0000 

Rule 3 ----- 1.2467 100.00 0.7541 100.00 0.3775 100.00 0.0362 

Rule 4 ----- 0.0163 100.00 0.0111 100.00 0.0029 99.82 0.0000 

Rule 5 ----- 0.1137 100.00 0.1137 100.00 0.0150 99.90 0.0005 

 

 

n = 50 

Rule 1 ----- 3.893 100.00 0.0000 70.00 0.0000 33.33 0.0000 

Rule 2 ----- 0.0544 100.00 0.0000 30.00 0.0000 0.00 0.0000 

Rule 3 ----- 0.4366 100.00 0.2300 100.00 0.1238 100.00 0.0046 

Rule 4 ----- 0.0006 100.00 0.0002 100.00 0.0000 99.98 0.0000 

Rule 5 ----- 0.0740 100.00 0.0178 100.00 0.0008 99.99 0.0000 

 

 

n = 100 

Rule 1 ----- 3.5172 100.00 0.0000 60.00 0.0000 36.67 0.0000 

Rule 2 ----- 0.0152 90.00 0.0000 35.00 0.0000 13.33 0.0000 

Rule 3 ----- 0.0543 100.00 0.0327 100.00 0.0136 100.00 0.0004 

Rule 4 ----- 0.0000 100.00 0.0000 100.00 0.0000 100.00 0.0000 

Rule 5 ----- 0.0050 100.00 0.0044 100.00 0.0000 100.00 0.0000 

 

6. Example 

We consider a real world data to investigate the performance of our proposed method. In order to make the 

relationship as model (2), we assume that measurement error can occur in either variable of this example. 

 

6.1. Iron in Slag Data 

This example is taken from Hand et al. (1994) where the data for 50 results of iron content of crushed blast furnace 

slag measured by two different techniques, which are chemical test (Y) and magnetic test (X). The original data 

together with the estimated X values by the maximum likelihood formula (17) is presented in Table 2. Now we 

compute the leverage values for this data set and these values are presented in Table 2. Here the cut-off point for 

rule 1 and 3 is 0.08, for rule 2 and 4 is 0.12 and rule 5 is 0.0975 respectively. We observe from the Table 3 that the 

traditional leverage values iiŵ  do not identify any high leverage points, but the 2M rule swamps in six good cases. 

The newly proposed leverage measures iiw~  do not identify any high leverage points but the 2M rule swamps in one 

good case. The 3M rule does not identify any high leverage point for both of these two leverage measures. We 

observe exactly the same performance from the rule based on the new cut-off point as well. 

 

Table 2: Iron in Slag Data   

Index Chemical 

Test (y) 

Magnetic 

Test (x) 

Estimated 

X 

Index Chemica

l Test (y) 

Magnetic 

Test (x) 

Estimated 

X 

1 24 25 24.39586 26 15 15 14.50594 

2 20 21 20.24055 27 25 16 20.03000 
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3 16 22 18.78758 28 16 16 15.54476 

4 20 21 20.24055 29 15 16 15.04640 

5 24 17 20.07211 30 15 16 15.04640 

6 25 21 22.73235 31 16 16 15.54476 

7 18 21 19.24383 32 17 12 13.88125 

8 27 25 25.89094 33 27 26 26.43141 

9 18 20 18.70336 34 19 15 16.49937 

10 22 22 21.77774 35 27 28 27.51235 

11 10 13 10.93320 36 16 15 15.00430 

12 20 18 18.61914 37 30 28 29.00743 

13 14 16 14.54805 38 15 15 14.50594 

14 24 21 22.23399 39 29 30 29.59001 

15 16 14 14.46383 40 15 15 14.50594 

16 24 18 20.61258 41 26 32 29.17587 

17 18 19 18.16289 42 13 17 14.59015 

18 23 20 21.19516 43 25 28 26.51563 

19 29 25 26.88766 44 24 18 20.61258 

20 21 23 21.81985 45 22 16 18.53492 

21 27 20 23.18860 46 21 18 19.11750 

22 20 20 19.70008 47 28 33 30.71306 

23 23 18 20.11422 48 24 22 22.77446 

24 21 19 19.65797 49 25 33 29.21798 

25 19 19 18.66125 50 15 20 17.20828 

 

 

6.2. Modified Iron in Slag Data 

Next we modified the original iron in slag data by inserting few high leverage points. We consider three different 

situations. In case 1, 5 low leverage cases (10%) are replaced by high leverage points. In case 2 and case 3 we 

replace 20% and 30% low leverage points by points of high leverages respectively. Table 4 gives the first 15 

observations of the modified iron in slag data and the corresponding leverage values are given in Table 5. Now we 

compute the leverage values for this data set and these values are presented in Table 5. Here the cut-off point for 

rule 1 and 3 is 0.08 and for rule 2 and 4 is 0.12 as they were before. The cut-off points for rule 5 are 0.1052, 0.1024, 

and 0.0845 for 10%, 20% and 30% high leverage points respectively. We observe from the Table 5 that for the 10% 

contamination, the traditional leverage values iiŵ  can identify high leverage points successfully, but their 

performances tend to deteriorate with the increase in the level of contamination. For 20% contamination it fails to 

identify four high leverage cases out of 10 and for the 30% contamination it fails to identify 10 out of 15 high 

leverage points. The newly proposed leverage measures iiw~  perform very well in this regard. All high leverage 

points are successfully identified irrespective of the level of contamination.  

 

Table 3: Leverage Values for the Iron in Slag Data 

Index 
iiŵ  iiw~  Index 

iiŵ  iiw~  

1 0.0343 0.0470 26 0.0482 0.0520 

2 0.0200 0.0222 27 0.0200 0.0209 

3 0.0218 0.0264 28 0.0389 0.0458 

4 0.0200 0.0222 29 0.0431 0.0488 

5 0.0200 0.0212 30 0.0431 0.0488 

6 0.0250 0.0371 31 0.0389 0.0458 

7 0.0209 0.0237 32 0.0546 0.0557 

8 0.0466 0.0560 33 0.0520 0.0592 

9 0.0221 0.0269 34 0.0320 0.0401 

10 0.0218 0.0314 35 0.0642 0.0657 

11 0.0939 0.0734 36 0.0435 0.0490 
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12 0.0223 0.0274 37 0.0844 0.0746 

13 0.0478 0.0517 38 0.0482 0.0520 

14 0.0232 0.0341 39 0.0933 0.0781 

15 0.0486 0.0522 40 0.0482 0.0520 

16 0.0200 0.0244 41 0.0869 0.0756 

17 0.0237 0.0301 42 0.0474 0.0515 

18 0.0207 0.0279 43 0.0529 0.0597 

19 0.0569 0.0619 44 0.0200 0.0244 

20 0.0220 0.0316 45 0.0225 0.0279 

21 0.0271 0.0398 46 0.0211 0.0244 

22 0.0202 0.0209 47 0.1121 0.0848 

23 0.0200 0.0214 48 0.0252 0.0373 

24 0.0203 0.0212 49 0.0876 0.0759 

25 0.0222 0.0271 50 0.0279 0.0358 

 

Table 4: The First 15 Observations of the Modified Iron in Slag Data 

Index (y)  (x) with 10% HLP (x) with 20% HLP  x with 30% HLP 

1 24 25 (50) 25 (50) 25 (50) 

2 20 21 (55) 21 (55) 21 (55) 

3 16 22 (60) 22 (60) 22 (60) 

4 20 21 (65) 21 (65) 21 (65) 

5 24 17 (70) 17 (70) 17 (70) 

6 25 21 21 (75) 21 (75) 

7 18 21 21 (80) 21 (80) 

8 27 25 25 (85) 25 (85) 

9 18 20 20 (90) 20 (90) 

10 22 22 22 (95) 22 (95) 

11 10 13 13 13 (100) 

12 20 18 18 18 (105) 

13 14 16 16 16 (110) 

14 24 21 21 21 (115) 

15 16 14 14 14 (120) 

 

Table 5: Leverage Values for the Modified Iron in Slag Data 

Index 
iiŵ  iiw~  

10% HLP 20% HLP 30% HLP 10% HLP 20% HLP 30% HLP 

1 0.0936 0.0349 0.0219 0.1612 0.1376 0.0985 

2 0.1249 0.0435 0.0244 0.1842 0.1571 0.1128 

3 0.1618 0.0541 0.0278 0.2072 0.1766 0.1271 

4 0.2042 0.0666 0.0322 0.2303 0.1960 0.1414 

5 0.2522 0.0811 0.0375 0.2533 0.2155 0.1557 

6 0.0205 0.0976 0.0438 0.0319 0.2350 0.1700 

7 0.0215 0.1160 0.0511 0.0253 0.2544 0.1843 

8 0.0204 0.1364 0.0593 0.0518 0.2739 0.1985 

9 0.0224 0.1587 0.0685 0.0208 0.2934 0.2128 

10 0.0204 0.1830 0.0786 0.0336 0.3128 0.2271 

11 0.0393 0.0330 0.0897 0.0582 0.0494 0.2414 

12 0.0243 0.0261 0.1018 0.0262 0.0270 0.2557 

13 0.0299 0.0287 0.1149 0.0409 0.0365 0.2700 

14 0.0207 0.0233 0.1289 0.0309 0.0258 0.2843 

15 0.0334 0.0310 0.1439 0.0480 0.0437 0.2986 

16 0.0233 0.0258 0.0291 0.0225 0.0257 0.0328 

17 0.0236 0.0253 0.0283 0.0236 0.0237 0.0299 
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18 0.0215 0.0241 0.0275 0.0255 0.0216 0.0271 

19 0.0206 0.0209 0.0242 0.0537 0.0428 0.0271 

20 0.0201 0.0221 0.0254 0.0371 0.0326 0.0214 

21 0.0209 0.0239 0.0275 0.0293 0.0228 0.0271 

22 0.0220 0.0243 0.0275 0.0227 0.0207 0.0271 

23 0.0235 0.0259 0.0291 0.0234 0.0260 0.0328 

24 0.0228 0.0251 0.0283 0.0208 0.0228 0.0299 

25 0.0233 0.0252 0.0283 0.0227 0.0234 0.0299 

26 0.0316 0.0299 0.0318 0.0445 0.0401 0.0414 

27 0.0257 0.0278 0.0309 0.0305 0.0332 0.0385 

28 0.0290 0.0286 0.0309 0.0390 0.0359 0.0385 

29 0.0295 0.0287 0.0309 0.0400 0.0362 0.0385 

30 0.0295 0.0287 0.0309 0.0400 0.0362 0.0385 

31 0.0290 0.0286 0.0309 0.0390 0.0359 0.0385 

32 0.0380 0.0337 0.0349 0.0561 0.0511 0.0499 

33 0.0209 0.0206 0.0236 0.0563 0.0461 0.0299 

34 0.0298 0.0295 0.0318 0.0407 0.0389 0.0414 

35 0.0226 0.0201 0.0227 0.0653 0.0539 0.0357 

36 0.0311 0.0298 0.0318 0.0435 0.0398 0.0414 

37 0.0234 0.0201 0.0227 0.0681 0.0548 0.0357 

38 0.0316 0.0299 0.0318 0.0445 0.0401 0.0414 

39 0.0259 0.0200 0.0218 0.0762 0.0622 0.0414 

40 0.0316 0.0299 0.0318 0.0445 0.0401 0.0414 

41 0.0282 0.0201 0.0211 0.0824 0.0691 0.0471 

42 0.0283 0.0277 0.0300 0.0373 0.0329 0.0357 

43 0.0222 0.0201 0.0227 0.0634 0.0532 0.0357 

44 0.0233 0.0258 0.0291 0.0225 0.0257 0.0328 

45 0.0267 0.0280 0.0309 0.0334 0.0341 0.0385 

46 0.0240 0.0260 0.0291 0.0253 0.0267 0.0328 

47 0.0311 0.0203 0.0209 0.0888 0.0735 0.0499 

48 0.0202 0.0226 0.0261 0.0354 0.0297 0.0214 

49 0.0298 0.0203 0.0209 0.0859 0.0726 0.0500 

50 0.0231 0.0246 0.0275 0.0219 0.0207 0.0271 

 

7. Conclusions 

 

In this paper, our main objective is to propose a new method for the identification of high leverage points in linear 

functional relationship model. After obtaining a method of finding the fixed-X values, we propose three different 

identification rules based on robust measures of leverages. Both numerical and simulation results show that the 

traditionally used measures may often fail to identify even a single high leverage point when 20% to 30% high 

leverage points are present in the data. The 2M rule based on traditional leverage measure possesses relatively very 

high swamping rate as well. However, the proposed methods perform very well in every occasion. Our study clearly 

shows that they can correctly identify all high leverage points without swamping low leverage cases.   
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