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Abstract 

 
Double Extreme Ranked Set Sampling (DERSS) was first introduced by Samawi (2002) as a modification to 

the well-known Ranked Set Sampling (RSS) and Extreme Ranked Set Sampling (ERSS). In this article, we 

provide a modification to DERSS scheme with ranking based on an easy-to-evaluate baseline auxiliary 

variable known to be associated with survival time. We show that using the modified DERSS improves the 

performance of the Accelerated failure time (AFT) survival model and provides a more efficient estimator of 

the hazard ratio than that based on their counter parts simple random sample (SRS), RSS and ERSS. Our 

theoretical and simulation studies show the superiority of using the modified DERSS for AFT survival 

models compared with using SRS, RSS and ERSS.  A numerical example based on Worcester Heart Attack 

Study is presented to illustrate the implementation of the DERSS. 

Keywords:   Accelerated Failure Time Model, Hazards Ratio, Double Extreme Ranked 

Set Sampling, Extreme Ranked Set Sampling, Survival analysis. 

 

Introduction 

Survival analysis can be used to evaluate the effects of covariates on the time until a subject 

experiences the event of the study. Some examples of events include: death, appearance of 

a tumor, development of some disease, recurrence of a disease, conception, or cessation of 

smoking. The most popular methods to analyze the effect of covariates on survival time 

are regression models. One class of regression models for survival data is the Cox 

proportional hazards (PH) models (Cox, 1972). The other class of popular modeling for 

survival data is the parametric AFT models (Collett, 2003). While Cox proportional 

hazards models relate the hazard function to covariates, the AFT models specify a direct 

relationship between the failure time and covariates.  

AFT models are especially useful in crucial industrial applications in which failure time is 

accelerated, for example, by thermal high-voltage or other factors. In addition, the AFT 
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models are occasionally used to analyze survivorship data of elderly people. Moreover, 

AFT modeling is based upon the survival curve but not on the hazard function (Swindell, 

2009). Furthermore, the applications and development of the proportional hazards model 

rely on the assumption of independent responses from the monitored units that are 

subjected to failure. AFT models share similar assumptions (Chapman et al., 1992).  

 One of the common sampling designs for statistical inference is simple random 

sampling (SRS) (Scheaffer et al., 2006). In many studies a large sample size, if SRS used, 

to have a representative sample to the population is needed to validate the study results.  

An alternative cost effective sampling scheme to SRS is ranked set sampling (RSS). RSS 

was first proposed by McIntyre (1952) and used in agriculture studies. RSS is more 

structural sampling scheme than SRS and provides more representative sample to the study 

population due to its natural stratification behavior based on the order statistics. Hence RSS 

needs less quantified sampling units than SRS to achieve the same accuracy for many 

statistical procedures.  

 The balanced RSS procedure starts with randomly drawing m2 subjects from the 

target population then these subjects are randomly divided into m sets of m subjects each. 

Within each set, the subjects are ranked usually visually or by the mean of an available 

concomitant (auxiliary) variable (say Z), such as age, BMI and weight, related to the 

variable of interest (say Y). From the first set of m subjects, the subject with the lowest rank 

with respect to (Y or Z) is chosen for actual measurement of the variable of interest (Y). 

From the second set of m subjects, the subject ranked second lowest is measured. The 

process is continued until the subject ranked highest is measured from the mth set of m 

subjects. The set size m needs to be small no more than five due to the fact that larger set 

size may cause error in the ranking process. If larger sample size is needed the procedure 

above can be repeated r time to have a sample size n=r.m.  We call r the cycle size.   

 Ranked set sampling is prone to ranking error if the chosen set size m is large. To 

overcome this problem, several variations of RSS have been proposed by researchers.   

Samawi et al. (1996), investigated the performance of ERSS in estimating the population 

mean. Another modification of RSS, namely DERSS, was introduced by Samawi (2002) 

for mean and regression estimators.  A modified version of ERSS can be implemented 

using then following steps:  

1) Randomly drawing m independent sets each contains m sample units; 

 2) We assume that the maximum or the minimum sample unit within each set with respect 

to the value of an auxiliary variable Z, which is associated with survival time, can be 

identified with no or little cost. Then order the sampling units in each set with respect to 

available baseline auxiliary variable (Z).  

3) Measure the maximum (or minimum) ordered unit from each set. This sampling scheme 

is known as ERSSmax (or ERSSmin) of size m (Samawi et al., 2018). Furthermore, to draw 

a modified DERSS, use step 1 to 3, which describing the implementation of the modified 

ERSS above to, without actual measurements, select m ERSSmax (or ERSSmin). Then 

measure the maximum (or minimum) from each. The propose sampling scheme is called 

DERSSmax (or DERSSmin). If large sample size is needed the whole cycle can be repeated 

r times to have a sample of size n=r.m. In fact, the modified ERSS and DERSS still 

inheriting the stratification behavior of RSS. However, focusing on targeting the upper or 

the lower part of the population, which increase the number of the event’s occurrences, 

improves the performance of the AFT models.   

 Most of RSS and its variations sampling schemes are implemented in agriculture 

and environmental studies. However, Samawi and Al-Sagheer (2001) were first to apply 
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RSS in a study involving human subjects. They described the data collection in the study 

that involved the analysis of the level of bilirubin in the blood of the jaundice premature 

babies. Samawi and Al-Sagheer (2001) suggested that an expert physician could do ranking 

on the level of bilirubin in the blood visually by observing:  i) Color of the face ii) Color 

of the chest iii) Color of lower part of the body iv) Color of terminal parts of the whole 

body. As the level of bilirubin in the blood increases, the yellowish discoloration goes from 

i). to iv.). Also, see Jabrah et al. (2017) for another application of RSS in a study involving 

human subjects. They applied the RSS sampling design to select college students for the 

analysis of a psychological intervention to buttress resilience study. On the other hand 

ERSS became a useful sampling scheme in some medical fields.  For example, ERSS 

sampling scheme recently applied to genetics for quantitative trait loci (QTL) mapping 

(Chen, 2007). Chen (2007) explained that in case of the frequency of the Q allele, in the 

general population is small, one of the alternatives approaches adopted to draw SRS for 

detecting QTL using population data is to truncate the population at a certain quantile of 

the distribution of response variable (Y) and take a random sample from the truncated 

portion and a random sample from the whole population. The two samples drawn are 

genotyped and compared on the number of Q-alleles. Then if a significant difference exists, 

the candidate QTL is claimed as a true QTL (Chen 2007). However, this approach needs a 

large number of individuals have to be screened before a sample can be taken from the 

truncated portion and hence it is not practical. Alternatively, the ERSS is used as follows: 

Individuals are taken in sets and the individuals within each set are ranked according to 

their trait values. The one with the largest trait value is put into an upper sample and the 

one with the smallest trait value is put into a lower sample. Then the two samples obtained 

this way are then genotyped and compared. Also, ERSS approach has been applied for 

linkage disequilibrium mapping of QTL recently by Chen et al. (2005). The ERSS has been 

applied to a sib-pair regression model where extremely concordant and/or discordant sib-

pairs are selected by the ERSS (see Zheng et al. 2006). As indicated by Chen (2007), the 

ERSS approach can be applied also to many other genetic problems such as the 

transmission disequilibrium test (TDT) and the gamete competition model (Sinsheimer et 

al. 2000). 

 For improving the inference of regression models, RSS has recently gained 

significant consideration as an efficient sampling design. For example, Samawi and 

Ababneh (2001), implemented RSS based on ranking on the covariate (X) to investigate 

its effect on regression analysis.  Samawi and Abu-Dayyeh (2002) further extended this 

work by assuming the regressors to be random. Rochani et al. (2018) demonstrated that the 

efficiency of multivariate regression estimator can be improved by using RSS. The 

literature on this topic is extensive in the last 50 years, for example see (Al-Saleh and 

Samawi, 2000; Al-Saleh and Zheng, 2003; Samawi and Al-Saleh, 2002,  Samawi et al., 

2009, Samawi et al., 2018.) In addition, Samawi et al. (2018) improved the performance of 

AFT survival model by using a modified ERSS, namely ERSSmin or ERSSmax.  

 The first aim of this paper is to introduce DERSSmin (DERSSmax) sampling scheme, 

which is an extension to the modified ERSSmin (ERSSmax ) scheme. The derivation of the 

sampling distribution using  DERSSmin (DERSSmax) is provided in the next section.  

 The second aim in this paper, is to show, theoretically and by simulation, that using 

the modified DERSS improves the performance of AFT survival models and provides more 

efficient estimators of the hazard ratios compares with their counter parts, simple random 

sample (SRS), RSS and ERSS. The remainder of this paper is organized as follows:  In 

Section 2 we introduce sample notations and some basic results about the modified 
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DERSS. AFT regression model and its properties using the modified DERSS will be 

discussed in section 3.  In Section 4, we provide a simulation study to compare the 

performance of DERSS, ERSS and SRS for all the AFT models.  In Section 5, we illustrate 

the method using Worcester Heart Attack Study. Final remarks are given in Section 6.  

 

Preliminaries  

Let T be a random variable for time to an event. The distribution of T is usually 

described or characterized by three functions, namely: the survival function, denoted by

( )S t ; the hazard rate function or risk function, denoted by ( )h t ; and the probability density 

(or probability mass) function, denoted by ( )f t . The unique feature about survival data is 

censoring. Censored data arise when exact time to event for a subject is unknown. There 

are several censoring methods available to researchers, for example; Type I censoring in 

which the test ceases at a prefixed time, or Type II censoring that allows the experiment to 

be terminated at a predetermined number of failures. In this paper, we will only focus on 

Type I right censoring.  

 For the ith individual, the lifetime observation can be described by

 

(ti , i) , where 

 

ti  

is the survival time, which can be defined as 

 

ti = min(Ti,Ci) . Hence, iT  is the true survival 

time and 

 

Ci  is the censoring time. As in Samawi et al. (2018), define 

 

 i  as the indicator 

variable for survival status as follows: 

                              
1  if  or            (uncensored)

 
0  if  or    ( right censored).  

i i

i

i i

T t T C

T t T C


= 
= 

 
          (1) 

Therefore, given lifetimes 1 2, ,..., nt t t for a SRS of n individuals, the likelihood function for 

the sample is given by   

                                      
1

1

( ) ( ) ( ) ,i i

n

i

i

l f t S t
 −

=

=  iβ

  

                                     (2) 

where β is the vector of parameters to be estimated in the presence of right censoring.    

 Sample Notation and Some Basic Results of the Modified DERSS 

 For the k-th cycle, let 
1 1 1 1 1 1 1 1 1

11 12 1 21 22 2 1 2,  Z ,  ...,  Z ,  Z ,  Z ,  ...,  Z ;  ...;  Z ,  Z ,  ...,  Z ;k k mk k k mk m k m k mmkZ   

11 12 1 21 22 2 1 2,  ,  ...,  ,  ,  ,  ...,  ;  ...;  ,  ,  ...,  ;m m m m m m m m m

k k mk k k mk m k m k mmkZ Z Z Z Z Z Z Z Z  k=1, 2, ..., r, be the m 

independent sets each with sample size m2.  Note that l

ijkZ  is the j-th sample unit in the i-th 

row (sample) of the k-th set. Assume that each element Zl

ijk in the sample has a p.d.f. ( )Zf z  

and a distribution function ( )ZF z  (absolutely continuous). Selecting DERSSmin after 

ranking the sample units within each sample in each set (visually or by any non costly way) 

we obtain: 

  

1 1 1

1(1) 1(2) 1( ) 1(1) 1(2) 1( )

1 1 1

2(1) 2(2) 2( ) 2(1) 2(2) 2( )

1 1 1

(1) (2) ( ) (1) (2)

, , ..., , , ...,

, , ..., , , ...,
,  . . .,

... ... ... ... ... ... ... ...

, , ..., , , ...

m m m

k k m k k k m k

m m m

k k m k k k m k

m m

m k m k m m k m k m k

Z Z Z Z Z Z

Z Z Z Z Z Z

Z Z Z Z Z

 
 
 
 
 
   ( )

 ,

, m

m m kZ

 
 
 
 
 
  

 

 k=1, 2, ..., r.  Thus the first stage will yield m ERSSmin samples: 
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1kA  ={ 1

1(1)kZ , 1

2(1)kZ , ..., 1

-1(1) ,m kZ 1

(1)m kZ },  

2kA ={ 2

1(1)kZ , 2

2(1)kZ , ..., 2

-1(1) ,m kZ 2

(1)m kZ }, ..., 

mkA   ={ 1(1)

m

kZ , 2(1)

m

kZ , ..., -1(1) ,m

m kZ (1)

m

m kZ }.  Now let 1(1) 1min( )k kV A= , 2(1) 2min( )k kV A= , ...., 

(1) min( )m k mkV A=  Then  1(1) 2(1) (1), ,...,k k m kV V V  k=1, 2, ..., r, denotes DERSSmin. The 

DERSSmax 

is similar to DERSSmin  but the maximums are selected instead of the minimums.  It is easy 

to show that the p.d.f of the smallest and the largest order statistics of an i.i.d sample of 

size m with p.d.f ( )Zf z  are respectively given by 1

(1) ( ) (1 ( )) ( )m

Z Z Zf z m F z f z−= −  and

1

( ) ( ) ( ( )) ( )m

Z m Z Zf z m F z f z−= . Also, let (1)i kV have p.d.f 
(1) ( )g z and c.d.f 

(1) ( )G z  and ( )i m kV

have p.d.f 
(m) ( )g z and c.d.f 

(m) ( )G z where i=1,2,…,m and k=1, 2, ..., r.  Clearly,  

1(1) 2(1) (1), ,...,k k m kV V V , k=1, 2, ..., r, are independent and identically distributed. Using the 

above description of DERSS, we have the following lemmas:  

Lemma (1):  Under the above assumption,  

(1)
(1) (1)

2

( ) 1 [1 ( )] 1 [1 ( )]m m

V Z ZG x F z F z= − − = − − ,  

(2) 
2

(1) (1) (1)

1 2 1

Vg ( )[1 ( )] =m ( ) [1 ( )]m m

Z Z Z Zmf z F z f z F z− −= − −    

(3)
2

( )
 ( ) [ ( )]

m

m

V ZG z F z=  

(4) 
2

(m)

2 1

Vg ( ) m ( ) [ ( )]m

Z Zz f z F z −=  

Proof:  (1) and (3) can be shown directly from the definition of the c.d.f of the random 

variables 

Vi(1)k  and  Vi(m)k respectively.  Also, (2) and (4) can be shown by taking the first derivative, 

with respect to z, of (1) and (3) respectively.   

Moreover, in this procedure only the maximum (or minimum) of sets of a fixed size is 

identified for quantification. Therefore, even for large m, the modified DERSS can be 

easily implemented. We can allow for a larger set size m by ranking the sampled units 

based on an auxiliary variable (Z) that is highly correlated with the variable of interest.   

 

AFT Model Using DERSSmin 

In this section we derive the AFT models properties under DERSSmin and show how using 

DERSSmin improves the performance of the AFT Models. We assume that the relation 

between the survival time (T) and the ranked auxiliary variable (Z), which is assumed to 

be easy to be ranked, is positive. However, when the relation between the survival time 

and the auxiliary variable is negative we suggest to use DERSSmax. The derivation of using 

DERSSmax is similar and will not be provided in this paper.  

For 1,2,..., ,  k r= let 1(1) 2(1) (1), ,...,k k m kV V V be the measurements of DERSSmin of size

.n r m= , obtained based on ranking the auxiliary variable (Z). We assume that the judgment 

on ranking of the auxiliary variable is perfect. Therefore, for the kth cycle, (1)kV is defined 

as the minimum order statistic of an ERRSmin of size m. Now as in Samawi et al. (2018), 

define the vector [1] [1] [1] (1)( ... , ) ,  1,2,..., ; 1,2,...,i k i k i kp i kx x v i m k r= = =w . Clearly, the vector 

[1]i kw  represents the observations on the p+1 explanatory variables plus one auxiliary 
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variable. Note that as indicated by Samawi et al. (2018), the notation (.) used for perfect 

ranking while the notation [.] used for imperfect ranking.  

Similar to Liu (2012) and Samawi et al. (2018), the log-linear form of the AFT 

model, with respect to [1]log i kT ,  is given 

𝑙𝑜𝑔 𝑇𝑖[1]𝑘 = 𝛽0 + 𝑥𝑖[1]𝑘1𝛽1+. . . +𝑥𝑖[1]𝑘𝑝𝛽𝑝 + 𝑣𝑖(1)𝑘𝛽𝑝+1 + 𝜎𝜀𝑖𝑗, 𝑖 = 1,2, . . . , 𝑚; 𝑘 =

1,2, . . . , 𝑟.                         (3) 

Note that,  is a scale parameter and 
ij is a random error term of the model which is 

assumed to have a specific distribution. Adopting the same notation as in Samawi et al. 

(2018),  the survival function at time 
[1]i kT  is as follows: 

                𝑆𝑖𝑘(𝑡) = 𝑃(𝑙𝑜𝑔 𝑇𝑖[1]𝑘 ≥ 𝑙𝑜𝑔 𝑡𝑖[1]𝑘) 

        = 𝑃 (𝜀𝑖𝑘 ≥
𝑙𝑜𝑔 𝑡𝑖[1]𝑘 − {𝛽0 + 𝑥𝑖[1]𝑘1𝛽1+. . . +𝑥𝑖[1]𝑘𝑝𝛽𝑝 + 𝑣𝑖(1)𝑘𝛽𝑝+1}

𝜎
) 

         =𝑃 (𝜀𝑖𝑘 ≥
𝑙𝑜𝑔 𝑡𝑖[1]𝑘−𝛽0−𝒘𝑖[1]𝑘

′ 𝜷

𝜎
).                         (4) 

Assuming [1] [1] 1 [1] (1)( ,..., , ) ,  1,2,..., ;k 1,2,...,i k i k i kp i kx x v i m r= = =w  fixed, the survival 

function of the  [1]log i kT  is given by  

                                  

[1] [1]

[1] 0 [1]

0 [1]

0 [1] 1 1 [1] (1) 1

[1] 0 [1]

( ) (log log )

log
        , ,

...
        

log
         =

ij i k i k

i k i k

i k

i k i kp p i k p

ik

i k i k

ik

S t P T t

t
S t

x x v
P

t
P





   









+

= 

− − 
= −    

 

+ + + + 
=  

 

− − 
 

 

w β

w β

        (5) 

where 1 2, 1( , ..., )p   +
=β . 

Furthermore, the hazard function for [1]i kT  under DERSSmin scheme is  

           
[1] 0 [1]

[1] 0

[1]

log1
( | , ) ,  1,2,..., ; 1,2,...,

i k i k

ik i k

i k

t
h t h i m k r

t



 

− − 
= = = 

 

w β
w β ,        (6) 

where 0 ( )h t  is the baseline hazard function at survival time t . As in Samawi et al. (2018), 

the covariates { [1] 1 [1] (1),..., ,i k i kp i kX X V } are assumed to have a multiplicative effect on the 

hazard function. Therefore, the predicted value of hazard function, given 
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{
[1] 1 [1] (1),..., ,i k i kp i kx x v }, which denoted by [1] [1] 1 [1] (1)

ˆ( | ,..., , )i k i k i kp i kh t x x v , can take values in 

the range (0, ).   

The Likelihood Function 

Given n independent observations [1] [1]( , , : 1,2,..., , 1,2,... )i k ik i kt i m K r = =w , the 

likelihood function can be written as (see Liu, 2012): 

               1

[1] [1]

1 1

( ) ( ) ( ) .ik ik

m r

i k i k

i k

l f t S t
 −

= =

= β

 

            (7) 

Then the log likelihood function has the following form, 

                          [1] [1]

1 1

( ) log[ ( )] log ( ) (1 ) log ( ) .
m r

i k i k

i k

L l f t S t
ik ik

 
= =

 =  + −
 β β           (8) 

An iterative procedure, such as, Newton-Raphson methods, to obtain MLE estimates of the 

p+1 unknown parameters 1 2, 1( , ..., )p   +
=β  is needed.  

To estimate the unknown parameters based on the ( )L β , we need to differentiate 

the { ( )}L β with respect to j  .  The first derivative of the jth element of the vector of 

parameters, β is: 

        
( )

( )j

j

dL
S

d



=

β
                                                   (9) 

where ( )jS   is called the score. The vector β can be estimated by solving the equation   

                                                                        ( ) 0,   S =β      

                              

(10) 

where   0 1( ) ( / ,...., / ) .pS L L  +
=    β   

For large samples, β̂  is a unique solution of ( ) 0,   S =β and β̂  is consistent for β  and has a 

multivariate normal distribution, which implies  

ˆ  ~ ( , ( )).MN Vβ β β         (11) 

We need to solve these equations iteratively using a numerical technique such as the 

Newton-Raphson method (See, Agresti, 2002). Under the same regularity conditions, used 

in SRS, the resulting solution of Newton-Raphson approximation converges to the 

maximum likelihood estimates of ˆ β (Liu, 2012).  That is because the log likelihood 

function in (8) is strictly concave in β , then  the maximum likelihood estimates (MLE) of 

s  do exist and they are unique except in certain boundary cases (Agresti, 2002). 

Lehmann and Casella (1998), provided six regularity conditions for maximum likelihood 

estimators to be consistent. Many authors, including Rashid and Shifa (2009), showed that 

all those regularity conditions are satisfied for AFT type of models. Also they showed that 

under those regularity conditions, the MLE of s  are consistent estimators and 

asymptotically normally distributed. Similarly, under the same regularity conditions, the 

resulting solution of Newton-Raphson approximation converges to the maximum 

likelihood estimates of ˆ β (Albert and Anderson, 1984) and hence they are consistent 

estimators. 
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 Moreover, the asymptotic normal distribution of ˆ β
 provides the basis for 

hypothesis testing on  .β  The variance covariance matrix estimator ( )V β of ˆ β is based on 

the (P+2) by (P+2) observed information matrix ˆ( )I β . In this case, ( )V β =
1ˆ( )−

I β . Now, to 

obtain ( )I β we need the second derivative of the log-likelihood function and then  

min (1) [1] (1)

2

|

( 2) ( 2)

( )
( ) .DERSS V T V

j j P x P

L
E E

  
+ +

 
= −     

β
I β  

AFT Models 

AFT- Exponential Regression Model  

For the exponential AFT model the hazard function under this model is constant over time. 

Therefore, the hazard function can be written as 

            ( )[1] [1]( | , ) exp ,  1,2,..., ; 1,2,...,ik i k i kh t i m k r = − = =w β w β  .                      (12) 

If we view log as a coefficient and place it into the regression coefficients vector β  then 

(12) can be simplify to     

       ( )[1] [1]( | , ) exp ,  1,2,..., ; 1,2,...,ik i k i kh t i m k r= − = =w β w β .                     (13) 

Thus, the survival function given the exponential distribution of the event time T is given 

by        

   ( )[1] [1] [1]( ) exp exp log , log .ik i k i k i kS t t t = − − −    w β       

(14) 

The density function is given by     

          ( ) ( )[1] [1] [1] [1] [1]( ) exp log exp log , logik i k i k i k i k i kf t t t t  = − − − −    w β w β                   

(15) 

Then the log likelihood function is given by 

   ( )[1] [1] [1] [1]

1 1

( ) log[ ( )] (log ) exp .
m r

i k i k i k i k

i k

L l t t
ik


= =

  =  − − −
 β β w β w β       

(16) 

 For the jth covariate, the MLE of j is given by solving   

( )[1] [1] [1]

1 1

( ) ˆ{ exp } 0.
m r

ji k i k i k

i kj

L
x t

ik


 = =

  = − − − =
 


β

w β  

However, the second partial derivative of the log-likelihood function, used to obtain the 

Fisher information matrix   

     ( )
2

[1] [1] [1] [1]

1 1
( 2) ( 2)

( )
exp

m r

ji k j i k i k i k

i kj j
p x p

L
x x t

 


= =
+ +

  
 − = −         


β

w β ,                           (17) 

is a function of the double ranked auxiliary covariate used to draw the DERSSmin.  Fisher’s 

information used to quantify the information or precision of the estimate of the vector of 

parameters. When making an inference about j , we need the Fisher’s information of the 

risk factor coefficient, ( )jI  , to draw inference. Moreover, we assumed the ranking 

variable Z follows a distribution function denoted by ( )ZF z . We assume that Z has an 
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absolutely continuous density ( )Zf z . Note that ranking on this variable stimulates some 

ordering on the response T, which leads to improved precision. Then the density function 

of 
(1)V is 

2

(1) (1) (1)

1 2 1

Vg ( )[1 ( )] =m ( ) [1 ( )]m m

Z Z Z Zmf z F z f z F z− −= − −  . Thus the information in an 

DERSSmin for the jth parameter is  

( )

( )( )

min (1) [1] (1)

[1]

[1] (1) (1) (1)

2

| 2

2

(1) | (1) [1] [1] [1]

1 1

2 1

[1] | [1] [1]

1 1

( )
( )

exp

( )exp ( )[1 ( )]

j DERSS V T V

j

m r

V T V ji k i k i k

i k

m r
m

ji k T V i k i k Z Z

i k z

L
I E E

E E x T

x E T mf z F z dz




= =

−

= =

 
= −    

 
 = −  

 

 = − −
 





β

W β

W β

Since we are using DERSSmin, and 1 0P +  , which means { ( )[1]exp i k
−w β is  a decreasing 

function of z and also 1

(1)[1 ( )]m

Zm F z −− is a decreasing function of z then by See and Chen 

(2008) we have  

 
( )( )

min

[1] (1) (1) (1)

2 1

[1] | [1] [1] (1)

1 1

( )

( )exp ( ) m ( ) [1 ( )]

j DERSS

m r
m

ji k T V i k i k Z Z Z

i k Z Z

I

x E T f z dz f z F z dz



−

= =

  − −
  W β

 

Since 
(1) (1)

1m ( ) [1 ( )] 1m

Z Z

Z

f z F z dz−− = , therefore,       

           ( )( )min [1] (1) (1) min

2

[1] | [1] [1]

1 1

( ) ( )exp ( )  = ( ) .
m r

j DERSS ji k T V i k i k Z j ERSS

i k Z

I x E T f z dz I 
= =

  −
  w β                   (18) 

However, Samawi et al. (2018) showed that
min

( ) ( )j ERSS j SRSI I  . Thus 

min min
( ) ( ) ( )j DERSS j ERSS j SRSI I I      Similarly, we can show that the inequality in (18) 

holds when using DERSSmax when the association between time to events and Z is negative 

( 1 0P +  .)  

AFT -Weibull Regression Model  

As indicated by Samawi et al. (2018), “the Weibull distribution function ( ( , )W   ) is 

usually formulated in the form of an extreme value distribution since log(T) can be 

expressed as a function of the Weibull parameters and follows extreme value distribution”. 

Let T has ( , )W   distribution function, where  is the scale parameter and  is the shape 

parameter. Then the hazard function is given by  

[1] [1]* 2

[1] *

 
( | , ) ( ) exp ,  1,2,..., ; 1,2,...,

i k i k

ik i k

log t
h t i m k r



−
− 

= = = 
 

w β
w β .          (19) 

Note that, the log is a coefficient, with the regression coefficient vector β and * 1



= . 

Thus the survival function of T is        

[1] [1]

[1]*

 
( ) exp exp , log ,

i k i k

ik i k

log t
S t t



 −  
= − −     

  

w β
              

(20) 
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and the density function is 

[1] [1] [1] [1]* 1

[1]* *

  
( ) ( ) exp exp , log

i k i k i k k

ik i k

log t log t
f t t

 

−
  − −  

= − −     
  

w β w β
.      (21) 

Then the log likelihood function can be simplified to  

[1] [1] [1] [1]*

* *
1 1

  
( ) log[ ( )] ( log ) exp

m r
i k i k i k i k

i k

log t log t
L l

ik
 

 = =

  −  −   
= = − + −    

    


w β w β
β β  

 (22) 

The MLE approach, for the jth covariate can be obtained by solving  

       [1] [1]

[1] *
1 1

ˆ ( )
{ exp } 0.

r m
i k i k

ji k

i jj

log tL
x

ik


 = =

  −
 = − − − = 

     


w ββ
                                                     (23) 

Similar to the derivation ofthe exponential AFT model, we have, using the second partial 

derivative, the variance covariance matrix (Fisher information matrix) as  

            

2
[1] [1] [1] [1]

* *
1 1

( 2) ( 2)

 ( )
exp

m r
ji k j i k i k i k

i kj j
p x p

x x log tL

   



= =
+ +

    −  
− =              


w ββ

.                    (24)      

Again, (24) is a function of the double ranked auxiliary covariate.  Similarly, as in 

exponential case, we can show that by See and Chen (2008) that 

         

( )

min (1) [1] (1) min

[1] (1)

2

| 2

2

[1] *

| [1] [1]*
1 1

( )
( ) ( )

exp (  ) / ( ) ( )

j DERSS V T V j ERSS

j

m r
ji k

T V i k i k Z j SRS

i k Z

L
I E E I

x
E log t f z dz I

 


 
= =

 
= −    

 
  − =   

 


β

w β

                     

(25) 

The inequality in (25) holds when the association between time to events and Z is negative 

( 1 0P +  ) and DERSSmax is used. 

AFT- Log-logistic Regression Model  

In this section we provide the derivation for the log-logistic regression model.  The hazard 

function is given by  

                

[1] [1]

[1]

[1] [1]

 
exp

( | , ) ,  1,2,..., ; 1,2,...,
 

1

i k i k

ik i k

i k i k

log t

h t i m k r
log t






− 
 
 = = =

− 
+ 

 

w β

w β
w β ,              (26) 

where   is scale parameter for the log logistic distribution. Now using DERSSmin ,  the 

survival function for the log-logistic survival time T is given by:         

                

1

[1] [1]

[1]

 
( ) 1 exp , log .

i k i k

ik i k

log t
S t t



−
 −  

= + −     
  

w β
                               (27) 
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Similarly, the log likelihood function will simplify to   

[1] [1] [1] [1]

1 1

[1] [1]

  
( ) log[ ( )] ( log ) 2log 1 exp

 
                         (1 ) log 1 exp

m r
i k i k i k i k

i k

i k i k

log t log t
L l

ik

log t

ik

 
 




= =

  −  −     
= = − + − +     

      

 −  
− − +  

  


w β w β

β β

w β
     (28) 

The MLE estimates of the kth parameter is obtained by solving 

[1] [1] [1] [1]

[1]

[1]

1 1 [1] [1] [1] [1]

ˆ ˆ  
exp exp

( )
{ } 0.

ˆ ˆ  
1 exp 1 exp

i k i k i k i k

ji k
m r

ji k

i kj i k i k i k i k

log t log t
x

ik
L

x
ik log t log t


 




 

= =

     − −
    

        = − − + = 
     − − 

+ +       
    



w β w β

β

w β w β
     (29) 

Also, the estimate of variance covariance matrix is given by: 

[1] [1] [1] [1]

2
2

2
1 1

( 2) ( 2) [1] [1]

ˆ 
exp

( )
(1 )

ˆ 
1 exp

ji k j i k i k i k

m r

ik

i kj j
p x p i k i k

x x log t

L

log t

 


 





= =
+ +

  −  
       − = +            − 

 +  
      



w β

β

w β
.              (30)    

 Similar to Samawi et al. (2018), let 

[1] [1]

(1) 2

[1] [1]

ˆ 
exp

( )
ˆ 

1 exp

i k i k

i k

i k i k

log t

D v

log t





 −
 
 
 =

  −
+  

    

w β

w β

. Note that  

[1] (1)( , )i k i kD t v  is a decreasing function in 0,  for 0v t  . In practice, 0v  can be achieved 

by shifting v by a constant. Thus,   

min (1) [1] (1)

(1) [1] (1)

2

[1]

| [1] (1)2
1 1

2

[1]

| [1] (1)2
1 1

( ) (1 ) ( , )

                     = (1 ) ( ( , ))

              

m r
ji k

j DERSS V T V ik i k i k

i k

m r
ji k

V ik T V i k i k

i k

x
I E E D T V

x
E E D T V

 





= =

= =

  
= +      

  
+      





 
(1) [1] (1)

[1] (1) (1) (1)

2

[1]

| [1] (1)2
1 1

2

[1] 1

| [1]2
1 1

     (1 ) ( ( , ))

                    (1 ) ( ( , )) [1 ( )] ( )

m r
ji k

ik V T V i k i k

i j

m r
ji k m

ik T V i k Z Z

i k v

x
E E D T V

x
E D T v m F v f v dv







= =

−

= =

 
= + 

  

 
= + − 

  



 

      (31) 

Moreover, 1

(1)(1 ( ))m

Zm F v −− is a decreasing function of v; therefore, by See and Chen 

(2008)

min [1] (1) (1) (1) (1)

2

[1] 1

| [1]2
1 1

( ) (1 ) ( ( , )) ( ) [1 ( )] ( )
m r

ji k m

j DERSS ik T V i k Z Z Z

i k v v

x
I E D T v f v dv m F v f v dv 



−

= =

 
 + − 

  
    (32) 
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where, 
(1) (1)

1[1 ( )] ( ) 1.m

Z Z

v

m F v f v dv−− =  This implies       

min [1] (1) min

2

[1]

| [1] (1)2
1 1

( ) (1 ) ( ( , )) ( ) ( )

                 ( )

m r
ji k

j DERSS ik T V i k Z j ERSS

i k v

j SRS

x
I E D T v f v dv I

I

  




= =

 
 + = 

  



 
                     (33) 

where the last inequality is by Samawi et al. (2018). Similarly, we can show that the 

inequality in (33) holds for 1 0P +  and the association between time to events and Z is 

negative when  DERSSmax is used. Finally, the other AFT regression model, including log-

normal and Gamma, will have similar derivations and their performance will be discussed 

next in the simulation section. Finally, comparing with SRS, ERSS and DERSS provide 

larger percentage of events and require smaller sample sizes. 

 

Simulation Studies  

Simulation studies are designed to get insight the performance of the AFT models using 

DERSSmin compared with  ERSSmin  and SRS. The performance of all AFT models with 

respect to the power of hypotheses testing and parameter estimations is discussed. As in 

Samawi et al. (2018), we consider values of the conditional hazards ratios range from 1 to 

1.649, and the associations between survival time and the auxiliary covariate are 0.2 and 

0.5.  The AFT models considered are the exponential, Weibull, log-logistic, log-normal and 

Gamma.  The set sizes used are m=10, 15 and cycle size is r=15.  We repeated the process 

5000 times to compute the accuracy of AFT models performance.  

 In our simulations, 1  represents the parameter associated with the auxiliary 

covariate (Z), 2  is the parameter associated with the risk factor of interest (X) and 1 = . 

However, the other parameter involved in the simulation are given in the tables due to the 

nature of the underlying distribution. The empirical nominal value, 0.05 = , is 

considered.  

Table 1 and 4 show that for testing the hypothesis 2 2: 0   vs   : 0o aH H =  , when 

controlling for the ranked auxiliary covariate, the DERSSmin results in a more powerful test 

comparingwith using ERSSmin and SRS.  

All sampling schemed considered in this simulation, SRS , ERSSmin and DERSSmin, 

achieved close estimation to the test nominal value (0.05) under the null hypothesis. The 

simulation results indicate that the power of the test is a monotone increasing function of 

the set size m increase and/or the value of 1 . In addition, the simulation results indicate 

that using DERSSmin  for the AFT models provide greater power than both ERSSmin and 

SRS, in all cases. Note that the relative efficiency based on the power of the test between 

DERSSmin and ERSSmin ranges from 1.02-1.80 and between DERSSmin and SRS ranges 

from 1.5-2.5.  Finally, Table 2, 3, 5, and 6, demonstrate that DERSSmin provides more 

efficient estimators of the hazards ratios in terms of smaller MSEs and bias as well as 

narrower confidence intervals for all parametric models comparing with ERSS and SRS.   
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Table 1: Estimation of ( 0.05) = and the power of testing 2 2: 0   vs   : 0o aH H =   

adjusting for the auxiliary variable (Z) in the model. {Censoring variable= U(0,1)*2}) 

  (Weibull * 1 = )(Exponential) , m=10 and r=15 

  DERSSmin ERSSmin SRS 

1  2  Events 

% 

The 

Power 

Function 

Events 

% 

The 

Power 

Function 

Events 

% 

The 

Power 

Function 

0.2 0.0 42 0.051 36 0.052 29 0.054 

0.2 0.2 45 0.349 39 0.326 30 0.261 

0.2 0.5 50 0.984 42 0.968 31 0.900 

0.5 0.0 64 0.052 50 0.049 31 0.054 

0.5 0.2 66 0.487 52 0.408 31 0.262 

0.5 0.5 69 0.996 54 0.989 32 0.913 

(Weibull * 1 = ) (Exponential) m=15 and r=15 

0.2 0.0 44 0.050 38 0.049 30 0.049 

0.2 0.2 47 0.530 40 0.448 30 0.367 

0.2 0.5 52 0.999 44 0.998 31 0.980 

0.5 0.0 68 0.054 53 0.052 31 0.055 

0.5 0.2 70 0.683 55 0.583 31 0.375 

0.5 0.5 73 1.000 57 0.999 32 0.980 

(Weibull * 1.5 = ), m=10 and r=15 

0.2 0.0 33 0.054 26 0.051 16 0.044 

0.2 0.2 38 0.835 29 0.709 17 0.475 

0.2 0.5 45 1.000 34 1.000 20 0.998 

0.5 0.0 65 0.060 45 0.053 19 0.050 

0.5 0.2 68 0.967 48 0.905 20 0.543 

0.5 0.5 70 1.000 51 1.000 22 0.998 

(Weibull * 1.5 = ), m=15 and r=15 

0.2 0.0 36 0.056 27 0.052 16 0.055 

0.2 0.2 41 0.960 31 0.892 17 0.659 

0.2 0.5 48 1.000 36 1.000 20 1.000 

0.5 0.0 70 0.056 50 0.054 19 0.052 

0.5 0.2 72 0.997 52 0.985 20 0.722 

0.5 0.5 74 1.000 54 1.000 23 1.000 

(Gamma 1.5 = ), m=15 and r=20 

0.2 0.0 51 0.057 45 0.058 37 0.055 

0.2 0.2 58 0.520 50 0.443 38 0.314 

0.2 0.5 69 0.995 57 0.990 39 0.952 

0.5 0.0 73 0.06 59 0.058 38 0.059 

0.5 0.2 79 0.698 64 0.558 39 0.323 

0.5 0.5 85 1.000 69 0.995 39 0.956 
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Table 2: Hazard ratio (HR) estimation {Censoring variable=U(0,1)*2} 

 m=10 and r=15 (Weibull * 1 = ) (Exponential) 

DERSSmin ERSSmin SRS 

1  HR
 Estim

ate 
MSE Bias 

Esti

mate 
MSE Bias 

Estim

ate 
MSE Bias 

0.2 1.000 1.006 0.019 0.006 1.010 0.022 0.010 1.014 0.028 0.014 

0.2 1.221 1.236 0.027 0.015 1.241 0.033 0.020 1.244 0.042 0.023 

0.2 1.649 1.681 0.048 0.032 1.685 0.061 0.036 1.695 0.085 0.046 

0.5 1.000 1.008 0.012 0.009 1.006 0.015 0.006 1.015 0.026 0.015 

0.5 1.221 1.230 0.018 0.008 1.237 0.024 0.015 1.243 0.040 0.021 

0.5 1.649 1.671 0.033 0.022 1.676 0.044 0.027 1.690 0.079 0.041 

m=15 and r=15 (Weibull * 1 = )(Exponential) 

0.2 1.000 1.007 0.012 0.007 1.005 0.013 0.005 1.009 0.018 0.009 

0.2 1.221 1.233 0.017 0.012 1.230 0.020 0.090 1.235 0.026 0.014 

0.2 1.649 1.667 0.030 0.018 1.672 0.034 0.023 1.677 0.047 0.028 

0.5 1.000 1.003 0.007 0.003 1.002 0.009 0.002 1.008 0.017 0.008 

0.5 1.221 1.226 0.011 0.005 1.231 0.014 0.010 1.235 0.026 0.013 

0.5 1.649 1.656 0.019 0.007 1.663 0.025 0.014 1.675 0.047 0.026 

m=10 and r=15 (Weibull * 1.5 = ) 

0.2 1.000 1.002 0.006 0.002 1.002 0.008 0.002 1.008 0.013 0.008 

0.2 1.221 1.230 0.008 0.008 1.230 0.012 0.011 1.235 0.021 0.014 

0.2 1.649 1.662 0.016 0.014 1.665 0.022 0.016 1.680 0.045 0.031 

0.5 1.000 1.004 0.003 0.004 1.004 0.004 0.004 1.008 0.011 0.008 

0.5 1.221 1.225 0.004 0.004 1.229 0.006 0.008 1.231 0.017 0.010 

0.5 1.649 1.656 0.008 0.007 1.658 0.013 0.009 1.672 0.037 0.024 

m=15 and r=15 (Weibull * 1.5 = ) 

0.2 1.000 1.001 0.004 0.001 1.004 0.005 0.004 1.002 0.008 0.002 

0.2 1.221 1.227 0.005 0.006 1.227 0.007 0.005 1.231 0.013 0.010 

0.2 1.649 1.655 0.009 0.006 1.657 0.013 0.008 1.668 0.029 0.020 

0.5 1.000 1.001 0.002 0.001 1.000 0.003 0.000 1.001 0.007 0.002 

0.5 1.221 1.223 0.003 0.002 1.224 0.004 0.003 1.230 0.011 0.008 

0.5 1.649 1.652 0.005 0.003 1.654 0.008 0.005 1.663 0.023 0.014 

(Gamma 1.5 = ), m=10 and r=15 

0.2 1.000 1.008 0.013 0.008 1.010 0.016 0.010 1.010 0.022 0.010 

0.2 1.221 1.229 0.017 0.008 1.231 0.021 0.010 1.242 0.033 0.021 

0.2 1.649 1.660 0.025 0.011 1.655 0.036 0.007 1.674 0.064 0.026 

0.5 1.000 1.004 0.008 0.004 1.005 0.010 0.005 1.010 0.021 0.010 

0.5 1.221 1.228 0.011 0.007 1.227 0.015 0.006 1.233 0.029 0.011 

0.5 1.649 1.657 0.018 0.008 1.662 0.026 0.014 1.663 0.058 0.015 
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Table 3: 95% Confidence Interval of the Hazard Ratio (HR) {Censoring 

variable=U(0,1)*2} 

 m=10 and r=15 (Weibull * 1 = ) (Exponential) 

DERSSmin ERSSmin SRS 

1  HR
 

Lower Upper 

Coverage 

Probabili

ty  

Lower Upper 

Coverage 

Probabili

ty  

Lower Upper 

Coverage 

Probability  

0.2 1.000 0.778 1.302 0.949 0.767 1.331 0.948 0.745 1.382 0.946 

0.2 1.221 0.962 1.589 0.948 0.947 1.628 0.944 0.914 1.696 0.950 

0.2 1.649 1.314 2.150 0.946 1.288 2.204 0.951 1.240 2.318 0.945 

0.5 1.000 0.819 1.243 0.947 0.794 1.275 0.950 0.749 1.376 0.946 

0.5 1.221 1.001 1.512 0.943 0.979 1.563 0.943 0.918 1.685 0.949 

0.5 1.649 1.358 2.056 0.946 1.324 2.121 0.946 1.244 2.298 0.944 

m=15 and r=15 (Weibull * 1 = )(Exponential) 

0.2 1.000 0.821 1.236 0.950 0.807 1.252 0.951 0.786 1.295 0.951 

0.2 1.221 1.011 1.510 0.943 0.992 1.527 0.937 0.962 1.586 0.954 

0.2 1.649 1.372 2.026 0.945 1.351 2.070 0.951 1.304 2.157 0.953 

0.5 1.000 0.851 1.183 0.946 0.832 1.210 0.948 0.788 1.289 0.945 

0.5 1.221 1.042 1.442 0.946 1.024 1.480 0.949 0.966 1.579 0.950 

0.5 1.649 1.407 1.950 0.953 1.381 2.001 0.950 1.308 2.147 0.947 

m=10 and r=15 (Weibull * 1.5 = ) 

0.2 1.000 0.867 1.158 0.946 0.849 1.184 0.949 0.816 1.249 0.956 

0.2 1.221 1.069 1.416 0.946 1.046 1.453 0.944 0.994 1.538 0.947 

0.2 1.649 1.441 1.918 0.940 1.406 1.974 0.942 1.334 2.121 0.946 

0.5 1.000 0.906 1.113 0.940 0.887 1.136 0.946 0.831 1.225 0.950 

0.5 1.221 1.106 1.356 0.945 1.086 1.392 0.946 1.012 1.502 0.950 

0.5 1.649 1.490 1.840 0.938 1.456 1.888 0.940 1.355 2.068 0.941 

m=15 and r=15 (Weibull * 1.5 = ) 

0.2 1.000 0.894 1.121 0.944 0.881 1.144 0.948 0.846 1.188 0.945 

0.2 1.221 1.100 1.369 0.943 1.08 1.395 0.945 1.034 1.467 0.947 

0.2 1.649 1.451 1.848 0.948 1.452 1.891 0.946 1.386 2.011 0.943 

0.5 1.000 0.923 1.085 0.944 0.909 1.101 0.946 0.857 1.171 0.948 

0.5 1.221 1.129 1.330 0.946 1.112 1.348 0.947 1.049 1.443 0.947 

0.5 1.649 1.521 1.793 0.944 1.496 1.829 0.944 1.405 1.971 0.947 

(Gamma 1.5 = ), m=10 and r=15 

0.2 1.000 0.812 1.252 0.943 0.798 1.280 0.9424 0.769 1.329 0.945 

0.2 1.221 1.008 1.501 0.936 0.986 1.539 0.948 0.946 1.636 0.943 

0.2 1.649 1.375 1.998 0.943 1.332 2.100 0.930 1.261 2.240 0.943 

0.5 1.000 0.849 1.195 0.938 0.830 1.220 0.941 0.776 1.317 0.941 

0.5 1.221 1.046 1.50 0.944 1.018 1.588 0.943 0.948 1.608 0.947 

0.5 1.649 1.421 1.933 0.938 1.382 2.010 0.938 1.271 2.184 0.929 
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Table 4: Estimation of ( 0.05) = and the power of testing 2 2: 0   vs   : 0o aH H =   

adjusting for the auxiliary variable (Z) in the model. {Censoring variable= U(0,1)*2}.  

  (Log-logistic 1.5 = ), m=10 and r=15 

  DERSSmin ERSSmin SRS 

1  2  Events 

% 

The 

Power 

Function 

Events 

% 

The 

Power 

Function 

Events 

% 

The 

Power 

Function 

0.2 0.0 31 0.050 26 0.051 19 0.049 

0.2 0.2 31 0.352 26 0.331 19 0.256 

0.2 0.5 32 0.975 27 0.956 20 0.908 

0.5 0.0 52 0.055 38 0.048 20 0.043 

0.5 0.2 52 0.466 38 0.396 20 0.257 

0.5 0.5 52 0.994 39 0.980 21 0.906 

(Log-logistic 1.5 = ), m=15 and r=15 

0.2 0.0 32 0.047 26 0.047 19 0.045 

0.2 0.2 32 0.521 26 0.460 19 0.379 

0.2 0.5 33 0.999 28 0.996 20 0.985 

0.5 0.0 56 0.050 41 0.047 20 0.050 

0.5 0.2 56 0.639 41 0.58 20 0.381 

0.5 0.5 55 1.000 41 0.999 22 0.984 

(Log-Normal 1.5 = ), m=10 and r=15 

0.2 0.0 34 0.050 30 0.048 24 0.044 

0.2 0.2 36 0.454 31 0.427 24 0.379 

0.2 0.5 40 0.997 33 0.992 25 0.982 

0.5 0.0 51 0.048 40 0.054 24 0.047 

0.5 0.2 53 0.520 41 0.465 25 0.372 

0.5 0.5 56 0.999 43 0.997 25 0.981 

(Log-Normal 1.5 = ), m=15 and r=15 

0.2 0.0 35 0.051 30 0.050 24 0.050 

0.2 0.2 37 0.620 32 0.580 24 0.512 

0.2 0.5 41 1.000 35 1.000 25 0.999 

0.5 0.0 54 0.049 42 0.053 24 0.049 

0.5 0.2 56 0.690 43 0.642 25 0.511 

0.5 0.5 59 1.000 46 1.000 26 0.998 
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Table 5: Hazard ratio (HR) estimation {Censoring variable=U(0,1)*2} 

 m=10 and r=15, (Log-logistic 1.5 = ) 

DERSSmin ERSSmin SRS 

1  HR
 

Estimate MSE Bias Estimate MSE Bias Estimate MSE Bias 

0.2 1.000 1.006 0.017 0.006 1.005 0.019 0.005 1.013 0.026 0.013 

0.2 1.221 1.232 0.026 0.011 1.240 0.031 0.019 1.242 0.040 0.021 

0.2 1.649 1.675 0.058 0.026 1.674 0.065 0.025 1.688 0.093 0.040 

0.5 1.000 1.009 0.013 0.010 1.006 0.015 0.006 1.014 0.024 0.014 

0.5 1.221 1.229 0.018 0.008 1.231 0.023 0.009 1.236 0.038 0.014 

0.5 1.649 1.660 0.037 0.012 1.667 0.048 0.018 1.679 0.085 0.030 

m=15 and r=15, (Log-logistic 1.5 = ) 

0.2 1.000 1.005 0.010 0.005 1.005 0.012 0.005 1.009 0.015 0.009 

0.2 1.221 1.231 0.016 0.009 1.229 0.018 0.008 1.237 0.025 0.016 

0.2 1.649 1.666 0.036 0.018 1.663 0.041 0.014 1.672 0.053 0.023 

0.5 1.000 1.004 0.008 0.004 1.002 0.010 0.002 1.010 0.016 0.010 

0.5 1.221 1.225 0.011 0.003 1.226 0.014 0.004 1.235 0.024 0.013 

0.5 1.649 1.659 0.023 0.010 1.660 0.029 0.011 1.674 0.053 0.025 

m=10 and r=15 (Log-Normal 1.5 = ) 

0.2 1.000 1.003 0.012 0.003 1.007 0.013 0.007 1.007 0.015 0.007 

0.2 1.221 1.230 0.019 0.009 1.232 0.021 0.011 1.234 0.024 0.012 

0.2 1.649 1.656 0.035 0.007 1.662 0.038 0.014 1.666 0.048 0.018 

0.5 1.000 1.007 0.011 0.007 1.005 0.012 0.005 1.007 0.016 0.007 

0.5 1.221 1.230 0.016 0.009 1.230 0.018 0.006 1.231 0.025 0.009 

0.5 1.649 1.656 0.028 0.008 1.663 0.033 0.014 1.663 0.048 0.014 

m=15 and r=15 (Log-Normal 1.5 = ) 

0.2 1.000 1.003 0.008 0.003 1.005 0.009 0.005 1.004 0.010 0.004 

0.2 1.221 1.227 0.012 0.006 1.226 0.014 0.005 1.227 0.015 0.006 

0.2 1.649 1.656 0.023 0.007 1.660 0.025 0.011 1.657 0.031 0.009 

0.5 1.000 1.003 0.007 0.003 1.004 0.008 0.004 1.007 0.010 0.007 

0.5 1.221 1.223 0.010 0.002 1.225 0.011 0.004 1.226 0.016 0.004 

0.5 1.649 1.655 0.018 0.006 1.656 0.022 0.008 1.656 0.030 0.009 
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Table 6: 95% confidence Interval of the Hazard Ratio (HR) {Censoring 

variable=U(0,1)*2} 

 m=10 and r=15 (Log-logistic 1.5 = ) 

DERSSmin ERSSmin SRS 

1  HR
 

Lower Upper 

Coverage 

Probability  Lower Upper 

Coverage 

Probabilit

y  

Lower Upper 

Coverage 

Probability  

0.2 1.000 0.789 1.285 0.950 0.776 1.305 0.949 0.755 1.362 0.951 

0.2 1.221 0.960 1.583 0.946 0.950 1.622 0.951 0.919 1.686 0.954 

0.2 1.649 1.282 2.192 0.948 1.257 2.233 0.944 1.219 2.348 0.943 

0.5 1.000 0.819 1.245 0.945 0.801 1.266 0.952 0.759 1.359 0.957 

0.5 1.221 0.995 1.519 0.946 0.976 1.554 0.945 0.917 1.670 0.950 

0.5 1.649 1.331 2.073 0.944 1.302 2.137 0.939 1.219 2.321 0.944 

m=15 and r=15 (Log-logistic 1.5 = ) 

0.2 1.000 0.827 1.222 0.953 0.817 1.239 0.953 0.797 1.281 0.955 

0.2 1.221 1.009 1.503 0.954 0.994 1.522 0.957 0.969 1.581 0.952 

0.2 1.649 1.346 2.065 0.941 1.323 2.092 0.946 1.286 2.179 0.949 

0.5 1.000 0.849 1.188 0.949 0.835 1.202 0.953 0.798 1.280 0.950 

0.5 1.221 1.034 1.451 0.951 1.019 1.474 0.949 0.975 1.571 0.955 

0.5 1.649 1.391 1.979 0.948 1.365 2.020 0.946 1.292 2.172 0.951 

m=10 and r=15 (Log-Normal 1.5 = ) 

0.2 1.000 0.807 1.248 0.950 0.804 1.262 0.952 0.794 1.280 0.957 

0.2 1.221 0.992 1.526 0.950 0.985 1.543 0.947 0.969 1.572 0.952 

0.2 1.649 1.333 2.058 0.949 1.323 2.090 0.950 1.295 2.146 0.947 

0.5 1.000 0.827 1.226 0.952 0.816 1.238 0.946 0.793 1.279 0.953 

0.5 1.221 1.011 1.497 0.944 0.996 1.513 0.948 0.966 1.569 0.947 

0.5 1.649 1.359 2.019 0.948 1.344 2.057 0.948 1.292 2.142 0.951 

m=15 and r=15 (Log-Normal 1.5 = ) 

0.2 1.000 0.842 1.195 0.949 0.838 1.206 0.950 0.826 1.220 0.950 

0.2 1.221 1.031 1.460 0.948 1.023 1.470 0.947 1.008 1.495 0.955 

0.2 1.649 1.390 1.972 0.947 1.381 1.996 0.947 1.350 2.035 0.947 

0.5 1.000 0.856 1.176 0.950 0.849 1.188 0.947 0.829 1.223 0.951 

0.5 1.221 1.045 1.432 0.942 1.036 1.449 0.948 1.006 1.498 0.948 

0.5 1.649 1.412 1.939 0.953 1.397 1.964 0.945 1.349 2.033 0.955 

 

 Illustration based Worcester Heart Attack Study 

Age at baseline is an important covariate in all survival studies. Due to the 

availability of baseline age variable, age can be considered as an auxiliary variable for 

subject’s selection in survival studies. For illustration purposes, Worcester Heart Attack 

Study data (Hosmer et al., 2008) is used.  In this section, we illustrate the use of DERSS, 

ERSS and SRS for the AFT survival models.  

Worcester Heart Attack Study consists of 500 subjects. The study investigates some 

factors, such as age, initial heart rate and BMI, that may influence survival time after a 

heart attack. The follow up time for all subjects in the study is initiated at the time of 

hospital admission after a heart attack and ends with death or loss to follow up (censoring). 

The variables used in the illustration are: 

• Lenfol: The length of follow up, terminated either by death or censoring.  
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• Fstat: The censoring variable, loss to follow up=0, death=1. 

• Age: Age at hospitalization. 

• BMI: body mass index. 

• HR: Initial heart rate 

In the study the data are subjected to right-censoring only.   

For illustrations purposes, we used the whole data as a population. Then we randomly draw 

DERSSmax, ERSSmax and SRS samples of size n=100 (m=10, r=10) each. We used the 

auxiliary variable age as the ranking variable to DERSSmax and ERSSmax because of the 

negative association between age and survival time. The hypotheses of interest for this 

study are whether or not the baseline age, BMI and HR risk factors have effects on the 

length of survival time after a heart attack. We found that AFT Weibull model best fits the 

data. Table 7 is the results of the AFT survival analysis based on the whole data (N=500) 

using the Weibull model.  

In addition, Table 7 provides the AFT model analysis with and without age. From 

table 7, the association between BMI and time to death is positive indicating that BMI is a 

protective factor controlling for Age and HR. However, the negative association of HR 

indicates that HR is a risk factor for survival time controlling for age and BMI. 

 

Table 7: AFT-Weibull model analysis using all the data 

Analysis of Maximum Likelihood Parameter Estimates 

Parameter DF Estimate Standard 

Error 

95% Confidence 

Limits 

Chi-

Square 

Pr > ChiSq 

Intercept 1 16.2112 1.5578 13.1580 19.2644 108.30 <.0001 

AGE 1 -0.1082 0.0135 -0.1347 -0.0818 64.46 <.0001 

BMI 1 0.0798 0.0300 0.0210 0.1386 7.08 0.0078 

HR 1 -0.0248 0.0054 -0.0353 -0.0143 21.49 <.0001 

Scale 1 1.9351 0.1155 1.7214 2.1754     

Weibull 

Shape 

1 0.5168 0.0309 0.4597 0.5809     

Using Weibull model without age in the model 

Parameter DF Estimate Standard 

Error 

95% Confidence 

Limits 

Chi-

Square 

Pr > ChiSq 

Intercept 1 6.0349 0.9202 4.2313 7.8384 43.01 <.0001 

BMI 1 0.1915 0.0311 0.1305 0.2525 37.87 <.0001 

HR 1 -0.0311 0.0056 -0.0420 -0.0202 31.16 <.0001 

Scale 1 2.0388 0.1242 1.8093 2.2974     

Weibull 

Shape 

1 0.4905 0.0299 0.4353 0.5527     
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Table 8: AFT model (Weibull) using DERSSmax without age in the model 

Analysis of Maximum Likelihood Parameter Estimates 

Parameter DF Estimate Standard 

Error 

95% Confidence 

Limits 

Chi-

Square 

Pr > ChiSq 

Intercept 1 5.9498 1.0845 3.8242 8.0755 30.10 <.0001 

BMI 1 0.2267 0.0559 0.1172 0.3362 16.47 <.0001 

HR 1 -0.0209 0.0106 -0.0417 -0.0000 3.85 0.0496 

Scale 1 1.8494 0.1571 1.5658 2.1844     

Weibull 

Shape 

1 0.5407 0.0459 0.4578 0.6387   

 

Table 9: AFT model (Weibull) using ERSSmax without age in the model 

Analysis of Maximum Likelihood Parameter Estimates 

Parameter DF Estimate Standard 

Error 

95% Confidence 

Limits 

Chi-

Square 

Pr > ChiSq 

Intercept 1 2.5322 1.5315 -0.4695 5.5339 2.73 0.0983 

BMI 1 0.0665 0.0478 -0.0273 0.1603 1.93 0.1645 

HR 1 -0.0175 0.0104 -0.0379 0.0029 2.83 0.0926 

Scale 1 1.8900 0.1804 1.5676 2.2787     

Weibull 

Shape 

1 0.5291 0.0505 0.4388 0.6379     

 

Table 8 provides the result of AFT survival analysis of the DERSSmax sample of 

size m=5, r=20 (n=100). Table 9 shows the AFT analysis when using ERSSmax sample of 

size m=5, r=20 (n=100). Table 10 shows the analysis of AFT model using SRS of size 100. 

For this illustration DERSSmax provides the closest analysis to the whole data.  
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Table 10: AFT model (Weibull) using SRS without age in the model 

Analysis of Maximum Likelihood Parameter Estimates 

Parameter DF Estimate Standard 

Error 

95% Confidence 

Limits 

Chi-

Square 

Pr > ChiSq 

Intercept 1 4.8184 1.9941 0.9100 8.7268 5.84 0.0157 

BMI 1 0.1452 0.0603 0.0270 0.2634 5.80 0.0160 

HR 1 -0.0066 0.0125 -0.0311 0.0180 0.27 0.6001 

Scale 1 1.6124 0.2210 1.2325 2.1093     

Weibull Shape 1 0.6202 0.0850 0.4741 0.8113   

Final remarks 

DERSS is a cost effective and efficient sampling technique compared with SRS and ERSS. 

In this paper we proposed a more efficient survival regression analysis method for AFT 

models based on the modified DERSS with ranking based on an auxiliary variable known 

to be associated with the response variable. We studied parameters estimation based on the 

maximum likelihood approach and provided an expression for the estimated variance-

covariance matrix based on the inverse information matrix. The asymptotic behavior of the 

ML estimators was discussed.  We concluded that using the modified DERSS can result in 

significant increase in power when implemented in the AFT models. Our simulation studies 

showed that in general, the power of the test increases as the set size m increases. In 

addition, DERSS provides more efficient inference of the parameters associated with 

hazard rates which results in smaller MSEs and narrower confidence intervals than those 

under SRS and ERSS.   
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