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Abstract

In this paper, a step-stress accelerated life test with two stress variables for Weibull distribution under progressive
Type-I censoring is considered. The stress-life relationship is a log-linear function of stress levels, and for each
combination of stress levels, a cumulative exposure model is assumed. The maximum likelihood and Bayes estimates
of the model parameters are obtained. The optimum test plan is developed using the variance-optimality criterion,
which consists of finding out the optimal stress change time by minimizing the asymptotic variance of the maximum
likelihood estimates of the log of the scale parameter at the design stress. The proposed study is illustrated by using
simulated data.
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1. Background

Accelerated Life Testing (ALT) has received great attention from analysts of life testing to shorten the product testing
time for predicting product’s life and reliability. Since, human-made products (namely computers, washing machines,
refrigerators, electronic cameras, and cell mobile, etc.) are well designed, highly sophisticated, and reliable. However,
it is not easy to get the failure data of such types of highly reliable products within a limited testing time under normal
operating conditions. Thus, ALT is the most preferable modern technology that is used to get failure time data more
quickly of highly reliable product at a higher than usual level of stress (e.g., temperature, voltage, pressure, vibration,
humidity, cycling conditions, etc.). Failure data collected from ALTs are then analyzed and extrapolated to estimate
the life distribution of failures under usual conditions.

Moreover, designing optimum test plans and making inferences from step-stress tests based on censoring data have a
great attraction in the life-testing experiment, and the most commonly used censoring schemes are Type-I and Type-II
censoring. Nevertheless, these conventional censoring schemes do not allow units to be removed from the experiment
at any other point than the final termination point of the test. Therefore, in the last few years, the progressive censoring
(PC) schemes have received considerable attention in the step-stress ALT that is the generalization case of the Type-I
and Type-II censoring. The main advantage of PC schemes is that it is possible to remove experimental units during
the experiment, even if do not fail. Some key references on PC schemes are referred to the monograph by Balakrishnan
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and Aggarwala(2000), Balakrishnan and Han(2009) and Balakrishnan(2007).

In step-stress ALT, the problems of planning optimum test plan and making inferences of model parameters by assum-
ing cumulative exposure model [see Nelson(1980)] based on censored data have attracted great attention in the relia-
bility literature. Bai et al.(1989) attempted for planning step-stress ALT based on the Type-I censoring case. Khamis
and Higgins(1996) proposed optimum 3-step step-stress plans for the exponential distribution. Gouno et al.(2004) pro-
posed optimum m-step step-stress ALT plans with equal test duration and investigated in detail the case of progressive
Type-I censoring with a single stress variable, assuming exponential lifetime. Balakrishnan and Han(2009) extended
the Gouno et al.(2004) model with a practical modification for small to moderate sample sizes. Some recent related
works are referred to as step-stress ALT [see Hakamipour and Rezaei(2015), Chandra and Khan(2015)]. All those
attempts are considered the maximum likelihood method for designing a step-stress ALT plan.

The above literature referred to designing the optimum plan and making inferences of the step-stress test by using the
ML method. Bayesian inferences for simple step-stress ALT are also available in bulk for a variety of life distribution
and censoring (Type-I and Type-II) schemes. Van Dorp et al.(1996) and Van Dorp and Mazzuchi(2004) developed a
general Bayesian inference model for simple step-stress ALT based on the exponentially distributed failure data. Lee
and Pan(2008) described the Bayesian inference model for simple step-stress ALT when failure times at each stress
are exponentially distributed with Type-II censoring. Sha and Pan(2014) presented a Bayesian analysis for Weibull
proportional hazard (PH) model for simple step-stress ALT. In those studies, it is observed that most of the prob-
lems aforesaid involve only a single accelerating stress variable in step-stress ALT planning. Furthermore, as today’s
products become extremely reliable due to technological advances, a single accelerating stress variable in step-stress
ALT may not yield a significant amount of failure data within a reasonable amount of time. However, it insists to
include more than one stress variable in the step-stress test. For instance, an ALT of capacitors could include two
accelerating stress variables, such as temperature and voltage, and ALT of circuit boards includes more than two stress
variables such as temperature, humidity, and voltage [see Minford(1982), Mogilevski and Shirn(1988), Munikoti and
Dhar(1988)]. However, those studies did not focus on the step-stress ALT.

Khamis(1997) presented a generalized optimum m-step step-stress ALT design with k stress variables by assuming
complete knowledge of a life-stress relationship with multiple stress variables. Li and Fard(2007) proposed a bivari-
ate step-stress ALT plan with two stress variables for Weibull failure time under Type-I censoring. Ling et al.(2011)
discussed a bivariate step-stress ALT model with two stress variables to determine optimum stress change times under
Type-I hybrid censored data. Some recent work in this direction refers to Hakamipour and Rezaei(2015).

The objective of this paper is to develop a bivariate step-stress test that includes two stress variables and each has
two stress levels, and the stress levels are changed at different times. The expression of an optimum test plan under
progressive Type-I censoring is derived by minimizing asymptotic-variance (AV) of the MLEs of the log of the scale
parameter at design stress under progressive Type-I censored data. The rest of this paper is organized as follows:
In section 2, the test procedure under progressive Type-I censoring and the statistical model with assumptions are
presented. Likelihood function and Fisher information matrix are presented in section 3. The optimization criterion is
discussed in section 4. In section 5 presents the Bayesian estimation for the model parameters. A numerical example
followed by comparative study and sensitivity analysis for simulated data is given in section 6. The conclusion is
contained in section 7.

2. Test procedure and model description

2.1. Test procedure under progressive Type-I censoring

We consider the step-stress ALT problem with two stress variables, and each has two stress levels. Let xlk be the kth
stress level for a variable l, for l = 1, 2, and for k = 1, 2. Let,Nk denote the number of units operating and remaining
on test at the start of kth stress level.

The bivariate step-stress test procedure under progressive Type-I censoring stars with N1 ≡ n identical units initially
placed at first step with low-stress levels (x11, x21). Then, at prefixed stress change time τ1, when the first stress
variable x11 changed to x12 and the numbers of failed units n1 recorded and R∗

1 surviving units randomly removed
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from test. Now, N2 = n − n1 − R∗
1, the non-removed surviving units are put on a higher stresses (x12, x21) and

run until prefixed stress change time τ2, when the second stress variable x21 changed to x22 and the number of failed
units n2 is recorded and R∗

2 surviving units are randomly withdrawn from test, and so on. Then the test is continued
with stresses (x12, x22) and run until a predefined censoring time T , the number of failed units n3 is recorded, and
remaining surviving items R∗

3 = n−
∑3
i=1 ni−

∑2
i=1R

∗
i are withdrawn from the test, thereby terminate the life test.

The procedure is shown in Figure 1. Note that, when there is no intermediate censoring (viz.,R∗
1 = R∗

2 = 0), this
situation corresponds to 3-level step-stress testing under Type-I censoring as a special case.

Figure 1: Graphical representation of test procedure.

2.2. Assumptions

Under the progressive Type-I censoring scheme, the optimum test plan and statistical inferences of bivariate step-stress
ALT depend on the following assumptions are made:

1. The life of a test unit at each stress level follows a Weibull distribution.

F (t) = 1− exp

(
− t

δ

θδi

)
, θi > 0, δ > 0; 0 ≤ t <∞, (1)

where δ and θ are the shape and scale parameters respectively.

2. The scale parameter θi at test step i,for i = 1, 2, 3, is assumed a log-linear function of stress levels. That is,

Step 1 : log (θ1) = β0 + β1x11 + β2x21
Step 2 : log (θ2) = β0 + β1x12 + β2x21
Step 3 : log (θ3) = β0 + β1x12 + β2x22

 , (2)

where β0, β1 and β2 are unknown parameters depending on the nature of the product and the test method and it
is assumed that there are no interactions between the stress variables [see, Li and Fard(2007)].

3. A cumulative exposure (CE) model holds: the remaining life of a test unit depends only on its present CE.

4. For all stress levels, the shape parameter δ is common, constant, and independent of time and stress, i.e. known.

From the assumption (i) and (iii), the cumulative density function (CDF) of a test unit under step-stress test follows
the K-H model [See Khamis and Higgins(1998)], can be expressed as:

F (t) =


1− exp

(
− tδ

θδ1

)
, 0 ≤ t < τ1

1− exp
(
−
(
tδ−τδ1
θδ2

+
τδ1
θδ1

))
, τ1 ≤ t < τ2

1− exp
(
−
(
tδ−τδ2
θδ3

+
τδ2−τ

δ
1

θδ2
+

τδ1
θδ1

))
, τ2 ≤ t <∞

(3)
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The corresponding probability density (PDF) function of a test unit is obtained as:

f (t) =


δ t
δ−1

θδ1
exp

(
− tδ

θδ1

)
, 0 ≤ t < τ1

δ t
δ−1

θδ2
exp

(
−
(
tδ−τδ1
θδ2

+
τδ1
θδ1

))
, τ1 ≤ t < τ2

δ t
δ−1

θδ3
exp

(
−
(
tδ−τδ2
θδ3

+
τδ2−τ

δ
1

θδ2
+

τδ1
θδ1

))
, τ2 ≤ t <∞

(4)

3. Likelihood Function and Fisher Information Matrix

Let tij , i = 1, 2, 3; j = 1, 2, ..., ni be the observed values of lifetime Tobtained from a progressive Type-I
censoring. From the CDF given in (3) and corresponding PDF has given in (4), the likelihood function based on the
progressive Type-I censoring sample is derived as follows:

L (δ, θ1, θ2, θ3| t) =
3∏
i=1

ni∏
j=1

fi (tij) [1− Fi (τ)]R
∗
i (5)

From substituting (3) and (4) in (5), we get

L = L(tij |δ, θ1, θ2, θ3)

=

n1∏
j=1

δ
tδ−1
1j

θδ1
exp

(
−
tδ1j
θδ1

)[
exp

(
−τ

δ
1

θδ1

)]R∗1

×
n2∏
j=1

δ
tδ−1
2j

θδ2
exp

(
−

(
tδ−1
2j − τ δ1
θδ2

+
τ δ1

θβ1

))[
exp

(
−
(
τ δ2 − τ δ1
θδ2

+
τ δ1
θδ1

))]R∗2

×
n3∏
j=1

δ
tδ−1
3j

θδ3
exp

(
−

(
tδ−1
3j − τ δ2
θδ3

+
τ δ2 − τ δ1
θδ2

+
τ δ1
θδ1

))
×

[
exp

(
−

(
τ δ3 − τ δ1
θδ2

+
τ δ2 − τ δ1
θδ2

+
τ δ1

θβ1

))]R∗3
(6)

From (2) and (6), we get

L = L (δ, β0, β1, β3| t) =
3∏
i=1

ni∏
j=1

δ
tδ−1
ij

exp (Ci)
exp

(
− Ui
exp (Ci)

)
(7)

where, Ui =
∑ni
j=1

(
tδij − τ δi−1

)
+

R∗i
π∗i

(
τ δi − τ δi−1

)
, i = 1, 2, 3, with τ0 = 0, R∗

i = round((Ni − ni)πi),

C1 = δ (β0 + β1x11 + β2x21) , C2 = δ (β0 + β1x12 + β2x21) and C3 = δ (β0 + β1x12 + β2x22) . Note that Ui is
the total time on test statistic for the ith stage and R∗

i is the number of units censored at each stage, as defined by
Balakrishnan and Han(2009). The log-likelihood function after taking the log of equation (7), can be written as

logL =

3∑
i=1

{ni log(δ)}+ (δ − 1)

3∑
i=1

ni∑
j=1

log(tij)−
3∑
i=1

(
niCi +

Ui
exp (Ci)

)
(8)

The MLEs for the model parameters β0, β1 and β2 can be obtained by equating the first-order partial derivatives with
respect to β0, β1 and β2 of the log-likelihood function (8) to zero, respectively

∂ logL

∂β0
= −δ(n1 + n2 + n3) +

3∑
i=1

Ui
exp (Ci)

∂Ci
∂β0

= 0 (9)

∂ logL

∂β1
= −δ(x11n1 + x12n2 + x12n3) +

3∑
i=1

(
Ui

exp (Ci)

)
∂Ci
∂β1

= 0 (10)
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∂ logL

∂β2
= −δ(x21n1 + x21n2 + x22n3) +

3∑
i=1

Ui
exp (Ci)

∂Ci
∂β2

= 0 (11)

It is observed that likelihood equations (9), (10), and (11) constitute a system of 3 nonlinear equations in 3 unknowns
β0, β1 and β2. Since the non-linearity of β̂0, β̂1 and β̂2, it is therefore difficult to solve analytically. Thus, sta-
tistical inference with these MLEs is based on the asymptotic distributional result that the vector (β̂0, β̂1, β̂2) is
approximately distributed as a multivariate normal with mean vector (β0, β1, β2) and variance-covariance matrix
[In(β0, β1, β2)]

−1, where [In(β0, β1, β2)] is the expected value of the matrix of second derivatives of the log-
likelihood, i.e., the Fisher Information Matrix. From equation (6), we have

∂2 logL

∂β2
0

= −
3∑
i=1

Ui
exp (Ci)

(
∂Ci
∂β0

)2

(12)

∂2 logL

∂β0∂β1
= −

3∑
i=1

Ui
exp (Ci)

∂2Ci
∂β0∂β1

(13)

∂2 logL

∂β0∂β2
= −

3∑
i=1

Ui
exp (Ci)

∂2Ci
∂β0∂β2

(14)

∂2 logL

∂β2
1

= −
3∑
i=1

Ui
exp (Ci)

(
∂Ci
∂β1

)2

(15)

∂2 logL

∂β1∂β2
= −

3∑
i=1

Ui
exp (Ci)

∂2Ci
∂β1∂β2

(16)

∂2 logL

∂β2
2

= −
3∑
i=1

Ui
exp (Ci)

(
∂Ci
∂β2

)2

(17)

To obtain the Fisher information matrix, we need the expectations of (12)-(17). To obtain their expectations, the
following properties of the count and order statistics are used:
Properties:

(i) The random variable n1 has a binomial distribution with parameters (n, F (τ1)). For i = 2, 3, given n1, ...., ni−1,
the random variable ni has a binomial distribution with parameters (Ni, Fi(τ)), where

Fi(τ) =
F (τi)− F (τi−1)

1− F (τi−1)
(18)

is the probability that a unit fail in the interval (τi−1 , τi] with τ0 = 0, and F (τi) is as given in (3).

(ii) For each i = 1, 2, 3, the random variables
(
tδi,j − τ δi−1

)
, j = 1, 2, ...., ni constitute a random sample from a

truncated Weibull distribution on (τi−1, τi] where τ0 = 0, with the p.d.f

fi,τ (z) =
fi(z)

F (τi)− F (τi−1)
for τi−1 ≤ z ≤ τi.

Using property (i) and the property of conditional expectation, we have E(ni) = E(Ni)Fi(τ). Now, let us compute
the expectation of Ni and Ri, i = 1, 2, 3. Beginning with E(N1) = n andNi+1 = Ni − ni − R∗

i , we obtain, by
induction,

E(Ni) = n

i−1∏
j=1

Sj(τ)(1− π∗
j ), (19)

E(R∗
i ) = E(Ni) [1− Fi(τ)]π∗

i . (20)
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Hence, the expected value of Ui is obtained as

E(Ui) = nθδiFi (τ)

i−1∏
j=1

Sj (τ)
(
1− π∗

j

)
, i = 1, 2, 3. (21)

Thus, the expected values of (12)-(17) are obtained as follows

E

[
−∂

2 logL

∂β2
0

]
= nδ2

3∑
i=1

Fi(τ)

2∏
j=1

Sj(τ)(1− π∗
j ) (22)

E

[
−∂

2 logL

∂β0∂β1

]
= nδ2

3∑
i=1

(x11 + 2x12)Fi(τ)

2∏
j=1

Sj(τ)(1− π∗
j ) (23)

E

[
−∂

2 logL

∂β0∂β2

]
= nδ2

3∑
i=1

(2x21 + x22)Fi(τ)

2∏
j=1

Sj(τ)(1− π∗
j ) (24)

E

[
−∂

2 logL

∂β2
1

]
= nδ2

3∑
i=1

(
x211 + 2x212

)
Fi(τ)

2∏
j=1

Sj(τ)(1− π∗
j ) (25)

E

[
−∂

2 logL

∂β1∂β2

]
= nδ2

3∑
i=1

(2x11x21 + x12x22)Fi(τ)

2∏
j=1

Sj(τ)(1− π∗
j ) (26)

E

[
−∂

2 logL

∂β2
2

]
= nδ2

3∑
i=1

(
2x221 + x222

)
Fi(τ)

2∏
j=1

Sj(τ)(1− π∗
j ) (27)

Hence, the Fisher information matrix is

In(β0, β1, β2) =

 ∑3
i=1Ai(τ)

∑3
i=1Ai(τ)B1(x)

∑3
i=1Ai(τ)B2(x)∑3

i=1Ai(τ)B1(x)
∑3
i=1Ai(τ)B3(x)

∑3
i=1Ai(τ)B4(x)∑3

i=1Ai(τ)B2(x)
∑3
i=1Ai(τ)B4(x)

∑3
i=1Ai(τ)B5(x)

 , (28)

where,
Ai(τ) =

∑3
i=1 Fi(τ)

∏2
j=1 Sj(τ)(1− π∗

j ),

B1(x) = (x11 + 2x12), B2(x) = (2x21 + x22), B3(x) = (x211 + 2x212),
B4(x) = (2x11x21 + x12x22) and B5(x) = (2x221 + x222).

Since the MLEs of the model parameters are not in closed-form, it is not possible to derive the exact confidence
intervals, so the asymptotic confidence intervals instead of exact confidence intervals are derived.
Then the two-sided 100(1− α)% confidence interval of the model parameter β0 can be obtained from

β̂0 ± Zα/2
√
AV ar(β̂0) (29)

where, AVar- stands for asymptotic-variance and Zα/2 is the (1− α/2)th quantile of the standard normal distribution.
Similarly, the two-sided 100(1− α)% CIs of the model parameters β1 and β2 can obtain.

4. Optimization Criterion

Here, we are interested in estimating the scale parameter θ0 at usual stress conditions with maximum precision. The
criterion function is then defined by

nAVar
(
logθ̂0

)
= nAVar

(
β̂0 + β̂1x10 + β̂2x20

)
=
(
1 x10 x20

)
I−1
n

(
β̂0, β̂1, β̂2

) (
1 x10 x20

)′ (30)
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where, I−1
n

(
β̂0, β̂1, β̂2

)
is the asymptotic variance-covariance matrix, can be obtained from (28).

5. Bayes Estimation

In the section, Bayes estimates (β0, β1, β2) are obtained by assuming that the shape parameter δ is known. Let us
consider Jeffrey’s rule for choosing the independent and non-informative prior for the parameters β0, β1 and β2 as
suggested by Sinha(1998). The joint prior for β0, β1 and β2 is the product of their independent priors. The considered
priors are

g1(β0) ∝ 1
2c1

; −c1 ≤ β0 ≤ c1,
g2(β1) ∝ 1

2c2
; −c2 ≤ β1 ≤ c2,

g3(β2) ∝ 1
2c3

; −c3 ≤ β2 ≤ c3,

 (31)

where c1, c2 and c3 are the prior hyperparameters. The expression for the posterior density by combining the likeli-
hood function (7) with the priors (31) via the Bayes theorem up to proportionality, can be written as

π(β0, β1, β2|t) ∝
∏3
i=1

∏ni
j=1 δ

tδ−1
ij

exp(Ci)
exp

(
− Ui

exp(Ci)

)
×I(−c1,c1) (β0) I(−c2,c2) (β1) I(−c3,c3) (β2)

(32)

where, I(−c,c) (β) =
{

1, if − c < β < c,
0, otherwise.

The posterior function given in (32) is analytically intractable to draw the desired inferences. Therefore, we consider
MCMC methods to simulate samples from the posterior to obtain the Bayes estimate numerically, which is the easiest
alternative way to get reliable results [see Gelman et al.(2003)]. The Gibbs sampler is an important algorithm in the
MCMC technique, which provides a way for extracting samples from the posteriors distribution. To implement the
Gibbs strategy, the basic steps are as follows:

Step-1: First derive the posterior distribution, up to proportionality, and specify the full conditionals of the model
parametersβ0, β1 and β2, using (30) as

π1(β0|β1, β2, t) ∝ exp (−(n1 + n2 + n3)δβ0) exp

− 3∑
i=1

ni∑
j=1

Ui
exp (Ci)

 , (33)

π2(β1|β0, β2, t) ∝ exp (− (n1x11 + n2x12 + n3x12) δβ1) exp

− 3∑
i=1

ni∑
j=1

Ui
exp (Ci)

 , (34)

π3(β2|β0, β1, t) ∝ exp (− (n1x21 + n2x21 + n3x22) δβ2) exp

− 3∑
i=1

ni∑
j=1

Ui
exp (Ci)

 . (35)

Step-2: Select an initial value θ(0) =
(
β
(0)
0 , β

(0)
1 , β

(0)
2

)
to start the chain.

Step-3: Suppose at the ith-step, θ = (β0, β1, β2) takes the value θ(i) =
(
β
(i)
0 , β

(i)
1 , β

(i)
2

)
then the full conditionals,

generate
β
(i+1)
0 from p

(
β0|β(i)

1 , β
(i)
2 , t

)
,

β
(i+1)
1 from p

(
β1|β(i)

0 , β
(i)
2 , t

)
and

β
(i+1)
2 from p

(
β2|β(i)

1 , β
(i)
1 , t

)
.

Step-4: This completes a transition from θ(i) to θ(i+1).

Step-5: Repeat Step-3, N times.
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In this case, we shall prefer to use the WinBUGS software to obtain the posterior samples. It is a powerful and flexible
program for performing Bayesian analyses, developed by the BUGS project, a team of UK researchers at the MRC
Biostatistics Unit at Cambridge [see Spiegelhalter et al.(2003)].

6. Numerical Illustrations

In this section, we present a simulated example to illustrate the proposed bivariate step-stress ALT model under
progressive Type-I censoring. In this simulation study, we used two average censoring proportions (ACPs) π0 = 0.10
and 0.20 with the following initial values of the model parameters n = 40, x10 = 0.1, x20 = 0.5, x11 = 0.4, x12 =
0.7, x21 = 1.2, x22 = 2.5, δ = 1.5, β0 = 6, β1 = −1, and β2 = −0.5.

6.1. Optimum Plan

To obtain the optimum values of the stress changing times τ1 and τ2, we minimize the asymptotic-variance of the
MLEs of the log of scale parameter at usual stress conditions given in equation (30). Since the asymptotic-variance of
the MLEs of the log of scale parameter at x0 cannot be obtained in explicit forms, therefore we approach a graphical
method to plot the relation between AVar(logθ̂0) and stress changing times (τ1 and τ2) by choosing different values
of τ1 and τ2, and then the optimum values of stress changing times are obtained from the Figure 1, i.e. τ∗1 = 107.5
and τ∗2 = 152.0 for π0 = 0.10 and τ∗1 = 85.0 and τ∗2 = 116.0 for π0 = 0.20.

Figure 2: Plot of AVar(log θ̂0) for different values of stress change times τ1 and τ2.

6.2. Simulated Data

A simulation study is carried out and the failure time observations for various combinations of two stress variables
are generated by using equation (3) under the progressive Type-I censoring set up for the chosen initial values of the
model parameters with two average censoring proportions (ACPs) π0 = 0.10 and 0.20. The simulated failure times
data are presented in Table 1.

6.3. MLEs of the Model Parameters

The MLEs and 95% confidence intervals of the model parameters β0, β1 and β2 are obtained using simulated data
given in Table 1 and the results are presented in Table 2.

The MLEs of the model parameters are obtained using R software (R Development Core Team, 2017) by directly
maximizing the log-likelihood function, and the confidence intervals of estimates are obtained using the Hessian
matrix. From Table 2, it is observed that the model parameters β0, β1 and β2 have a smaller SD for ACP π0 = 0.10
as compared to SD for ACP π0 = 0.20.
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Table 1: Simulated failure times under progressive Type-I censoring

π0 = 0.10

1st Stress level 2nd Stress level Failure times

x11 = 0.4 x21 = 1.2 12.68054, 16.00950, 26.41577, 27.62933, 48.50038, 53.54161,

53.65388, 59.91186, 83.68310, 83.80152, 91.96629, 92.48443,

94.23786, 94.44097, 101.73687, 107.25567

x12 = 0.7 x21 = 1.2 111.34981, 118.89825, 126.29394, 127.73697, 129.06297,

132.27548, 132.82133, 141.73262, 143.27622, 144.13275,

151.04934

x12 = 0.7 x22 = 2.5 164.07598, 164.61501, 168.88635, 174.74573

π0 = 0.20

x11 = 0.4 x21 = 1.2 3.177988, 14.813664, 15.850217, 18.073464, 24.723454, 32.206788,

36.952152, 39.418974, 42.696305, 46.117481, 46.378645, 54.478969,

56.877109, 58.664509, 67.072512, 68.067866, 74.555354, 81.800785,

84.186432

x12 = 0.7 x21 = 1.2 86.742937, 96.629550, 97.471344

x12 = 0.7 x22 = 2.5 116.478150, 120.527766, 129.954149, 149.598110

Table 2: The MLEs and 95% confidence intervals of the model parameters

π0 = 0.10

Parameters MLEs Bias SD Confidence Interval

β0 5.7759 -0.2241 0.7667 (4.2733, 7.2786)

β1 -1.0716 -0.0716 1.2553 (-3.5319, 1.3887)

β2 -0.2315 0.2685 0.2746 (-0.7698, 0.3068)

π0 = 0.20

β0 5.2879 -0.7121 0.7697 (3.7793, 6.7966)

β1 0.5736 1.5736 1.6825 (-2.7242, 3.8714)

β2 -0.6243 -0.1243 0.4814 (-1.5679, 0.3193)

6.4. Bayes Estimate of the Model Parameters

In this case, two MCMC chains with different initial values, for chain 1: β0 = 6, β1 = −2, β2 = −1 and for chain 2:
β0 = 10, β1 = −3, β2 = −2, were run simultaneously in one simulation. Each chain continues for 40000 iterations.
The posterior summary obtained from WinBUGS is presented in Table 3.

The results in Table 3 shows that posterior parameters β0 and β2 have a smaller SD for ACP π0 = 0.10 as compared
to ACP π0 = 0.20, while in the case of parameter β1 second ACP π0 = 0.20 has a smaller SD in comparison to the
first ACP π0 = 0.10.
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Table 3: Summary of posterior analysis

π0 = 0.10

Parameters Mean SD MC error Median (50%) Confidence Interval

β0 9.6480 0.3235 0.0049 9.7390 (8.8140, 9.990)

β1 -2.6890 0.8661 0.0139 -2.8110 (-3.927, -0.7291)

β2 -0.5944 0.3692 0.0069 -0.5576 (-1.386, -0.0348)

π0 = 0.20

β0 10.08 1.027 0.03249 10.12 (7.958, 11.830)

β1 -1.727 0.8193 0.01103 -1.815 (-2.939, -0.1424)

β2 -1.046 0.4536 0.009132 -1.063 (-1.867, -0.147)

6.5. The Gelman-Rubin Convergence Diagnostics

The Gelman–Rubin convergence statistic, R, is introduced to evaluate MCMC convergence by analyzing the difference
between multiple Markov chains. The convergence is assessed by comparing the estimated between-chains and within-
chain variances for each model parameter. Large differences between these variances indicate non-convergence. See
Gelman and Rubin(1992) for the detailed description of the method. When a WinBUGS simulation converges, R
should be, or close to one. Figure 3 and 4 corresponding to ACPs π0 = 0.10 and 0.20, respectively, shows the
convergence pattern based on Gelman-Rubin convergence statistic of β0, β1 and β2 which indicates that the simulation
is believed to have converged.

Figure 3: Gelman-Rubin statistic for β0, β1 and β2 for π0 = 0.10.

Figure 4: Gelman-Rubin statistic for β0, β1 and β2 for π0 = 0.20.
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6.6. Comparative study

We have compared the proposed step-stress ALT model under progressive Type-I censoring with Type-I censoring in
terms of the optimum plan, results are given in Table 4.

Table 4: Comparative study with Type-I censoring

SSALT Model π0 = 0.10 π0 = 0.20

Under Progressive Type-1 censoring τ∗1 = 107.5 and τ∗2 = 152.0 τ∗1 = 85.0 and τ∗2 = 116.0

Under Type-1 censoring τ∗1 = 135.0 and τ∗2 = 196.0

Table 4 shows that the optimal stress change times for the proposed optimum plan under modified progressive Type-I
censoring are reduced as compared to Type-I censoring. Thus, the proposed plan is performing better than the plan
under Type-I censoring for a given data set.

6.7. Sensitivity Analysis

The sensitivity analysis is performed to observe the effect of changes in the value of initially estimated model pa-
rameters β0, β1 and β2 on the optimum value of stress change times (τ∗1 and τ∗2 ), the results are displayed in Table
5.

Table 5: Sensitivity analysis of bivariate SSALT plan

π0 = 0.10 π0 = 0.10

Parameters Deviation % τ∗1 τ∗2 τ∗1 τ∗2

β0
+5 105.5 148.0 82.5 112

−5 110.0 156.0 87.0 120

β1
+5 105.0 148.0 82.5 112

−5 107.5 152.0 85.0 116

β2
+5 107.5 152.0 85.0 116

−5 107.5 152.0 85.0 116

The result in Table 5 shows that the proposed optimum test plan is robust to the deviations in true values of the model
parameters. Especially, the test plan is robust to change in the model parameters β0 and β1 and strongly robust to the
change in the parameter β2.Therefore, the proposed optimum plan is robust.

7. Conclusion

In this paper, we have studied a step-stress ALT with two stress variables and each has two stress levels, and the stress
levels are changed at different times for Weibull distribution under progressive Type-I censoring. The optimum test
plan is developed using variance–optimality criteria. Based on simulated data, the model parameters β0, β1 and β2
have been estimated through maximum likelihood and Bayes methods. In parameter estimation, it is observed that
estimates of the model parameters through the ML method for π0 = 0.10 performing better than π0 = 0.20 and the
corresponding 95% confidence intervals are also presented in Table 2. The Gelman–Rubin convergence diagnostics
test is used to evaluate MCMC convergence of multiple Markov chains and it shows that the simulation is converged
(Figure 3 & 4). Moreover, the comparative study for the optimum plan has been conducted and it shows that the
proposed plan under progressive Type-I censoring performs better than the plan under traditional Type-I censoring.
Sensitivity analysis results suggest that the optimum test plan is robust for small deviations in the true value of the
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model parameters.
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