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Abstract

In a standard linear regression model the explanatory variables, X , are considered to be fixed and hence
assumed to be free from errors. But in reality, they are variables and consequently can be subjected to errors. In
the regression literature there is a clear distinction between outlier in the Y - space or errors and the outlier in the
X-space. The later one is popularly known as high leverage points. If the explanatory variables are subjected to
gross error or any unusual pattern we call these observations as outliers in the X - space or high leverage points.
High leverage points often exert too much influence and consequently become responsible for misleading
conclusion about the fitting of a regression model, causing multicollinearity problems, masking and/or swamping
of outliers etc. Although a good number of works has been done on the identification of high leverage points in
linear regression model, this is still a new and unsolved problem in linear functional relationship model. In this
paper, we suggest a procedure for the identification of high leverage points based on deletion of a group of
observations. The usefulness of the proposed method for the detection of multiple high leverage points is studied
by a well-known data set and Monte Carlo simulations.
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1. Introduction

The linear functional relationship model (LFRM) is an extension of a linear regression model (LRM) which allows
for sampling variability in the measurements of both the response and explanatory variables. In regression the model
is poorly fitted because of the presence of outliers. It is a common practice over the years to use residuals for the
identification of outliers. Residuals are in fact estimates of the true errors that occur in the Y-space. We anticipate at
this point that fitting of the LFRM could be even more complicated because here outliers could occur in the X-space
more frequently than the linear regression model. Outliers in the X-space are called high leverage points in the
regression literature since they exert too much weight on the fitting of the model. When we use the ordinary least
squares (OLS) or the maximum likelihood (ML) method for fitting a regression line, the resulting residuals are
functions of leverages and true errors. Thus high leverage points together with large errors (outliers) may pull the
fitted line in a way that the fitted residuals corresponding to those outliers might be too small and this may cause
masking (false negative) of outliers. For the same reason the residuals corresponding to inliers may be too large and
this may cause swamping (false positive). Pefia and Yohai (1995) pointed out that high leverage cases are mainly
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responsible for masking and swamping of outliers in linear regression. The unfortunate consequences of the
presence of high leverage points in linear regression have been studied by many authors. The presence of a high
leverage point could increase (often unduly) the value of r?. Chatterjee and Hadi (1988) mentioned the existence of
collinearity-influential observations whose presence could induce or break the collinearity structure among the
explanatory variables. Kamruzzaman and Imon (2002) and Imon and Khan (2003a) pointed out that high leverage
points may be the prime source of collinearity-influential observations. Imon (2009) pointed out that in the presence
of high leverage points the errors not only become heteroscedastic, they might produce big outliers as well. Another
way to deal with outliers is to use M-estimators (Mahdizadeh et al., 2020; Zamanzade et al.; 2020; Zamanzade et al.,
2019 and Zamanzade et al., 2018). This could make the procedures for the detection of heteroscedasticity very
complicated. That is why the identification of high leverage points is essential before making any kind of inference.
In this paper our main objective is to identify high leverage points in a linear functional relationship model.
Although some efforts have been done on the identification of outliers and influential observations in LFRM e.g.
(Abdullah,1995; Vidal, 2007; and Wellman, 1991), but so far as we know, there is no reported work in the
identification of high leverage points in LFRM. Let us consider a simple linear regression model

Vi=a+pX te 1)
where . is the response, X, is (supposed) explanatory variable assumed to be constant and specific assumption
made on &;. We feel that the assumption of X; being constant in model (1) may not appropriate in reality, instead

we introduce a linear functional relationship model.
Consider the following model
Yi=Yit+e&, X=X +6,

and Y. =a+ X, fori=12..,n. 2
where the two linearly related unobservable variables X and Y are considered as the true part and the corresponding
random variables x and y are observed with random errors & and&;. The unobservable X and Y are fixed
(nonstochastic) and (2) is called a functional relation. So the main difference between a LRM and a LFRM is that in
LRM it is assumed that the explanatory variable is free from error but in LFRM it is subjected to error. In section 2,
we discuss different measures of leverages. Since all conventional measures of leverages are based on fixed
explanatory variable, in section 3 we introduce the estimated values of X in LFRM which can be considered as fixed.

In section 4, we discuss a procedure of the identification of high leverage points in LFRM. The usefulness of this
proposed measure is studied through real world data in section 5 and through Monte Carlo simulations in section 6.

2. Measures of Leverages

In regression analysis it is sometimes very important to know whether any set of X-values are exerting too much
influence on the fitting of the model. According to Hocking and Pendleton (1983) "high leverage points are those
for which the input vector x;, in some sense, far from the rest of the data.”

Let us consider a k variable regression model

Y=XB+E (3)
A set of influential X-values is known as a high leverage point. The OLS residual vector can be expressed in terms
of the true disturbance vector as

E=Y-Y=(1I-W)e 4)
where the matrix W = X(X"X)™* X" given in (4) is generally known as weight matrix or leverage matrix. The weight
matrix W reflects joint effect of k regressors on the fitted responses. Writing the data matrix of k explanatory
variables as X =[x;,X,,...,X, ]T , the i-th diagonal element of the weight matrix W is defined as

W = X (XTX) X ®)
For a perfect balanced design, w; can be written as

- 1 (Xil — )_(.1)2 (Xiz — )_(.2 )2 (Xip B )_(.p )2

" _ﬁ—l— Z(Xil_)_(.l)z ’ Z(Xiz _)_(.2)2 T Z(Xip _)_(.pjz

and thus the diagonal elements W; of the weight matrix W are considered as leverage values, which measure
influence of each observation in the X-space.
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A good number of works have been done in the detection of a single high leverage point. It is easy to show that
the average value of W is k/n , where k is the number of the regressors (including the intercept term) and n is the

total number of observations. Data points having large W, values are generally considered as high leverage points.
Since finding the theoretical distribution of W; is difficult, all of the high leverage detection techniques are based

on rules of thumb. Hoaglin and Welsch (1978) considered observations to be unusual when W; exceeds 2k/n
which is also known as the twice-the-mean (2M) rule. Vellman and Welsch (1981) preferred the thrice-the—-mean
(3M) rule where W is considered to be large when it exceeds 3k/n . Huber (1981) suggested breaking the range of

possible values, (0 < W, < 1) into three intervals. Values W, < 0.2 appear to be safe, values between 0.2 and 0.5

are risky, and values above 0.5 should be avoided. Well known Mahalanobis distances are also suggested to use as
measures of leverages in the literature, however, Rousseeuw and Leroy (1987) showed that Mahalanobis distance

for each of the points has a one-one relationship with W, and do not yield any extra information in the leverage

structure of a data point. Hadi (1992) pointed out that traditionally used measures of leverages are not sensitive
enough to the high leverage points. He introduced a single case deleted leverage measure, named as potential, which
is believed to be more sensitive to the high leverage point. Imon and Khan (2003b) showed that in the presence of
multiple high leverage points, observations are masked in such a way that even potential values may not focus on all
of them. As a remedy to this problem, Imon (2002) proposed generalized potentials for the identification of multiple
high leverage points in linear regression. Further developments of the generalized potentials are done by Habshah et
al. (2009) and Bagheri et al. (2009).

3. Estimation of the Fixed-X in LFRM

All the leverage measures discussed in section 2 are designed for fixed- X model and hence cannot be readily
applied to errors in variable models. In this section we obtain the estimated values of X so that these values can be
used as fixed-X in the subsequent studies.

Let us assume, E(S,) = E(g,) =0,var(5,) = o2, var(e,) = o2, Vi
cov(s;, ;) =cov(g;, ¢;,) =0,i = |
cov(o;,£;) =0,Vi, ] (6)

Model (2) is also known as the unreplicated linear functional relationship when there is only one relationship
between the two variables X and Y  There are (n + 4) parameters to be estimated, which are ,B,a,O'Z,z'z and

X1y X,y X, . Several methods of parameter estimation have been developed (Fuller, 1987) but our primary

interest is the maximum likelihood (ML) method. Let (2) and (6) hold, and that ¢; and &, are independent normal

]
variables, viz.

g ~ N(O, 0'52) and S, ~ N(0,0'g) )
Since Xi are non-random variables, O'X2 = 0and there are (n+ 4) parameters, namely ,B,a,az,rz and the N

values of X; to be estimated. The model (2) yields the 2-vector (X,,Y, )T , 1 =1,2,...,n distributed as

MRt

|:(X Xi)2+(yi_a_ﬂ>(i)2:|

and the likelihood function is given by
L(B,a,05,62, X, X,,..., X
(ﬁ o & 1 21 ) H 27Z'O'b

1 exp_{z(xi_xi)z+Z(yi_a_lg>(i)2:| 9)

(2rno;0,)" 202 20?7

2 2
20 20;
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2

o
If the ratio of the error variances A = —‘92 is known and taking log for (9) becomes

O
IogL=—nIogZ7r—2(2logaj—Iog/l 12[lZ(xi—Xi)2+Z(yi—a—,6’xi)2] (10)
o,
Now differentiating (10) with respect to parameters f3, «, o? and X, , we proceed to the ML solution
olog L o
== AZZ(y. G- pR)=0 (1)
8Io L P
g = Az —a—-pX,)=0 (12)
alog L ﬂ ~ 5
oX. &2( = X)+ 2 ﬂ(y. BX;) (13)
dlo L 2n
: X)2+Z(y.—a Ry =0 aa

oo,

From (14) the estimator of Gf is derived as

6-52:%[AZ(Xi_Xi)2+2(yi_a’\_ﬁxi)2] (15)

which is not consistent. Kendall and Stuart (1979) showed a consistent estimator of af can be derived by

é‘

2n
multiplying > to (15), that is
n

N 1 - oA
O'.fZE[/IZ(Xi—Xi)2+2(yi—a—ﬁxi)2 (16)
Using (11) and (13), we obtain the estimated values of X as

g _ 2+ By - &)

A 0
where & =y- X (18)
and
(Zx y —a> X, ) (A +B2)(AS,, + /S, +NB°K2 +napx?)
zxiz RNy 225, + B2, +nBiXE + 2n 137K
gives SXy,B2 +(4S,, =S,,) B - 4S,, =0 and that implies
. (S, —28,)+(S, - 4S,)" +44S],
B = (19)
28,,

Zyi - in

where, y = ==, X = = Sy, =2y —ny*,S, => x*—nx’and S,, =D Xy, — Xy

4. Identification of High Leverage Points in LFRM
In this section we suggest a procedure for the identification of high leverage points in linear functional relation
model. From a set of observed X and y (both assumed to be measured with error), we have estimated the fixed-X

using the equation (17), i.e., using
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g P EBlYi-a)
(A+5%)

Since we have a single explanatory variable here, the formula (5) for the computation of leverage values can be
simplified as

~n

P X,
W, =R (XTX) R == (20)

S xT

Since the above formula contains mean and sum of squares of means WhICh could be very sensitive to high leverage
points. For this reason we propose a new formula for the leverages analogous to formula (20), but here the non-
robust components are replaced by their corresponding robust alternatives. Hence the formula is

o1 X -Med(X,)]
W. =
N nMAD(x )

(21)

It is easy to show from (20) and (21) that
mean (WII ) = median (W )=2/n.

We consider several measures of the identification of high leverage points, the twice the mean (2M) rule, the thrice-
the-mean (3M) rule, and then introduce a new cut-off point. Since it may not be easy to find the theoretical

distribution of W, and often excessive high leverage values can affect measures like mean and standard deviation,
we define a confidence bound type cut-off point
> Medlan(W ) + 3 MAD( W") (22)

which is analogous to forms used by Hadi (1992), Imon (2002,2005) and others.
In this paper, we consider five identification rules which are listed below:

Rule 1 (Classical 2M): W;; >4/n
Rule 2 (Classical 3M): W;; > 6/n
Rule 3 (New 2M based on Median): VT/ii >4/n
Rule 4 (New 3M based on Median): W, > 6/n

Rule 5 (New Median based Cut-off point): W > Medlan(W ) + 3 MAD( W“)

We compare the performances of the above rules in terms of correct identification of high leverage points and
swamping rate of good leverages.

5. Monte Carlo Simulations

In this section we report a Monte Carlo simulation which is designed to investigate the performances of different
measures of leverages in linear functional relation model. For four different sample sizes, n = 20, 30, 50 and 100, we
generated the X values from Uniform (20, 40). Here we consider three different percentages, i.e., 10%, 20%, and
30% high leverage points. The X value corresponding to the lowest high leverage value is then set at 100 and the

next values have an increment of 5 each. To generate a model like (2), we then define X; = X; + J;, where J; isN
(0, 1). The values of Y, are generated as

Y, =20+ 2X, +¢
where ¢&; is also N (0, 1). For each different sample we apply all five leverage identification rules mentioned in

section 4 and compute the correct identification rate (IR) and the swamping rate (SR) in terms of percentages. We
run 10,000 simulations for each combination and these results are presented in Table 1. When no high leverage point
exists, we observe from Table 1 that for n = 20, all methods considered in the simulation perform well. However,
rule 1, i.e., the traditional leverage measure based on the 2M rule has about 5% swamping rate. The newly proposed
rule 4 performs the best as its swamping rate is the lowest followed by rule 2, rule 5 and rule 3. The performance of
all these rules tend to improve with the increase in sample sizes but still rule 1 has relatively very high swamping
rate which clearly shows that the 2M rule is too prone to declare low leverage points as points of high leverages. In
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case of 10% high leverages, almost all methods perform very well. Each method maintains 100% identification rate
with low swamping rate. Only when n = 100, the identification rate for rule 2 is 90%. But when 20% or 30% high
leverage points are present in the data both the 2M and the 3M rule break down. The rule 2, i.e., the 3M performs
worst as often its correct identification rate is 0%. The performance of the rule 1 is also poor as it can identify
around 13% cases correctly when there is 30% contamination. The performances of the newly proposed all three
rules, i.e., rules 3, 4 and 5 are very satisfactory. They have almost 100% correct identification rate with very small
swamping rates, if at all.

Table 1. Identification and Swamping Rates of Different Leverage Detection Rules

Sample Rules Percentages of High Leverage Points
Size 0 10 20 30
IR(%) SR(%) IR(%) SR(%) IR(%) SR(%) IR(%) SR(%)
Rulel | ---- 4.4985 100.00 0.0000 84.01 0.0000 16.67 0.0000
Rule2 | ----- 0.2315 100.00 0.0000 00.00 0.0000 0.0000 0.0000
n=20 Rule3 | ---- 2.4510 100.00 1.1551 100.00 0.8081 100.00 0.1350
Rule4 | ---- 0.1355 100.00 0.0689 100.00 0.0306 99.45 0.0043
Rule5 | ---- 0.8765 100.00 0.3372 100.00 0.0712 100.00 0.0057
Rulel | ---- 4.1257 100.00 0.0000 82.95 0.0000 32.27 0.0000
Rule2 | ---- 0.1390 100.00 0.0000 16.67 0.0000 0.00 0.0000
n=230 Rule3 | ---- 1.2467 100.00 0.7541 100.00 0.3775 100.00 0.0362
Rule4 | ---- 0.0163 100.00 0.0111 100.00 0.0029 99.82 0.0000
Rule5 | ---- 0.1137 100.00 0.1137 100.00 0.0150 99.90 0.0005
Rulel | ---- 3.893 100.00 0.0000 70.00 0.0000 33.33 0.0000
Rule2 | ---- 0.0544 100.00 0.0000 30.00 0.0000 0.00 0.0000
n=>50 Rule3 | ---- 0.4366 100.00 0.2300 100.00 0.1238 100.00 0.0046
Rule4 | ---- 0.0006 100.00 0.0002 100.00 0.0000 99.98 0.0000
Rule5 | ---- 0.0740 100.00 0.0178 100.00 0.0008 99.99 0.0000
Rulel | ---- 3.5172 100.00 0.0000 60.00 0.0000 36.67 0.0000
Rule2 | ---- 0.0152 90.00 0.0000 35.00 0.0000 13.33 0.0000
n =100 Rule3 | ---- 0.0543 100.00 0.0327 100.00 0.0136 100.00 0.0004
Rule4 | ---- 0.0000 100.00 0.0000 100.00 0.0000 100.00 0.0000
Rule5 | ---- 0.0050 100.00 0.0044 100.00 0.0000 100.00 0.0000
6. Example

We consider a real world data to investigate the performance of our proposed method. In order to make the
relationship as model (2), we assume that measurement error can occur in either variable of this example.

6.1. Iron in Slag Data

This example is taken from Hand et al. (1994) where the data for 50 results of iron content of crushed blast furnace
slag measured by two different techniques, which are chemical test (Y) and magnetic test (X). The original data
together with the estimated X values by the maximum likelihood formula (17) is presented in Table 2. Now we
compute the leverage values for this data set and these values are presented in Table 2. Here the cut-off point for
rule 1 and 3 is 0.08, for rule 2 and 4 is 0.12 and rule 5 is 0.0975 respectively. We observe from the Table 3 that the

traditional leverage values Wii do not identify any high leverage points, but the 2M rule swamps in six good cases.
The newly proposed leverage measures VT/ii do not identify any high leverage points but the 2M rule swamps in one

good case. The 3M rule does not identify any high leverage point for both of these two leverage measures. We
observe exactly the same performance from the rule based on the new cut-off point as well.

Table 2: Iron in Slag Data
Index | Chemical | Magnetic | Estimated | Index | Chemica | Magnetic | Estimated
Test (y) Test (X) X | Test (y) Test (X) X
1 24 25 24.39586 26 15 15 14.50594
2 20 21 20.24055 27 25 16 20.03000

Identification of High Leverage Points in Linear Functional Relationship Model

496



Pak.j.stat.oper.res. Vol.16 No. 3 2020 pp 491-500

DOI: http://dx.doi.org/10.18187/pjsor.v16i3.2620

3 16 22 18.78758 28 16 16 15.54476
4 20 21 20.24055 29 15 16 15.04640
5 24 17 20.07211 30 15 16 15.04640
6 25 21 22.73235 31 16 16 15.54476
7 18 21 19.24383 32 17 12 13.88125
8 27 25 25.89094 33 27 26 26.43141
9 18 20 18.70336 34 19 15 16.49937
10 22 22 21.77774 35 27 28 27.51235
11 10 13 10.93320 36 16 15 15.00430
12 20 18 18.61914 37 30 28 29.00743
13 14 16 14.54805 38 15 15 14.50594
14 24 21 22.23399 39 29 30 29.59001
15 16 14 14.46383 40 15 15 14.50594
16 24 18 20.61258 41 26 32 29.17587
17 18 19 18.16289 42 13 17 14.59015
18 23 20 21.19516 43 25 28 26.51563
19 29 25 26.88766 44 24 18 20.61258
20 21 23 21.81985 45 22 16 18.53492
21 27 20 23.18860 46 21 18 19.11750
22 20 20 19.70008 47 28 33 30.71306
23 23 18 20.11422 48 24 22 22.77446
24 21 19 19.65797 49 25 33 29.21798
25 19 19 18.66125 50 15 20 17.20828

6.2. Modified Iron in Slag Data

Next we modified the original iron in slag data by inserting few high leverage points. We consider three different
situations. In case 1, 5 low leverage cases (10%) are replaced by high leverage points. In case 2 and case 3 we
replace 20% and 30% low leverage points by points of high leverages respectively. Table 4 gives the first 15
observations of the modified iron in slag data and the corresponding leverage values are given in Table 5. Now we
compute the leverage values for this data set and these values are presented in Table 5. Here the cut-off point for
rule 1 and 3 is 0.08 and for rule 2 and 4 is 0.12 as they were before. The cut-off points for rule 5 are 0.1052, 0.1024,
and 0.0845 for 10%, 20% and 30% high leverage points respectively. We observe from the Table 5 that for the 10%

contamination, the traditional leverage values Wii can identify high leverage points successfully, but their

performances tend to deteriorate with the increase in the level of contamination. For 20% contamination it fails to
identify four high leverage cases out of 10 and for the 30% contamination it fails to identify 10 out of 15 high

leverage points. The newly proposed leverage measures W“ perform very well in this regard. All high leverage
points are successfully identified irrespective of the level of contamination.

Table 3: Leverage Values for the Iron in Slag Data

Index W, W Index W, V'\“,"
1 0.0343 0.0470 26 0.0482 0.0520
2 0.0200 0.0222 27 0.0200 0.0209
3 0.0218 0.0264 28 0.0389 0.0458
4 0.0200 0.0222 29 0.0431 0.0488
5 0.0200 0.0212 30 0.0431 0.0488
6 0.0250 0.0371 31 0.0389 0.0458
7 0.0209 0.0237 32 0.0546 0.0557
8 0.0466 0.0560 33 0.0520 0.0592
9 0.0221 0.0269 34 0.0320 0.0401
10 0.0218 0.0314 35 0.0642 0.0657
11 0.0939 0.0734 36 0.0435 0.0490
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12 0.0223 0.0274 37 0.0844 0.0746
13 0.0478 0.0517 38 0.0482 0.0520
14 0.0232 0.0341 39 0.0933 0.0781
15 0.0486 0.0522 40 0.0482 0.0520
16 0.0200 0.0244 41 0.0869 0.0756
17 0.0237 0.0301 42 0.0474 0.0515
18 0.0207 0.0279 43 0.0529 0.0597
19 0.0569 0.0619 44 0.0200 0.0244
20 0.0220 0.0316 45 0.0225 0.0279
21 0.0271 0.0398 46 0.0211 0.0244
22 0.0202 0.0209 47 0.1121 0.0848
23 0.0200 0.0214 48 0.0252 0.0373
24 0.0203 0.0212 49 0.0876 0.0759
25 0.0222 0.0271 50 0.0279 0.0358
Table 4: The First 15 Observations of the Modified Iron in Slag Data
Index ) (X) with 10% HLP | (x) with 20% HLP X with 30% HLP
1 24 25 (50) 25 (50) 25 (50)
2 20 21 (55) 21 (55) 21 (55)
3 16 22 (60) 22 (60) 22 (60)
4 20 21 (65) 21 (65) 21 (65)
5 24 17 (70) 17 (70) 17 (70)
6 25 21 21 (75) 21 (75)
7 18 21 21 (80) 21 (80)
8 27 25 25 (85) 25 (85)
9 18 20 20 (90) 20 (90)
10 22 22 22 (95) 22 (95)
11 10 13 13 13 (100)
12 20 18 18 18 (105)
13 14 16 16 16 (110)
14 24 21 21 21 (115)
15 16 14 14 14 (120)
Table 5: Leverage Values for the Modified Iron in Slag Data
Index W W,
10% HLP 20% HLP 30% HLP 10% HLP | 20% HLP | 30% HLP
1 0.0936 0.0349 0.0219 0.1612 0.1376 0.0985
2 0.1249 0.0435 0.0244 0.1842 0.1571 0.1128
3 0.1618 0.0541 0.0278 0.2072 0.1766 0.1271
4 0.2042 0.0666 0.0322 0.2303 0.1960 0.1414
5 0.2522 0.0811 0.0375 0.2533 0.2155 0.1557
6 0.0205 0.0976 0.0438 0.0319 0.2350 0.1700
7 0.0215 0.1160 0.0511 0.0253 0.2544 0.1843
8 0.0204 0.1364 0.0593 0.0518 0.2739 0.1985
9 0.0224 0.1587 0.0685 0.0208 0.2934 0.2128
10 0.0204 0.1830 0.0786 0.0336 0.3128 0.2271
11 0.0393 0.0330 0.0897 0.0582 0.0494 0.2414
12 0.0243 0.0261 0.1018 0.0262 0.0270 0.2557
13 0.0299 0.0287 0.1149 0.0409 0.0365 0.2700
14 0.0207 0.0233 0.1289 0.0309 0.0258 0.2843
15 0.0334 0.0310 0.1439 0.0480 0.0437 0.2986
16 0.0233 0.0258 0.0291 0.0225 0.0257 0.0328
17 0.0236 0.0253 0.0283 0.0236 0.0237 0.0299
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18 0.0215 0.0241 0.0275 0.0255 0.0216 0.0271
19 0.0206 0.0209 0.0242 0.0537 0.0428 0.0271
20 0.0201 0.0221 0.0254 0.0371 0.0326 0.0214
21 0.0209 0.0239 0.0275 0.0293 0.0228 0.0271
22 0.0220 0.0243 0.0275 0.0227 0.0207 0.0271
23 0.0235 0.0259 0.0291 0.0234 0.0260 0.0328
24 0.0228 0.0251 0.0283 0.0208 0.0228 0.0299
25 0.0233 0.0252 0.0283 0.0227 0.0234 0.0299
26 0.0316 0.0299 0.0318 0.0445 0.0401 0.0414
27 0.0257 0.0278 0.0309 0.0305 0.0332 0.0385
28 0.0290 0.0286 0.0309 0.0390 0.0359 0.0385
29 0.0295 0.0287 0.0309 0.0400 0.0362 0.0385
30 0.0295 0.0287 0.0309 0.0400 0.0362 0.0385
31 0.0290 0.0286 0.0309 0.0390 0.0359 0.0385
32 0.0380 0.0337 0.0349 0.0561 0.0511 0.0499
33 0.0209 0.0206 0.0236 0.0563 0.0461 0.0299
34 0.0298 0.0295 0.0318 0.0407 0.0389 0.0414
35 0.0226 0.0201 0.0227 0.0653 0.0539 0.0357
36 0.0311 0.0298 0.0318 0.0435 0.0398 0.0414
37 0.0234 0.0201 0.0227 0.0681 0.0548 0.0357
38 0.0316 0.0299 0.0318 0.0445 0.0401 0.0414
39 0.0259 0.0200 0.0218 0.0762 0.0622 0.0414
40 0.0316 0.0299 0.0318 0.0445 0.0401 0.0414
41 0.0282 0.0201 0.0211 0.0824 0.0691 0.0471
42 0.0283 0.0277 0.0300 0.0373 0.0329 0.0357
43 0.0222 0.0201 0.0227 0.0634 0.0532 0.0357
44 0.0233 0.0258 0.0291 0.0225 0.0257 0.0328
45 0.0267 0.0280 0.0309 0.0334 0.0341 0.0385
46 0.0240 0.0260 0.0291 0.0253 0.0267 0.0328
47 0.0311 0.0203 0.0209 0.0888 0.0735 0.0499
48 0.0202 0.0226 0.0261 0.0354 0.0297 0.0214
49 0.0298 0.0203 0.0209 0.0859 0.0726 0.0500
50 0.0231 0.0246 0.0275 0.0219 0.0207 0.0271

7. Conclusions

In this paper, our main objective is to propose a new method for the identification of high leverage points in linear
functional relationship model. After obtaining a method of finding the fixed-X values, we propose three different
identification rules based on robust measures of leverages. Both numerical and simulation results show that the
traditionally used measures may often fail to identify even a single high leverage point when 20% to 30% high
leverage points are present in the data. The 2M rule based on traditional leverage measure possesses relatively very
high swamping rate as well. However, the proposed methods perform very well in every occasion. Our study clearly

shows that they can correctly identify all high leverage points without swamping low leverage cases.
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