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Abstract 

Latent variable models are widely used in social sciences for measuring constructs (latent variables) such as 

ability, attitude, behavior, and wellbeing. Those unobserved constructs are measured through a number of 

observed items (variables). The observed variables are often subject to item nonresponse that may be 

nonignorable. Incorporating a missingness mechanism within the model used to analyze data with 

nonresponse is crucial to obtain valid estimates for parameters, especially when the missingness is 

nonignorable. In this paper, we propose a latent class model (LCM) where a categorical latent variable is 

used to capture a latent phenomenon, and another categorical latent variable is used to summarize response 

propensity. The proposed model incorporates a missingness mechanism. Bayesian estimation using Markov 

Chain Monte Carlo (MCMC) methods are used for fitting this LCM. Real data with binary items from the 

2014 Egyptian Demographic and Health Survey (EDHS14) are used. Different levels of missingness are 

artificially created in order to study results of the model under low, moderate and high levels of 

missingness. 

Keywords: Bayesian estimation; Latent class model; Nonignorable item nonresponse; 

Response propensity. 

1 Introduction 

Latent variable modeling is an important tool in multivariate data analysis. One of the 

main reasons behind using such a technique is trying to measure constructs or concepts 

that cannot be directly measured, which are often met in social sciences (e.g. wellbeing, 

satisfaction, attitude, democracy, etc.…). These are referred to as latent (unobserved) 

factors or variables and can be measured via a number of manifest (observed) variables or 

items. 

 

Latent variable models are classified according to nature of the observed variables 

(categorical or continuous), nature of the latent variables (categorical or continuous) and 

inclusion or not of covariates. We consider a latent class model (LCM) where both latent 

and manifest variables are categorical, while incorporating a missingness mechanism that 

accounts for item nonresponse which also involves a categorical latent variable 

measuring an individual’s propensity to respond 
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Kuha et al. (2018) propose models for nonresponse in survey questions where the 

response propensity is a categorical variable and the latent variable of attitude is assumed 

to be continuous, both depending on a respondent's individual characteristics. Bacci and 

Bartolucci (2014) define such models where both latent variable of interest and response 

propensity variable are categorical, and conditionally independent given a set of 

covariates, and the nonresponse model may depend on both latent variables. These two 

studies depend on Expectation-Maximization algorithm in estimating the models. 

 

There are two main approaches for estimating latent variable models, the first of which 

depends on iterative techniques such as the EM algorithm, first introduced by Dempster 

et al. (1977). As models get more complex, so does the implementation of the EM. An 

alternative methodology for estimating parameters of a latent variable model is to adopt a 

Bayesian approach based on MCMC. Unlike the EM algorithm, MCMC does not require 

exact numerical calculation for the E-step, or precalculation of derivatives for the M-step, 

thus providing easier implementation (Hafez, 2015). Moustaki and Knott (2005) compare 

the EM and MCMC estimation methods for latent variable models, where they use real 

examples with categorical data to illustrate this comparison. They use binary or ordinal 

observed variables and assume that the latent variable is continuous (latent trait model). 

They also fit the model for binary responses with missing values. The comparison is 

made in terms of parameter estimates and standard errors. They show that MCMC 

methods have become popular in the area of latent variable modeling mainly because 

they allow estimation of complex models with much flexibility. 

 

Various researchers have focused on studying and developing Bayesian estimation for 

latent class models. Galindo-Garre and Vermunt (2006) compare the quality of various 

types of posterior mode point and interval estimates for the parameters of latent class 

models with both the classical maximum likelihood estimates and the bootstrap estimates 

proposed by De Menezes (1999). Their simulation study shows that parameter estimates 

and standard errors obtained by the Bayesian approach are more reliable than the 

corresponding parameter estimates and standard errors obtained by maximum likelihood 

and parametric bootstrapping. Pan and Huang (2013) propose a Bayesian framework to 

perform the joint estimation of the number of latent classes and model parameters by 

applying the reversible jump Markov chain Monte Carlo to analyze finite mixtures of 

multivariate multinomial distributions. Latent class analysis is based on the assumption 

that within each class the observed class indicator variables are independent of each 

other. Asparouhov and Muthén (2011) explore a new Bayesian approach that relaxes this 

assumption to an assumption of approximate independence. Instead of using a correlation 

matrix with correlations fixed to zero, they use a correlation matrix where all correlations 

are estimated using an informative prior with mean zero but non-zero variance. White et 

al. (2016) propose a Bayesian approach for the analysis of LCMs. It is shown how simple 

marginalization of the parameters in a LCM leads to a form of the model for which 

MCMC sampling algorithms can be used to quantify precisely the uncertainty in the 

number of groups in the data, as well as which variables give the best clustering. 

Thanoon and Adnan (2016) use ordered categorical variables to compare between linear 

with covariate and nonlinear interactions of covariates and latent variables in Bayesian 

structural equation models. Gibbs sampling method is applied for estimation and model 

comparison.  

 

https://link.springer.com/article/10.1007/s11336-013-9328-2#CR18
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The model presented in this paper builds upon the same model framework presented in 

O'Muircheartaigh and Moustaki (1999), Moustaki and Knott (2000), Hafez et al. (2015), 

Bacci and Bartolucci (2014), and Kuha et al. (2018). Unlike their work, the model 

proposed in this paper assumes both latent variables to be categorical and dependent by 

assuming a certain structure among them. Whereas the EM algorithm has been used for 

estimation of the above models, Bayesian estimation using MCMC is adopted in this 

paper.  

 

In this paper, we cover cases where observed items are categorical (binary) subject to 

item nonresponse, and where the latent variables used to summarize both the 

phenomenon of interest and the response propensity are assumed to be categorical. A 

structure is assumed among the two latent variables in such a way that allows latent class 

membership to affect the probability of response, thus accounting for a possibly 

nonignorable missingness. This model has been estimated by the authors in previous 

work using the EM algorithm, where different types of missingness (missing completely 

at random, missing at random, and missing not at random) have been compared. In this 

paper, Bayesian estimation using MCMC is used to fit the outlined LCM subject to item 

nonresponse. Different levels of missingness are artificially created in order to study the 

performance of the model under low, moderate and high levels of missingness. 

 

The rest of this article is organized as follows. The specification of the proposed LCM is 

described in Section 2. Section 3 outlines Bayesian estimation for LCM parameters using 

MCMC. In Section 4, Bayesian estimation method is employed to the proposed model to 

measure people’s access to knowledge sources using real data from Egypt’s 2014 

Demographic and Health Survey. Finally, a conclusion is given in Section 5. 

2 Latent Class Model for Binary Items Subject to Nonresponse 

The model studied here considers the case where all observed variables are categorical, 

particularly binary. The latent variable of interest is assumed to be categorical too. A 

missingness mechanism to account for item nonresponse is incorporated. The latent 

variable of response propensity is also assumed to be categorical. The two latent variables 

are assumed to be linked allowing dependence of response propensity on the latent 

phenomenon of interest. Different sets of covariates are allowed to affect both latent 

variables. Figure 1 gives a path diagram that illustrates the proposed model. 
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Figure 1: Path diagram for a model where the latent variable affects missingness 

mechanism 

 

The latent variable of interest for attitude, ability or behavior is denoted by 𝑧𝑎 while 𝑧𝑟 is 

another latent variable for response propensity, 𝑦𝑖 is an observed variable, 𝑝 is the 

number of observed variables, 𝐱 is a set of observed covariates affecting 𝑧𝑎, 𝐰 is a set of 

observed covariates affecting 𝑧𝑟, that may be the same or different from those affecting 

𝑧𝑎, and 𝑟𝑖 is an indicator variable that takes value 1 when the manifest variable 𝑦𝑖 is 

observed and takes value 0 when the manifest variable 𝑦𝑖 is missing. 

 

A LCM has two parts; a measurement part and a structural part. In our case, a third part is 

added to the model to incorporate the missingness mechanism. 

2.1 Measurement model 

The measurement part for a LCM describes the relationships between a set of categorical 

observed variables and a set of categorical latent variables. We assume the 

unidimensional case where one latent variable 𝑧𝑎 is sufficient to explain relationships 

among the observed items 𝑦𝑖, where 𝑖 =1, 2, …, 𝑝, and  𝑝 is the number of manifest 

variables. In our case all observed variables 𝑦𝑖 are binary, each having a Bernoulli 

distribution conditional on the latent variable 𝑧𝑎. A set of logistic regression equations 

are used to model these relationships. Thus, the probability of a positive response on 

manifest variable 𝑖 can be presented as, 

   logit 𝜋𝑎𝑖(𝑧𝑎) = 𝛼𝑖0 + 𝛼𝑖𝑎 𝑧𝑎 ,    (1) 

Where 𝜋𝑎𝑖(𝑧𝑎) is the probability of an individual’s positive response to a manifest 

variable 𝑖 given their class membership of the latent variable𝑧𝑎. The latent classes of the 

latent variable of interest 𝑧𝑎 are mutually exclusive and exhaustive. 

2.2 Missingness mechanism 

The missingness mechanism can be incorporated in the model by introducing an indicator 

random variable 𝑟𝑖 for missingness, corresponding to each manifest variable. For each 

individual, the indicator variable 𝑟𝑖 takes value 1 if the manifest variable 𝑦𝑖 is observed 

for this individual, and takes value 0 if it is missing, where 𝑖 =1, 2, …, 𝑝, and 𝑝 is the 

number of indicator variables. 

 

Similar to the observed variables𝑦𝑖, each of the indicator variables 𝑟𝑖 has a Bernoulli 

distribution. It is assumed that a categorical latent variable 𝑧𝑟 that summarizes an 

individual’s response propensity, is responsible for explaining relationships among the 𝑝 

missingness indicators 𝑟𝑖. The probability that a variable 𝑦𝑖 is observed (𝑟𝑖 =
1 ) conditional on the latent class membership, can thus be modeled as,  

   logit 𝜋𝑟𝑖(𝑧𝑟) = 𝜐𝑖0 + 𝜐𝑖𝑟 𝑧𝑟 ,    (2) 

where 𝜋𝑟𝑖(𝑧𝑟) is the probability that a manifest variable 𝑦𝑖 is observed for an individual 

given each category of the latent variable 𝑧𝑟. As for the latent variable of interest 𝑧𝑎, the 

latent classes of the latent variable for response propensity 𝑧𝑟 are mutually exclusive and 

exhaustive.  
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2.3 Structural model 

The structural part describes relationships among the categorical latent variables in the 

model, and possibly relationships between the latent variables and covariates. These are 

observed variables, other than those used as measures of the latent variables, such as 

socio-economic characteristics that may affect the latent variables. 

 

Both of the latent variable of interest 𝑧𝑎 and the latent variable for response propensity 𝑧𝑟 

are assumed to be binary, each of them having a Bernoulli distribution. In this case, the 

structural model will be given by 

logit 𝜋𝑧𝑎
(𝐱) =  𝛼𝑎0  +  ∑ 𝛽ℎ

𝐻
ℎ=1 𝑥ℎ ,   (3) 

logit 𝜋𝑧𝑟
(𝑧𝑎, 𝐰)  =  𝛼𝑟0  +  𝜙𝑧𝑎 +  ∑ 𝛾𝑙

𝐿
𝑙=1 𝑤𝑙 ,          (4) 

where  𝜋𝑧𝑎
(𝐱) is the probability of belonging to the first class of a latent variable of 

interest 𝑧𝑎 given a set of observed covariates 𝑥ℎ, and 𝜋𝑧𝑟
(𝑧𝑎, 𝐰) is the probability of 

belonging to the first class of a latent variable for response propensity 𝑧𝑟 given the latent 

variable 𝑧𝑎 and a set of observed covariates 𝑤𝑙. The observed covariates affecting 𝑧𝑟 may 

be the same or different from those affecting 𝑧𝑎. If the coefficient 𝜙 turns out to be 

significant, this may be taken as evidence of nonrandom missingness. Since then the 

level/probability of missingness will be associated with certain levels of the latent 

variable of interest, and hence incorporating a missingness mechanism is inevitable. 

3 Bayesian Estimation for Latent Variable Models 

A LCM includes estimates for two sets of parameters; parameters involving the 

probability of membership in each latent class and parameters representing the 

conditional probabilities of each response (item-response probabilities) given class 

membership. 

 

The loglikelihood for a random sample of size n is given by 

                   𝐿 =  ∑ log  {𝑓(𝐲𝑚, 𝐫𝑚)}𝑛
𝑚=1 .     (5) 

 

Given the model specification presented by equations (1), (2), (3) and (4), the joint 

distribution of the observed variables is given by 

    𝑓(𝐲𝑚, 𝐫𝑚) =  ∑ ∑ 𝑔( 𝐲𝑚│𝑧𝑎 ) 𝑔( 𝐫𝑚│𝑧𝑟 ) ℎ(𝑧𝑎 , 𝑧𝑟│𝐱, 𝐰 ) 𝑧𝑟𝑧𝑎
 (6) 

where 𝐲𝑚 and  𝐫𝑚 represent the 2𝑝 observed variables for the 𝑚𝑡ℎ individual.  

 

The conditional distribution of  𝐲𝑚│𝑧𝑎 is Bernoulli, given by  

             𝑔( 𝐲𝑚│𝑧𝑎) = ∏ [ 𝜋𝑎𝑖(𝑧𝑎)]𝑦𝑖𝑚  𝑝
𝑖=1 [1 − 𝜋𝑎𝑖(𝑧𝑎)]1−𝑦𝑖𝑚,   (7) 

and that of 𝐫𝑚│𝑧𝑟 is also Bernoulli, given by 

            𝑔( 𝐫𝑚│𝑧𝑟) = ∏ [ 𝜋𝑟𝑖(𝑧𝑟)]𝑟𝑖𝑚  𝑝
𝑖=1  [1 − 𝜋𝑟𝑖(𝑧𝑟)]1−𝑟𝑖𝑚.   (8) 

 

The joint distribution of 𝑧𝑎 and 𝑧𝑟 can be written as 

           ℎ(𝑧𝑎 , 𝑧𝑟│𝐱, 𝐰 ) = ℎ(𝑧𝑟|𝑧𝑎, 𝐰) ℎ(𝑧𝑎|𝐱),    (9) 

where both the conditional distribution of the latent variable of interest given covariates 

ℎ(𝑧𝑎|𝐱), and that of the response propensity latent variable given the latent variable 𝑧𝑎 
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and covariates ℎ(𝑧𝑟|𝑧𝑎, 𝐰) are assumed to be Bernoulli. In the estimation of the model, a 

given response to a manifest variable is weighted by the probability of responding to this 

variable, which is a function of response propensity and class membership of the latent 

variable of interest. 

 

The model presented in this paper will be estimated via a Bayesian approach using 

MCMC. Inference about unobserved parameters is based on the posterior distribution of 

the unobserved quantities (including parameters and latent variables) conditional on the 

observed data. MCMC is used to make draws from this posterior distribution. 

 

Let 𝐯 denote a vector with all the unknown quantities including parameters 𝜽 and latent 

variables; such that 𝐯ʹ = (𝜽, 𝑧𝑎, 𝑧𝑟). The loglikelihood given by (5) can be written as 

                    log 𝐿(𝐯│𝐲, 𝐫, 𝐱, 𝐰) =   ∑ log ∫ … ∫ 𝑔(𝐲𝐦, 𝐫𝐦|𝐯, 𝐱, 𝐰) ℎ(𝐯) 𝑑𝐯.     n
m=1  (10) 

 

The joint posterior distribution of the parameter vector 𝐯 is 

                        ℎ(𝐯|𝐲, 𝐫, 𝐱, 𝐰) =  
𝑔(𝐲, 𝐫|𝐯, 𝐱, 𝐰) ℎ(𝐯)

𝑓(𝐲, 𝐫)
  𝑔(𝐲, 𝐫|𝐯, 𝐱, 𝐰) ℎ(𝐯).              (11) 

 

The above expression has no closed form, and even if it did, we would have to perform 

multiple integration to obtain the marginal distribution for each coefficient. So, as is 

usual for Bayesian analysis, we will use the Gibbs sampler. 

 

The main steps of the Bayesian approach for such a latent variable model are as outlined 

by Bartholomew et al. (2011) and Moustaki and Knott (2005) 

 

1. Inference is based on the posterior distribution ℎ(𝐯|𝐲, 𝐫, 𝐱, 𝐰), of the unknown 

parameters 𝐯 conditional on the observed data 𝐲, 𝐫 and covariates 𝐱, 𝐰. Depending on the 

model fitted, the form of the distribution can be very complex. 

2. The mean vector of the posterior distribution ℎ(𝐯|𝐲, 𝐫, 𝐱, 𝐰) can be used as an 

estimator of 𝐯. 

3. Standard deviation of the posterior distribution ℎ(𝐯|𝐲, 𝐫, 𝐱, 𝐰) can be used to compute 

standard errors of parameter estimates. 

4. In general, the posterior mean 𝐸(ψ(𝐯)|𝐲, 𝐫, 𝐱, 𝐰) can be used as a point estimate of a 

function of the parameter ψ(𝐯), where 𝐸(ψ(𝐯)|𝐲, 𝐫, 𝐱, 𝐰) = 

∫ … ∫ ψ(𝐯) ℎ(𝐯|𝐲, 𝐫, 𝐱, 𝐰) 𝑑𝐯.      
5. Analytic evaluation of the above expectation is impossible. Alternatives include 

numerical evaluation, analytic approximations and Monte Carlo Integration. 

 

To avoid the integration required in the posterior expectation, Monte Carlo integration is 

used in which the integrals are approximated by an average of quantities calculated from 

sampling. Samples are drawn from the posterior distribution of all the unknown 

parameters ℎ(𝐯(𝑟)|𝐲, 𝐫, 𝐱, 𝐰), and the expectation over the posterior is approximated by 

the average over 𝑁 samples: 

            𝐸(ℎ(𝐯|𝐲, 𝐫, 𝐱, 𝐰)) =  
1

𝑁
 ∑  ℎ(𝐯(𝑟)|𝐲, 𝐫, 𝐱, 𝐰)𝑁

𝑟=1 .                                (12) 
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The samples drawn from the posterior distribution do not have to be independent. 

Samples are drawn from the posterior distribution through a Markov chain with 

ℎ(𝐯|𝐲, 𝐫, 𝐱, 𝐰) as its stationary distribution. Algorithms such as the Gibbs sampler and 

Metropolis-Hastings are used in Bayesian inference. Gibbs sampling is used to produce a 

sequence of iterations 𝐯0, 𝐯1, … , 𝐯𝑘  that form a Markov chain, which eventually 

converges to its stationary distribution, taken to be the posterior distribution. For 

Bayesian estimation, we use WinBUGS (Bayesian inference Using Gibbs Sampling) 

(Lunn et al., 2000). 

3.1 Choosing prior distributions 

The posterior distribution ℎ(𝐯|𝐲, 𝐫, 𝐱, 𝐰) of the unknown parameters given the data, is 

obtained by multiplying the likelihood by a prior distribution as shown in equation (11). 

Thus, a prior distribution needs to be assumed for each parameter of interest of the vector 

𝐯. We assume vague or noninformative priors to emphasize the likelihood of the data 

rather than the prior. A normal distribution with mean 0 and a large variance taken to be 

10000 is assumed for all parameters of interest defining the outlined model. 

3.2 Assessing convergence in MCMC 

One of the main issues with MCMC estimation is when to decide that the produced 

Markov chain has converged to its stationary distribution, which is the posterior 

distribution of the parameters given the data. Convergence is checked graphically by 

looking at trace plots showing the full history of estimated values plotted against iteration 

number for each parameter. A chain is said to have converged when trace plots for 

parameters depict random patterns that move around the parameter space quickly 

indicating that the chain is mixing well. It is common practice to run more than one chain 

simultaneously. In that case, one can be reasonably confident about convergence if all the 

chains are overlapping one another. 

 

A more formal approach to assess convergence is via convergence diagnostics. These are 

statistics that have been developed by researchers to facilitate making the decision of 

convergence. An extensive review of convergence assessment techniques for MCMC is 

given in Brooks and Roberts (1998). Several convergence diagnostics including those 

proposed by Raftery and Lewis (1992), Geweke (1992), Heidelberger and Welch (1983), 

Gelman and Rubin (1992) and Brooks and Gelman (1998) can be produced by CODA 

(Plummer et al., 2006); an R package that we use for analyzing output obtained from 

WinBUGS. 

4 Application 

In this paper, we apply the LCM outlined in Section 2 to study the access of people to 

knowledge sources using data from the 2014 Egyptian Demographic and Health Survey 

(EDHS14). The EDHS14 involved two questionnaires: a household questionnaire and an 

individual questionnaire. The EDHS14 household questionnaire was used to collect 

information on the socioeconomic status of the households as well as on the nutritional 

status and anemia levels among women and children. During the main fieldwork and 

callback phases of the survey, out of 29,471 households selected for the EDHS14, 

28,630 households were found. Among those households, 28,175 were successfully 
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interviewed, which represents a response rate of 98.4 percent. Among 28,175 of 

households who were successfully interviewed, we base our analysis on 27,850 who 

provided complete answers. 

 

For choosing the items that measure the latent variable of interest, and for determining 

the suitable number of classes for each categorical latent variable separately, Bayesian 

estimation is implemented in Mplus (Muthén and Muthén, 2011). However, Mplus does 

not support Bayesian estimation for models with more than one categorical latent 

variable. WinBUGS (Spiegelhalter et al., 1996) is thus used for estimation of the overall 

model. 

 

 

4.1 Selecting items and number of classes for measuring access to knowledge 

sources 

We assume access to knowledge sources to be a latent variable measured by a number of 

items. For choosing the items, we depend on the Bristol definition of information 

deprivation. The Bristol indicators were originally developed by a team at the University 

of Bristol based on the "deprivation approach" to poverty (Gordon et al., 2003) defining 

children between 2 − 18 years old who are with no access to radio, television, telephone 

(land line or mobile phone), computer or newspapers at home as information (knowledge 

sources) deprived children. We propose a LCM to study the access of people to 

knowledge sources in Egypt, assuming it to be a latent variable that is explained by a 

number of items which gives more flexibility to the definition. We apply this definition to 

the household head since the availability of such devices in a household will facilitate 

access to all household members. 

 

Collins and Lanza (2010) introduce two criteria that define a strong relation between each 

observed variable and a latent variable. A distribution of the item-response probabilities 

for each observed variable across the latent classes is the first criterion. The probability of 

a response to any observed variable does not depend on the latent variable if that 

observed variable and the latent variable are independent. An array of the item-response 

probabilities corresponding to each observed variable that are close to 1 and 0 is the 

second criterion. 

 

We begin the analysis with eight binary items which are radio, television, land line 

telephone, mobile phone, computer, video, smart phone and satellite dish. By applying 

the previous item selection criteria for measuring the latent class variable, four out of 

eight binary items are selected as measures of the latent variable that we label as “Access 

to Knowledge Sources”.  These four binary items are access to radio, telephone (land 

line), computer and smart phone. The other four items (television, mobile phone, video 

and satellite dish) were excluded as they do not contribute much to measuring the latent 

variable. 

 

Goodman (1974) discusses the identifiability condition of the model (2𝑝 > (p + 1) × K), 

where 𝑝 is the number of binary items and K is the number of classes. According to this 

condition, the suitable number of classes for the latent variable may be two or three 
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classes. By running the measurement model with two versus three classes for the latent 

variable of interest, it is found that the most appropriate number of classes in terms of 

model fit depending on entropy-based criterion (see Celeux and Soromenho, 1996), and 

interpretability is two classes. A two-class latent variable is thus assumed for the latent 

variable of interest, in accordance with the model specification outlined in Section 2. 

4.2 Fitting LCM for data subject to different levels of missingness 

The EDHS14 data have a negligible percentage of missingness. We therefore create 

artificial missingness within our selected items to illustrate the proposed model. The 

missingness is created in such a way that makes the probability of an individual not 

responding to one of the items depend on the value of covariates. The covariates chosen 

here are wealth index (𝑥1) and educational level of household head (𝑥2). An indicator 

variable 𝑟𝑚𝑖 is created for each item 𝑦𝑖, that takes value 1 if item 𝑦𝑖 is observed for 

individual 𝑚 and takes value 0 if it is made to be missing. The probability of a missing 

response is thus modeled by  

            𝑃(𝑚𝑖𝑠𝑠𝑖𝑛𝑔) =  logit (𝛼0  +  𝛼1 𝑥1  +  𝛼2 𝑥2)                   (13) 

Four uniform random variables [0, 1] corresponding to each item in our study are created. 

The criterion is, if the 𝑃(𝑚𝑖𝑠𝑠𝑖𝑛𝑔) >  𝑈𝑖 [0, 1], then the corresponding observation will 

be deleted and treated as missing. It is worth mentioning that both the choice of 

covariates and values for parameters 𝛼0, 𝛼1 and 𝛼2 in equation (13) are arbitrary. The 

model is fitted at different levels of missingness: all cases fully observed, 3% − 52% 

missingness in each item resulting in 7% − 80% overall missingness.  

 

Similar to the latent variable of interest, the suitable number of classes for the 

missingness latent variable “Response Propensity” may be two or three classes according 

to the identifiability condition. It is found that the most appropriate number of classes in 

terms of model fit depending on entropy-based criterion and interpretability is two 

classes, which coincides with our assumption of a two-class latent variable of 

missingness. This is satisfied at different levels of missingness. 

 

Table 1 summarizes results for a model that analyzes datasets with different levels of 

missingness. The first three columns show the values for parameters 𝛼0, 𝛼1 and 𝛼2 that 

are used to create different levels of missingness in the data. The next two columns show 

the percentage of missingness in each of the four items of the study (radio, telephone, 

computer and smart phone) and the resulting percentage of overall missingness in the 

data, respectively. For example, for 3% missingness in each item, a 7% of overall 

missingness is created in the data. That is 7% of observations have at least one item 

missing. The last two columns show the estimated regression coefficient 𝜙 of “Response 

Propensity” on “Access to Knowledge Sources” and the corresponding 𝑝-value, 

respectively.  

Table 1: Effect of “Access to Knowledge Sources” on “Response Propensity” at 

different levels of missingness, “Access to Knowledge Sources” data  

Values for 

parameters 

Percent of 

missingness 

in each item 

Percent of 

overall 

missingness 

Estimated 

parameter 
𝜙 

𝑃-value 
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𝛼0 𝛼1  𝛼2     

0 -4 1 3% 7% 25.737 999.000 

0 -1 0.1 10% 27.7% 4.084 0.000 

0 -1 0.5 20% 46.2% 2.717 0.000 

0 -1 0.8 32% 62.5% 1.338 0.000 

0 -1 1 41% 70.7% -51.243 999.000 

0 -0.8 1 52% 80% -2118.079 999.000   

 

It is noted that there is an insignificant effect of “Access to Knowledge Sources” on 

“Response Propensity” at very low and very high levels of overall missingness. However, 

researchers facing very low percentage of missing values usually exclude those cases, 

and those facing very high percentages such as 70% and 80% would not usually consider 

the data as reliable. On the other hand, “Access to Knowledge Sources” has a significant 

positive effect on “Response Propensity” at moderate levels of overall missingness. 

Despite the missingness being created at random based on covariates, an individual’s 

response propensity is still related to their level of access to knowledge sources, depicting 

nonrandom missingness at most realistic levels of missingness. We will thus focus on 

analyzing the complete dataset and those with moderate levels of missingness. 

 

Table 2 gives parameter estimates and standard errors for the complete data with 

covariates, and for the overall model at different levels of missingness estimated using 

the Bayesian MCMC method. For complete data with covariates, the first 2000 iterations 

have been discarded as a burn-in period and two chains have been run for 11000 

iterations when convergence has been attained. A Multivariate Potential Scale Reduction 

Factor (MPSRF) is estimated by 1.03, and each univariate Potential Scale Reduction 

Factor (PSRF) is ≤ 1.06 for each parameter individually, which is taken as an indication 

of convergence. In case of 27.7% missingness, the first 4000 iterations have been 

discarded as a burn-in period and two chains have been run for 10000 iterations when 

convergence has been attained. MPSRF is estimated by 1.11, and each univariate PSRF 

is ≤ 1.08. In case of 46.2% missingness, the first 6000 iterations have been discarded as 

a burn-in period and two chains have been run for 10000 iterations when convergence 

has been attained, MPSRF is estimated by 1.04, and each univariate PSRF is ≤ 1.02. In 

case of 62.5% missingness, the first 2000 iterations have been discarded as a burn-in 

period and two chains have been run for 10000 iterations when convergence has been 

attained. MPSRF is estimated by 1.1, and each univariate PSRF is ≤ 1.09. For all the 

previous cases, we also looked at trace plots and the Heidelberger and Welch (1983) 

stationary and interval width tests. All parameters of the model passed that test. The 

Geweke (1992) criterion showed that all parameters have converged. Convergence 

diagnostics were obtained from CODA package in R 
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Table 2: Parameter estimates and standard errors from MCMC for complete data 

with covariates for measurement model, and for the overall model at 

different levels of missingness, “Access to Knowledge Sources” data 

Item Parameters 
Complete data 

with covariates 
27.7% 46.2% 62.5% 

Measurement Model     

Radio 

𝛼10  -0.104*** -0.136*** -0.113*** -0.084*** 

 (0.022) (0.022) (0.023) (0.026) 

𝛼1𝑎  -1.143*** -1.123*** -1.119*** -1.164*** 

  (0.030) (0.032) (0.034) (0.037) 

Telephone 

𝛼20 -0.2191*** -0.280*** -0.257*** -0.248*** 

 (0.023) (0.023) (0.024) (0.027) 

𝛼2𝑎  -2.196*** -2.185*** -2.166*** -2.169*** 

  (0.040) (0.043) (0.045) (0.050) 

Computer 

𝛼30  1.394*** 1.170*** 1.219*** 1.229*** 

 (0.036) (0.033) (0.035) (0.039) 

𝛼3𝑎 -3.366*** -3.158*** -3.245*** -3.395*** 

  (0.046) (0.045) (0.049) (0.056) 

Smart phone 

𝛼40 0.2831*** 0.163*** 0.236*** 0.270*** 

 (0.026) (0.025) (0.027) (0.029) 

𝛼4𝑎 -3.144*** -3.079*** -3.214*** -3.314*** 

  (0.046) (0.050) (0.055) (0.061) 

Missingness Model         

r (Radio) 

𝑣10   4.515*** 2.755*** 1.758*** 

  (0.121) (0.043) (0.026) 

𝑣1r   -3.269*** -2.533*** -2.575*** 

   (0.126) (0.051) (0.040) 

r (Telephone) 

𝑣20  4.642*** 2.690*** 1.751*** 

  (0.130) (0.042) (0.025) 

𝑣2r   -3.375*** -2.455*** -2.573*** 

   (0.134) (0.050) (0.040) 

r (Computer) 

𝑣30   4.414*** 2.696*** 1.692*** 

  (0.120) (0.041) (0.025) 

𝑣3r  -3.190*** -2.518*** -2.517*** 

   (0.124) (0.049) (0.040) 

r (Smart phone) 

𝑣40  4.578*** 2.677*** 1.722*** 

  (0.123) (0.041) (0.025) 

𝑣4r  -3.362*** -2.473*** -2.528*** 

   (0.127) (0.049) (0.040) 

Structural Model         

𝑧𝑎 on  𝑧𝑟 𝜙  4.084*** 2.717*** 1.338*** 

   (0.233) (0.126) (0.088) 
Notes: *** indicates a p-value < 0.01 

The MCMC s.d are reported between brackets 

 

Table 3 shows the calculated conditional probabilities for the measurement model 

“Access to Knowledge Sources” and the missingness model “Response Propensity” 

assuming a two-class latent variable for each of them. These probabilities are computed 
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from the estimated parameters given in Table 2. The estimated parameters, standard 

errors, and thus calculated conditional probabilities for each item given class membership 

seem to be robust with respect to level of missingness. The model accounts for 

missingness thus retaining the same structure for classes of the latent variable of interest, 

even at high levels of missingness.  The estimated conditional probabilities are 

consistently higher given membership of the first class, compared to those given 

membership of the second, for both latent variables. The first latent class of “Access to 

Knowledge Sources” may thus be labeled as “High access to knowledge sources” and the 

second latent class as “Low access to knowledge sources”. The first latent class of 

response propensity may be labeled as “High response propensity” and the second latent 

class as “Low response propensity”. The computation time for Bayesian estimation until 

convergence is attained is approximately 10, 17, 19, and 13 hours for complete data with 

covariates, data with 27.7% missingness, data with 46.2% missingness, and data with 

62.5% missingness, respectively. 

Table 3: Item-response conditional probabilities from the MCMC for complete data 

with covariates for measurement model, and for the overall model at 

different levels of missingness, “Access to Knowledge Sources” data 

  
Complete data 

with covariates 

27.7% 

 missingness 

46.2%  

Missingness 

62.5%  

missingness 

 1st class 

2nd 

class 1st class 2nd class 

1st 

class 2nd class 

1st 

class 

2nd 

class 

"Access to Knowledge Sources" Probability of a “Yes”  

Radio 0.474 0.223 0.466 0.221 0.472 0.226 0.479 0.223 

Telephone 0.445 0.082 0.431 0.078 0.436 0.081 0.438 0.082 

Computer 0.802 0.122 0.763 0.120 0.772 0.117 0.774 0.103 

Smart 

phone 0.570 0.054 0.541 0.051 0.559 0.048 0.567 0.045 

"Response Propensity" 
 Probability of a “Not missing”  

r(Radio) 
  0.989 0.777 0.940 0.555 0.853 0.306 

r(Telephone) 
  0.990 0.780 0.936 0.558 0.852 0.305 

r(Computer) 
  0.988 0.773 0.937 0.544 0.844 0.305 

r(Smart phone)     0.990 0.771 0.936 0.551 0.848 0.309 
Notes: The probability of a “No” response can be calculated by subtracting the item-response probabilities shown 

above from 1. 

The probability of a “Missing” response can be calculated by subtracting the item-response probabilities shown above 

from 1. 

 

Covariates affecting the latent variable “Access to Knowledge Sources” are wealth index, 

educational level of household head, sex of household head (male/ female), age in years 

of household head, and place of residence (urban/ rural). Covariates affecting the 
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missingness latent variable “Response propensity” are sex of household head (male/ 

female), age in years of household head, and place of residence (urban/ rural). We do not 

study the effect of wealth index and educational level of household head on “Response 

Propensity” as they are used in creating the missingness. 

 

From Table 4, it is noted that wealth index, educational level of household head, age of 

household head, and place of residence have significant negative effects on people’s 

“Access to Knowledge”, while sex has a significant positive effect. Considering the 

definition of the latent variable and its two classes, this indicates that the probability of 

having high access to knowledge sources is higher for older, richer males with higher 

levels of education for those living in rural areas. These all seem to be expected results 

except for the area of residence covariate where people living in rural areas are usually 

expected to have lower access to knowledge sources. One possible explanation of this 

unexpected result may be that the devices (radio, telephone, computer and smartphone) 

are available in rural areas, which facilitates access to knowledge sources, but no 

information is available on whether these devices are used as sources for knowledge or 

mainly for entertainment and communication. The same effects for covariates are 

depicted with the complete data and at different levels of missingness, indicating 

robustness of the model. 

Table 4: Parameter estimates and standard errors from the MCMC of the 

covariates effects for complete data with covariates for measurement 

model, and for the overall model at different levels of missingness, 

“Access to Knowledge Sources” data 

Item Parameters 

Complete 

data with 

covariates 

27.7% 

missingness 

46.2% 

missingness 

62.5% 

missingness 

Covariates effects on 𝑧𝑎   
  

Intercept αa0 
18.48*** 

(0.484) 

21.660*** 

(0.583) 

20.970*** 

(0.608) 

19.950*** 

(0.522) 

Place of 

residence 

(Rural) 

β1 

-

2.806*** 

(0.11) 

-3.595*** 

(0.132) 

-3.394*** 

(0.138) 

-3.167*** 

(0.124) 

Wealth 

index 
β2 

-

2.702*** 

(0.072) 

-3.246*** 

(0.081) 

-3.356*** 

(0.085) 

-3.293*** 

(0.076) 

Sex 

(Female) 
β3 

0.383*** 

(0.099) 

0.394*** 

(0.104) 

0.529*** 

(0.106) 

0.552*** 

(0.111) 

Age β4 

-

0.043*** 

(0.003) 

-0.047*** 

(0.003) 

-0.035*** 

(0.003) 

-0.028*** 

(0.003) 

Educational 

level 
β5 

-

0.629*** 

(0.020) 

-0.614*** 

(0.023) 

-0.492*** 

(0.024) 

-0.424*** 

(0.024) 

Covariates effects on 𝑧𝑟   
 

 

Intercept αr0  -8.150*** -4.575*** -1.570 
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(0.308) (0.174) (0.138) 

Place of 

residence 

(Rural) 

γ1 

 
2.559*** 

(0.078) 

2.452*** 

(0.059) 

2.010*** 

(0.049) 

Sex 

(Female) 
γ2 

 -0.476*** 

(0.092) 

-0.995*** 

(0.081) 

-1.472*** 

(0.086) 

Age γ3 
 0.018*** 

(0.002) 

-0.026*** 

(0.002) 

-0.044*** 

(0.002) 
Notes: *** indicates a p-value < 0.01 

The MCMC s.d are reported between brackets 

 

The negative coefficients of age and sex of household head on “Response Propensity” 

indicate that older people and females have higher probability of responding. The 

positive coefficient of place of residence on “Response Propensity” indicates that people 

living in urban areas have higher propensity to respond. 

Given the definition of the latent variables and interpretation of their classes, the 

significant positive effect 𝜙 of “Access to Knowledge Sources” on “Response 

Propensity” reported at the end of Table 2, at all levels of missingness under 

consideration, indicates that the probability of having high response propensity increases 

with high access to knowledge sources, which is taken as evidence of nonrandom 

missingness since higher levels of response are associated with higher levels of access to 

knowledge sources even after controlling for covariates. 

5 Conclusion 

In this paper, we have studied a LCM with two categorical latent variables; one for the 

phenomenon of interest, and the other for response propensity. Bayesian estimation has 

been adopted to fit the proposed model. Non informative priors have been assumed for all 

model parameters. We have used some of the diagnostics available in CODA to check the 

convergence of our models. 

 

The model has been applied to data from Egypt’s Demographic and Health Survey 2014. 

In the application, artificial missingness has been created to study the model under 

different levels of missingness. Parameter estimates obtained for the model were very 

close at different levels of missingness. One of the main findings of the model was that 

even with high levels of missingness, the proposed model retains the structure for the 

latent classes as for the complete data. It also succeeds to capture the same covariates 

effects at high levels of missingness. Another important result is that even after 

controlling for covariates, the probabilities of belonging to classes of the “Response 

Propensity” latent variable still depend on classes of the “Access to Knowledge Sources” 

latent variable making the missingness nonignorable. Higher levels of response were 

found to be associated with higher levels of “Access to Knowledge Sources” which may 

be due to higher levels of awareness. This result confirms the importance of 

accommodating the missingness mechanism within the modeling of the data. 
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