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Abstract 

In this paper, we improve the efficiency of  Koyuncu et al (2014)’s estimator of population mean of 
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1. Introduction 

We know that auxiliary information plays an important role to improve the efficiency of 

an estimator of parameter of interest when the study variable is sensitive or non-sensitive 

in nature. Bahl and Tuteja (1991), Grover and Kaur (2011), Singh and Solanki (2012) and 

many more authors used auxiliary information when the study variable is non sensitive 

whereas Sousa et al (2010), Gupta et al (2012), Koyuncu et al (2014), Kalucha et al 

(2015) and many more authors used auxiliary information in Randomized response 

technique (RRT) under traditional additive model when the study variable is sensitive. 

But auxiliary variable is non sensitive in both the situations. Some authors including 

Gupta et al (2010), Huang (2010), Gupta et al (2013), and Gupta et al (2014) have studied 

Optional RRT with modified additive model. Tarray and Singh (2017) have suggested 

optional RRT with new additive model. The importance of Optional RRT model lies in 

the fact that a question may not be sensitive for the entire population. One person 

consider a particular question as sensitive question and other may consider it non 

sensitive question. In an Optional RRT Model, scrambled answer is given by the 

respondent only if he/she consider the question is sensitive otherwise true answer is given 

by the respondent. Gupta et al (2014) suggested an efficient estimator of population mean 

of sensitive variable by replacing traditional RRT model used in Sousa et al (2010) and 

Gupta et al (2012) with Optional RRT model. In this article, we use Optional RRT model 

to improve the efficiency of an exponential type estimator suggested by Koyuncu et al 

(2014). Our proposed estimator is also more efficient than the estimators suggested by 

Gupta et al (2014). In this article, we will deal with the quantitative study variable, 
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whereas some authors in the literature like Singh and Tarray (2014), Tarray et al (2015), 

etc studied optional randomized response model for qualitative study variable. To support 

theoretical results obtained, a numerical illustration is considered finally. 

2. Notations and existing estimators 

Consider a population 𝑈 = (𝑈1, 𝑈2, … , 𝑈𝑁) of size N from which a sample of size 𝑛 is 

drawn using simple random sampling without replacement. Let 𝑌 be the study variable 

which is sensitive in nature. Let 𝑋 be a non-sensitive auxiliary variable which is 

positively correlated with the study variable 𝑌. Let 𝑊 be the sensitivity level of the asked 

sensitive question. The respondent gives the correct response for the auxiliary variable 

𝑋 but has optional randomized response for variable 𝑌. In this Optional RRT model, 

respondent gives the response as Ƶ = 𝑌 + 𝑆𝑇 for the study variable 𝑌, where T is a 

Bernoulli random variable with parameter 𝑊, so that 0 ≤ 𝑊 ≤ 1 and  𝑆 is a scrambling 

variable whose mean is assumed to be zero i.e. 𝐸(𝑆) = 𝑆̅ = 0 and its variance 𝜎𝑠
2 is 

assumed to be known quantity. It is assumed that the variables 𝑆 and 𝑇 are two mutually 

independent variables which are further independent of variables 𝑌 and 𝑋. 

 

Remark 2.1: 

If we take 𝑊 = 1 in the above model then it reduces to the traditional additive RRT 

model, and scrambled response is then written as 𝑍 = 𝑌 + 𝑆. 

 

Now the population mean of variable Ƶ is given by Ƶ̅ = 𝐸(Ƶ) = 𝐸(𝑌 + 𝑆𝑇) = 𝐸(𝑌) =
𝑌̅ = 𝜇𝑌Ƶ(say) as 𝐸(𝑆) = 0, where 𝑌̅ is the population mean of variable 𝑌. The population 

variance of variable Ƶ is given by 𝑆ƶ
2 = 𝑉(𝑌 + 𝑆𝑇) = 𝑆𝑦

2 +𝑊𝑆𝑠
2. Let 𝐶ƶ be the 

coefficient of variation of variable Ƶ. So 𝐶ƶ
2 = 𝐶𝑦

2 +𝑊
𝑆𝑠
2

𝑌̅2
, where 𝐶𝑦 is the coefficient of 

variation of variable 𝑌. Let 𝜌ƶ𝑥 be the coefficient of correlation between variables Ƶ and 

𝑋 so 𝜌ƶ𝑥 =
𝜌𝑦𝑥

√1+𝑊
𝑆𝑠
2

𝑆𝑦
2

, where 𝜌𝑦𝑥 is the coefficient of correlation between variables 𝑌 and 

𝑋, 𝑆𝑦
2 =

1

𝑁−1
∑ (𝑦𝑖 − 𝑌̅)

2𝑁
𝑖=1 , and  𝑆𝑠

2 =
1

𝑁−1
∑ (𝑠𝑖 − 𝑆̅)

2𝑁
𝑖=1 .  

Taking also 𝑆𝑥
2 =

1

𝑁−1
∑ (𝑥𝑖 − 𝑋̅)

2𝑁
𝑖=1 , where 𝑋̅ is the population mean of auxiliary 

variable 𝑋. Let 𝐶𝑥 be the coefficient of variation of variable 𝑋. 

 

Remark 2.2: 

The estimate of sensitivity level 𝑊 in the above Optional RRT model may be obtained by 

using the same approach of Gupta et al (2014). According to them, the estimated value of 

𝑊 is  𝑊̂ =

1

𝑛
∑ ƶ𝑖

2−{𝑉(𝑦)+(
1

𝑛
∑ ƶ𝑖
𝑛
𝑖=1 )

2
}𝑛

𝑖=1

𝐸(𝑠2)
 , where 𝑉̂(𝑦) is the estimate of variance of y. They 

further found that  

𝑊̂ =

1

𝑛
∑ ƶ𝑖

2−{
1

𝑛
∑ ƶ𝑖
𝑛
𝑖=1 +(

1

𝑛
∑ ƶ𝑖
𝑛
𝑖=1 )

2
}𝑛

𝑖=1

𝐸(𝑠2)
, when 𝑌 is assumed to follow Poisson distribution and  

𝑊̂ =
𝑆̂ƶ
2−(𝐶𝑥

1

𝑛
∑ ƶ𝑖
𝑛
𝑖=1 )

2

𝐸(𝑠2)
, when it is assumed that 𝐶𝑥 = 𝐶𝑦. 
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Assume that 𝑋̅ is known. Now we consider estimator suggested by Koyuncu et al (2014) 

and various other estimators under Traditional RRT Model: 𝑍 = 𝑌 + 𝑆 and also various 

estimators suggested by Gupta et al (2014) under Optional RRT Model: Ƶ = 𝑌 + 𝑆𝑇. 

These estimators and their mean square errors, up to first order of approximation, are 

given in the following table. 

Table2.1: Existing estimators with their mean square errors under various RRT     

models 

 

Traditional RRT Model: 𝒁 = 𝒀 + 𝑺 Optional RRT Model: Ƶ = 𝒀 + 𝑺𝑻 

Estimator 

Mean Square 

Error/Optimum mean 

square error 

Estimator 
Mean Square 

Error 

Ordinary 

unbiased 

estimator 

Suggested by Sousa et 

al (2010) 

𝜇̂𝑌𝑍 =
1

𝑛
∑𝑧𝑖

𝑛

𝑖=1

= 𝑧̅ 
𝜆(𝑆𝑦

2 + 𝑆𝑠
2) 

Suggested by 

Gupta et al 

(2014) 

𝜇̂𝑌Ƶ

=
1

𝑛
∑ƶ𝑖 = ƶ̅

𝑛

𝑖=1

 

𝜆(𝑆𝑦
2 +𝑊𝑆𝑠

2) 

Ratio type 

estimator 

Suggested by Sousa et 

al (2010) 

𝜇̂𝑅𝑍 = 𝑧̅
𝑋̅

𝑥̅
 

𝜆𝑌̅2 (𝐶𝑦
2 +

𝑆𝑠
2

𝑌̅2
+ 𝐶𝑥

2

− 2𝜌𝑦𝑥𝐶𝑥𝐶𝑦) 

Suggested by 

Gupta et al 

(2014) 

𝜇̂𝑅Ƶ = ƶ̅
𝑋̅

𝑥̅
 

𝜆𝑌̅2 (𝐶𝑦
2

+𝑊
𝑆𝑠
2

𝑌̅2
+ 𝐶𝑥

2

− 2𝜌𝑦𝑥𝐶𝑥𝐶𝑦) 

Regression 

type 

estimator 

Suggested by Gupta et 

al (2012) 

𝜇̂𝑅𝑒𝑔𝑍 = 𝑧̅ + 𝛽̂𝑧𝑥(𝑋̅

− 𝑥̅) 

𝜆𝑆𝑦
2 {(1 +

𝑆𝑠
2

𝑆𝑦
2
) − 𝜌𝑦𝑥

2 } 

Suggested by 

Gupta et al 

(2014) 

𝜇̂𝑅𝑒𝑔Ƶ
= ƶ̅

+ 𝛽̂ƶ𝑥(𝑋̅ − 𝑥̅) 

𝜆𝑆𝑦
2 {(1

+𝑊
𝑆𝑠
2

𝑆𝑦
2
)

− 𝜌𝑦𝑥
2 } 

Generalized 

regression-

cum-ratio 

estimator 

Suggested by Gupta et 

al (2012) 

𝜇̂𝐺𝑅𝑅𝑍
= {𝑘1𝑧̅

+ 𝑘2(𝑋̅ − 𝑥̅)} (
𝑋̅

𝑥̅
) 

𝑀𝑆𝐸(𝜇̂𝑅𝑒𝑔𝑍)(1 − 𝜆𝐶𝑥
2)

𝑀𝑆𝐸(𝜇̂𝑅𝑒𝑔𝑍)

𝑌̅2
+ (1 − 𝜆𝐶𝑥

2)
 --- --- 

Exponential 

type 

estimator 

Suggested by Koyuncu 

et al (2014) 

𝜇̂𝑒𝑥𝑝𝑍
= [𝑤1𝑧̅
+ 𝑤2(𝑋̅

− 𝑥̅)]𝑒𝑥𝑝 (
𝑋̅ − 𝑥̅

𝑋̅ + 𝑥̅
) 

𝑀𝑆𝐸(𝜇̂𝑅𝑒𝑔𝑍) − 𝑇1𝑍
− 𝑇2𝑍 

--- --- 

 

where 𝜆 =
1

𝑛
−

1

𝑁
 , 𝛽̂𝑧𝑥 and 𝛽̂ƶ𝑥 are estimates of regression coefficients,  

𝑇1𝑍 =

{𝑀𝑆𝐸(𝜇̂𝑅𝑒𝑔𝑍)}
2

𝑌̅2

1+
𝑀𝑆𝐸(𝜇̂𝑅𝑒𝑔𝑍)

𝑌̅2

> 0 and     𝑇2𝑍 =
𝜆𝐶𝑥

2{𝑀𝑆𝐸(𝜇̂𝑅𝑒𝑔𝑍)+𝜆
1

16
𝐶𝑥
2𝑌̅2}

4{1+
𝑀𝑆𝐸(𝜇̂𝑅𝑒𝑔𝑍)

𝑌̅2
}

> 0 
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3. Proposed exponential estimator and its properties 

If 𝑋̅ is known then we propose the following estimator of 𝑌̅ by replacing scrambled 

variable 𝑍 = 𝑌 + 𝑆 in Koyuncu et al (2014) with the scrambled variable Ƶ = 𝑌 + 𝑆𝑇:  

𝜇̂𝑒𝑥𝑝Ƶ = [𝑚1ƶ̅ + 𝑚2(𝑋̅ − 𝑥̅)]𝑒𝑥𝑝 (
𝑋̅−𝑥̅

𝑋̅+𝑥̅
)                                                                                (1) 

where 𝑚1 and 𝑚2 are suitable chosen constants. 

 

The Bias and Mean square error, up to first order of approximation, are respectively 

given by 

𝐵𝑖𝑎𝑠(𝜇̂𝑒𝑥𝑝Ƶ) ≅ 𝑌̅ {(𝑚1 − 1) +
𝜆𝑚1

2
(
3

4
𝐶𝑥
2 − 𝐶ƶ𝑥)} +

𝜆𝑚2

2
𝑋̅𝐶𝑥

2                                    (2) 

𝑀𝑆𝐸(𝜇̂𝑒𝑥𝑝Ƶ) ≅ 𝑌̅
2 +𝑚1𝑌̅

2 {𝜆 (𝐶ƶ𝑥 −
3

4
𝐶𝑥
2) − 2} − 𝑚2𝑌̅𝑋̅𝜆𝐶𝑥

2  + 2𝑚1𝑚2𝑌̅𝑋̅𝜆(𝐶𝑥
2 −

                            𝐶ƶ𝑥) + 𝑚1
2𝑌̅2{1 + 𝜆(𝐶ƶ

2 + 𝐶𝑥
2 − 2𝐶ƶ𝑥)} + 𝑚2

2𝑋̅2𝜆𝐶𝑥
2                      (3) 

 

When we minimise 𝑀𝑆𝐸(𝜇̂𝑒𝑥𝑝Ƶ) w.r.t. 𝑚1 and 𝑚2 , then optimum values of 𝑚1 and 𝑚2 

are obtained as follows 

𝑚1
(𝑜𝑝𝑡)

=
1−

1

8
𝜆𝐶𝑥

2

1+𝜆𝐶ƶ
2(1−𝜌ƶ𝑥

2 )
                                                                                                (4) 

𝑚2
(𝑜𝑝𝑡)

=
𝑌̅

2𝑋̅

− 𝐶𝑥
2+2𝐶ƶ𝑥+𝜆𝐶𝑥

2{𝐶ƶ
2(1−𝜌ƶ𝑥

2 )+
1

4
(𝐶𝑥

2−𝐶ƶ𝑥)}

𝐶𝑥
2{1+𝜆𝐶ƶ

2(1−𝜌ƶ𝑥
2 )}

                                                         (5) 

The minimum mean square error of 𝜇̂𝑒𝑥𝑝Ƶ corresponding to these optimum values of 𝑚1 

and 𝑚2 is given by  

𝑀𝑖𝑛.𝑀𝑆𝐸(𝜇̂𝑒𝑥𝑝Ƶ) =
𝜆𝑌̅2𝐶ƶ

2(1 − 𝜌ƶ𝑥
2 )

1 + 𝜆𝐶ƶ2(1 − 𝜌ƶ𝑥2 )
−
𝜆2𝑌̅2𝐶𝑥

2 {4𝐶ƶ
2(1 − 𝜌ƶ𝑥

2 ) +
𝐶𝑥
2

4
}

16{1 + 𝜆𝐶ƶ2(1 − 𝜌ƶ𝑥2 )}
 

=
𝜆𝑆𝑦

2 {(1 +𝑊
𝑆𝑠
2

𝑆𝑦
2) − 𝜌𝑦𝑥

2 }

1 +
𝜆𝑆𝑦

2{(1+𝑊
𝑆𝑠
2

𝑆𝑦
2)−𝜌𝑦𝑥

2 }

𝑌̅2

−
𝜆2𝐶𝑥

2 {4𝑆𝑦
2 {(1 +𝑊

𝑆𝑠
2

𝑆𝑦
2) − 𝜌𝑦𝑥

2 } +
𝑌̅2𝐶𝑥

2

4
}

16 {1 +
𝜆𝑆𝑦

2{(1+𝑊
𝑆𝑠
2

𝑆𝑦
2)−𝜌𝑦𝑥

2 }

𝑌̅2
}

 

=
𝑀𝑆𝐸(𝜇̂𝑅𝑒𝑔Ƶ)

1 +
𝑀𝑆𝐸(𝜇̂𝑅𝑒𝑔Ƶ)

𝑌̅2

−
𝜆𝐶𝑥

2 {𝑀𝑆𝐸(𝜇̂𝑅𝑒𝑔Ƶ) + 𝜆
1

16
𝐶𝑥
2𝑌̅2}

4 {1 +
𝑀𝑆𝐸(𝜇̂𝑅𝑒𝑔Ƶ)

𝑌̅2
}

 

= 𝑀𝑆𝐸(𝜇̂𝑅𝑒𝑔Ƶ) −

{𝑀𝑆𝐸(𝜇̂𝑅𝑒𝑔Ƶ)}
2

𝑌̅2

1 +
𝑀𝑆𝐸(𝜇̂𝑅𝑒𝑔Ƶ)

𝑌̅2

−
𝜆𝐶𝑥

2 {𝑀𝑆𝐸(𝜇̂𝑅𝑒𝑔Ƶ) + 𝜆
1

16
𝐶𝑥
2𝑌̅2}

4 {1 +
𝑀𝑆𝐸(𝜇̂𝑅𝑒𝑔Ƶ)

𝑌̅2
}

 

                        = 𝑀𝑆𝐸(𝜇̂𝑅𝑒𝑔Ƶ) − 𝑇1Ƶ − 𝑇2Ƶ    (6) 

where 𝑇1Ƶ =

{𝑀𝑆𝐸(𝜇̂𝑅𝑒𝑔Ƶ)}
2

𝑌̅2

1+
𝑀𝑆𝐸(𝜇̂𝑅𝑒𝑔Ƶ)

𝑌̅2

> 0     and     𝑇2Ƶ =
𝜆𝐶𝑥

2{𝑀𝑆𝐸(𝜇̂𝑅𝑒𝑔Ƶ)+𝜆
1

16
𝐶𝑥
2𝑌̅2}

4{1+
𝑀𝑆𝐸(𝜇̂𝑅𝑒𝑔Ƶ)

𝑌̅2
}

> 0. 

 

Remark 3.1: 

Under Optional RRT model with the scrambled variable Ƶ = 𝑌 + 𝑆𝑇, one can also 

proposed the following generalized regression-cum-ratio estimator: 
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𝜇̂𝐺𝑅𝑅Ƶ = [𝑑1ƶ̅ + 𝑑2(𝑋̅ − 𝑥̅)] (
𝑋̅

𝑥̅
), where 𝑑1 and 𝑑2 are suitable chosen constants. 

The minimum mean square error of 𝜇̂𝐺𝑅𝑅Ƶ , upto first order of approximation, is given by 

𝑀𝑖𝑛.𝑀𝑆𝐸(𝜇̂𝐺𝑅𝑅Ƶ) ≅
𝑌̅2𝐶ƶ

2(1 − 𝜌ƶ𝑥
2 )𝜆(1 − 𝜆𝐶𝑥

2)

𝐶ƶ2(1 − 𝜌ƶ𝑥2 )𝜆 + (1 − 𝜆𝐶𝑥2)
 

=
𝑆𝑦
2 {(1 +𝑊

𝑆𝑠
2

𝑆𝑦
2) − 𝜌𝑦𝑥

2 } 𝜆(1 − 𝜆𝐶𝑥
2)

𝑆𝑦
2{(1+𝑊

𝑆𝑠
2

𝑆𝑦
2)−𝜌𝑦𝑥

2 }𝜆

𝑌̅2
+ (1 − 𝜆𝐶𝑥2)

 

=
𝑀𝑆𝐸(𝜇̂𝑅𝑒𝑔Ƶ)(1−𝜆𝐶𝑥

2)

𝑀𝑆𝐸(𝜇̂𝑅𝑒𝑔Ƶ)

𝑌̅2
+(1−𝜆𝐶𝑥

2)

. 

 

Here we have obtained the minimum mean square errors of the proposed estimators 𝜇̂𝑒𝑥𝑝Ƶ 

and 𝜇̂𝐺𝑅𝑅Ƶ in terms of 𝑀𝑆𝐸(𝜇̂𝑅𝑒𝑔Ƶ) because this makes possible to perform easily the 

comparative study of mean square error of proposed estimator with that of the existing 

estimators. 

4. Comparison of the proposed estimator with the existing estimators 

Now we will compare the mean square error of proposed estimator with that of existing 

estimators under traditional additive RRT model and Optional RRT model. Now we have 

the following results: 

(I)  𝑀𝑆𝐸(𝜇̂𝑦𝑍) − 𝑀𝑖𝑛.𝑀𝑆𝐸(𝜇̂𝑒𝑥𝑝Ƶ) = 𝜆𝑌̅
2𝐶𝑦

2𝜌𝑦𝑥
2 + 𝑇1𝑍 + 𝑇2𝑍 + 𝑇 > 0, always 

where 𝑇 =
𝑌̅2(

𝜆𝐶𝑥
2

4
−2)

2

{(1−𝑊)𝜆𝐶𝑦
2𝑆𝑠
2

𝑆𝑦
2}

4{1+
𝑀𝑆𝐸(𝜇̂𝑅𝑒𝑔𝑍)

𝑌̅2
}{1+

𝑀𝑆𝐸(𝜇̂𝑅𝑒𝑔Ƶ)

𝑌̅2
}

≥ 0. 

 

(II) 𝑀𝑆𝐸(𝜇̂𝑅𝑍) − 𝑀𝑖𝑛.𝑀𝑆𝐸(𝜇̂𝑒𝑥𝑝Ƶ) = 𝜆𝑌̅
2(𝜌𝑦𝑥𝐶𝑦 − 𝐶𝑥)

2
+ 𝑇1𝑍 + 𝑇2𝑍 + 𝑇 > 0,  always. 

 

(III) 𝑀𝑆𝐸(𝜇̂𝑅𝑒𝑔𝑍) − 𝑀𝑖𝑛.𝑀𝑆𝐸(𝜇̂𝑒𝑥𝑝Ƶ) =  𝑇1𝑍 + 𝑇2𝑍 + 𝑇 > 0, always. 

 

(IV) 𝑀𝑆𝐸(𝜇̂𝑒𝑥𝑝𝑍) − 𝑀𝑖𝑛.𝑀𝑆𝐸(𝜇̂𝑒𝑥𝑝Ƶ) = 𝑇 > 0, always if 0 ≤ 𝑊 < 1, 

and 𝑀𝑆𝐸(𝜇̂𝑒𝑥𝑝𝑍) = 𝑀𝑖𝑛.𝑀𝑆𝐸(𝜇̂𝑒𝑥𝑝Ƶ)  if 𝑊 = 1      (as 0 ≤ 𝑊 ≤ 1) 

 

(V) 𝑀𝑆𝐸(𝜇̂𝑦Ƶ) − 𝑀𝑖𝑛.𝑀𝑆𝐸(𝜇̂𝑒𝑥𝑝Ƶ) = 𝜆𝑌̅2𝐶𝑦
2𝜌𝑦𝑥

2 + 𝑇1Ƶ + 𝑇2Ƶ > 0, always. 

 

(VI) 𝑀𝑆𝐸(𝜇̂𝑅Ƶ) − 𝑀𝑖𝑛.𝑀𝑆𝐸(𝜇̂𝑒𝑥𝑝Ƶ) = 𝜆𝑌̅2(𝜌𝑦𝑥𝐶𝑦 − 𝐶𝑥)
2
+ 𝑇1Ƶ + 𝑇2Ƶ > 0, always. 

 

(VII) 𝑀𝑆𝐸(𝜇̂𝑅𝑒𝑔Ƶ) − 𝑀𝑖𝑛.𝑀𝑆𝐸(𝜇̂𝑒𝑥𝑝Ƶ) = 𝑇1Ƶ + 𝑇2Ƶ > 0, always. 

 

(VIII) 𝑀𝑆𝐸(𝜇̂𝑦𝑍) − 𝑀𝑖𝑛.𝑀𝑆𝐸(𝜇̂𝐺𝑅𝑅Ƶ) =
𝑌̅2𝐶𝑧

2𝜆{(1−𝜆𝐶𝑥
2)𝜌𝑧𝑥

2 +𝜆𝐶𝑧
2(1−𝜌𝑧𝑥

2 )}

𝜆𝐶𝑧
2(1−𝜌𝑧𝑥

2 )+(1−𝜆𝐶𝑥
2)

+ 𝐷 > 0, provided 

that 𝜆𝐶𝑥
2 < 1 and 𝑊 < 1. 
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(IX) 𝑀𝑆𝐸(𝜇̂𝑅𝑍) − 𝑀𝑖𝑛.𝑀𝑆𝐸(𝜇̂𝐺𝑅𝑅Ƶ) = 𝑌̅
2𝐶𝑧

2𝜆 {(
𝐶𝑥

𝐶𝑧
− 𝜌𝑧𝑥)

2
+

𝜆𝐶𝑧
2(1−𝜌𝑧𝑥

2 )
2

𝜆𝐶𝑧
2(1−𝜌𝑧𝑥

2 )+(1−𝜆𝐶𝑥
2)
} + 𝐷 > 0, 

provided that 𝜆𝐶𝑥
2 < 1  and 𝑊 < 1. 

 

(X) 𝑀𝑆𝐸(𝜇̂𝑅𝑒𝑔𝑍) − 𝑀𝑖𝑛.𝑀𝑆𝐸(𝜇̂𝐺𝑅𝑅Ƶ) =
𝜆2𝑌̅2𝐶𝑧

4(1−𝜌𝑧𝑥
2 )

2

𝜆𝐶𝑧
2(1−𝜌𝑧𝑥

2 )+(1−𝜆𝐶𝑥
2)
+𝐷 > 0, provided that 

𝜆𝐶𝑥
2 < 1 and 𝑊 < 1. 

 

(XI) 𝑀𝑆𝐸(𝜇̂𝐺𝑅𝑅𝑍) −𝑀𝑖𝑛.𝑀𝑆𝐸(𝜇̂𝐺𝑅𝑅Ƶ) = 𝐷 > 0 ,  
provided that 𝜆𝐶𝑥

2 < 1 and 𝑊 < 1. 

where 𝐷 =
𝑌̅2(1−𝜆𝐶𝑥

2)
2
𝜆𝐶𝑦

2(1−𝑊)𝑆𝑠
2

𝑆𝑦
2

{
 
 

 
 

𝜆(𝐶𝑦
2+

𝑆𝑠
2

𝑌̅2
)

(

 
 
1−

𝜌𝑦𝑥
2

1+
𝑆𝑠
2

𝑆𝑦
2
)

 
 
+(1−𝜆𝐶𝑥

2)

}
 
 

 
 

{
 
 

 
 

𝜆(𝐶𝑦
2+𝑊

𝑆𝑠
2

𝑌̅2
)

(

 
 
1−

𝜌𝑦𝑥
2

1+𝑊
𝑆𝑠
2

𝑆𝑦
2
)

 
 
+(1−𝜆𝐶𝑥

2)

}
 
 

 
 
. 

 

(XII) 𝑀𝑆𝐸(𝜇̂𝑦Ƶ) − 𝑀𝑖𝑛.𝑀𝑆𝐸(𝜇̂𝐺𝑅𝑅Ƶ) =
𝑌̅2𝐶ƶ

2𝜆{(1−𝜆𝐶𝑥
2)𝜌ƶ𝑥

2 +𝜆𝐶ƶ
2(1−𝜌ƶ𝑥

2 )}

𝜆𝐶ƶ
2(1−𝜌ƶ𝑥

2 )+(1−𝜆𝐶𝑥
2)

>0,  

provided that 𝜆𝐶𝑥
2 < 1. 

 

(XIII) 𝑀𝑆𝐸(𝜇̂𝑅Ƶ) − 𝑀𝑖𝑛.𝑀𝑆𝐸(𝜇̂𝐺𝑅𝑅Ƶ) = 𝑌̅
2𝐶ƶ

2𝜆 {(
𝐶𝑥

𝐶ƶ
− 𝜌ƶ𝑥)

2

+
𝜆𝐶ƶ

2(1−𝜌ƶ𝑥
2 )

2

𝜆𝐶ƶ
2(1−𝜌ƶ𝑥

2 )+(1−𝜆𝐶𝑥
2)
} > 0,  

provided that 𝜆𝐶𝑥
2 < 1. 

 

(XIV) 𝑀𝑆𝐸(𝜇̂𝑅𝑒𝑔𝑧) − 𝑀𝑖𝑛.𝑀𝑆𝐸(𝜇̂𝐺𝑅𝑅Ƶ) =
𝜆2𝑌̅2𝐶ƶ

4(1−𝜌ƶ𝑥
2 )

2

𝜆𝐶ƶ
2(1−𝜌ƶ𝑥

2 )+(1−𝜆𝐶𝑥
2)

>0,  

provided that 𝜆𝐶𝑥
2 < 1. 

 

(XV) 𝑀𝑖𝑛.𝑀𝑆𝐸(𝜇̂𝐺𝑅𝑅Ƶ) − 𝑀𝑖𝑛.𝑀𝑆𝐸(𝜇̂𝑒𝑥𝑝Ƶ) > 0,  provided that 

𝜆𝐶𝑥
2{

𝜆

16
𝐶𝑥
2+

𝑀𝑆𝐸(𝜇̂𝑅𝑒𝑔Ƶ)

𝑌̅2
}+4

4(1+
𝑀𝑆𝐸(𝜇̂𝑅𝑒𝑔Ƶ)

𝑌̅2
)

+

𝑀𝑆𝐸(𝜇̂𝑅𝑒𝑔Ƶ)

𝑌̅2
(1−𝜆𝐶𝑥

2)

𝑀𝑆𝐸(𝜇̂𝑅𝑒𝑔Ƶ)

𝑌̅2
+(1−𝜆𝐶𝑥

2)

> 1.                                                          (7) 

 

From the above results, we note the following observations:  

(A) Our proposed estimator 𝜇̂𝑒𝑥𝑝Ƶ  is more efficient than the various existing 

estimators discussed in this article. 

(B) The estimator 𝜇̂𝐺𝑅𝑅Ƶ is more efficient than estimators 𝜇̂𝑦Ƶ, 𝜇̂𝑅Ƶ and  𝜇̂𝑅𝑒𝑔Ƶ under 

the condition 𝜆𝐶𝑥
2 < 1 and also more efficient than  𝜇̂𝑦𝑍, 𝜇̂𝑅𝑍, 𝜇̂𝑅𝑒𝑔𝑍 and 𝜇̂𝐺𝑅𝑅𝑍 

under the conditions 𝑊 < 1 and 𝜆𝐶𝑥
2 < 1.  

(C) It is interesting to note that the condition 𝜆𝐶𝑥
2 < 1 is very likely to hold true and 

also in the present paper, the condition 0 ≤ 𝑊 ≤ 1 is always true. 

(D) The proposed estimator 𝜇̂𝑒𝑥𝑝Ƶ in the Section 3 is more efficient than the other 

proposed estimator 𝜇̂𝐺𝑅𝑅Ƶ if the condition (7) hold. 

 

Remarks 4.1: 
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As we know that, bias has negligible impact on the accuracy of an estimator when the 

bias is less than one tenth of the standard deviation of estimator. We can be certain that 

the proportion Bias ⁄ St. Dev will not surpass 0.1 if the sample size is sufficiently large. 

So in the above comparison, we have considered only mean square errors of various 

estimators and not taking their biases [see pages 14-15 of Cochran (1977)]. 

5. Numerical illustration 

We compare the efficiencies of various estimators numerically by using the some 

empirical populations. We obtain the percent relative efficiencies (PRE) of various 

estimators, with respect to 𝜇̂𝑌𝑍 by using the formula 𝑃𝑅𝐸(𝜇̂𝑖) =
𝑀𝑆𝐸(𝜇̂𝑌𝑍)

𝑀𝑆𝐸(𝜇̂𝑖)
× 100, 𝑖 =YZ, 

YƵ, RZ, RƵ, RegZ, RegƵ, 𝐺𝑅𝑅𝑍,  𝐺𝑅𝑅Ƶ , expZ, expƵ. The distribution of S is taken to be 

normal with mean zero and standard deviation equal to 𝛼 times the standard deviation of 

X i.e. 𝑆𝑠 = 𝛼 × 𝑆𝑥 where 𝛼 is scalar e.g.  𝛼 = 0.1, 0.2 and 0.3. 

 

Population I {Source: Koyuncu et al. (2014)} 

𝑁 = 5336,   𝜌𝑦𝑥 = 0.9632, 𝑋̅ = 22.99, 𝑌̅ = 30.19,    𝑆𝑥 = 172.09,   𝑆𝑦 = 138.65, and 

𝑛 = 500. 

Table 5.1: Percent relative efficiencies of various estimators with respect to 𝝁̂𝒀𝒁. 

with 𝜶 = 𝟏𝟎% 

W
 

𝑃
𝑅
𝐸
(𝜇

𝑌
𝑍
) 

𝑃
𝑅
𝐸
(𝜇

𝑌
Ƶ
) 

𝑃
𝑅
𝐸
(𝜇

𝑅
𝑍
) 

𝑃
𝑅
𝐸
(𝜇

𝑅
Ƶ
) 

𝑃
𝑅
𝐸
(𝜇

𝑅
𝑒
𝑔
𝑍
) 

𝑃
𝑅
𝐸
(𝜇

𝑅
𝑒
𝑔
Ƶ
) 

𝑃
𝑅
𝐸
(𝜇

𝐺
𝑅
𝑅
𝑍
) 

𝑃
𝑅
𝐸
(𝜇

𝐺
𝑅
𝑅
Ƶ
) 

𝑃
𝑅
𝐸
(𝜇

𝑒
𝑥
𝑝
𝑍
) 

𝑃
𝑅
𝐸
(𝜇

𝑒
𝑥
𝑝
Ƶ
) 

0.1 

100 

101.38 

190.82 

195.92 

1158.46 

1376.14 

1162.78 

1380.46 

1254.54 

1504.16 

0.2 101.23 195.34 1348 1352.32 1471.61 

0.3 101.07 194.76 1320.98 1325.3 1440.44 

0.4 100.92 194.19 1295.03 1299.35 1410.57 

0.5 100.76 193.62 1270.08 1274.4 1381.91 

0.6 100.61 193.05 1246.06 1250.39 1354.40 

0.7 100.46 192.49 1222.95 1227.27 1327.97 

0.8 100.30 191.93 1200.67 1204.99 1302.55 

0.9 100.15 191.37 1179.19 1183.51 1278.09 

1 100 190.82 1158.46 1162.78 1254.54 
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Table 5.2: Percent relative efficiencies of various estimators with respect to 𝝁̂𝒀𝒁 with 

𝜶 = 𝟐𝟎% 
W

 

𝑃
𝑅
𝐸
(𝜇
𝑌
𝑍
) 

𝑃
𝑅
𝐸
(𝜇
𝑌
Ƶ
) 

𝑃
𝑅
𝐸
(𝜇
𝑅
𝑍
) 

𝑃
𝑅
𝐸
(𝜇
𝑅
Ƶ
) 

𝑃
𝑅
𝐸
(𝜇
𝑅
𝑒
𝑔
𝑍
) 

𝑃
𝑅
𝐸
(𝜇
𝑅
𝑒
𝑔
Ƶ
) 

𝑃
𝑅
𝐸
(𝜇
𝐺
𝑅
𝑅
𝑍
) 

𝑃
𝑅
𝐸
(𝜇
𝐺
𝑅
𝑅
Ƶ
) 

𝑃
𝑅
𝐸
(𝜇
𝑒
𝑥
𝑝
𝑍
) 

𝑃
𝑅
𝐸
(𝜇
𝑒
𝑥
𝑝
Ƶ
) 

0.1 

100 

105.51 

 

 

183.56 

 

203.03 

 

 

793.04 

 

1353.97 

 

 

797.56 

 

1358.49 

 

 

845.18 

 

1474.77 

0.2 104.87 200.66 1255.32 1259.83 1361.84 

0.3 104.24 198.35 1170.06 1174.58 1265.02 

0.4 103.61 196.1 1095.65 1100.17 1181.08 

0.5 102.99 193.89 1030.14 1034.65 1107.63 

0.6 102.38 191.73 972.015 976.533 1042.8 

0.7 101.77 189.62 920.103 924.62 985.171 

0.8 101.17 187.56 873.454 877.972 933.6 

0.9 100.58 185.54 831.308 835.825 887.179 

1 100 183.56 793.041 797.558 845.175 

Table 5.3: Percent relative efficiencies of various estimators with respect to 𝝁̂𝒀𝒁 with 

𝜶 = 𝟑𝟎% 

W
 

𝑃
𝑅
𝐸
(𝜇
𝑌
𝑍
) 

𝑃
𝑅
𝐸
(𝜇
𝑌
Ƶ
) 

𝑃
𝑅
𝐸
(𝜇
𝑅
𝑍
) 

𝑃
𝑅
𝐸
(𝜇
𝑅
Ƶ
) 

𝑃
𝑅
𝐸
(𝜇
𝑅
𝑒
𝑔
𝑍
) 

𝑃
𝑅
𝐸
(𝜇
𝑅
𝑒
𝑔
Ƶ
) 

𝑃
𝑅
𝐸
(𝜇
𝐺
𝑅
𝑅
𝑍
) 

𝑃
𝑅
𝐸
(𝜇
𝐺
𝑅
𝑅
Ƶ
) 

𝑃
𝑅
𝐸
(𝜇
𝑒
𝑥
𝑝
𝑍
) 

𝑃
𝑅
𝐸
(𝜇
𝑒
𝑥
𝑝
Ƶ
) 

0.1 

100 

112.31 

 

 

173.74 

 

214.6 

 

 

539.92 

 

1322.31 

 

 

544.76 

 

1327.15 

 

 

570.14 

 

1433.22 

0.2 110.79 209.13 1138.93 1143.77 1226.12 

0.3 109.32 203.94 1000.22 1005.06 1071.45 

0.4 107.88 199 891.624 896.469 951.549 

0.5 106.48 194.29 804.301 809.147 855.872 

0.6 105.12 189.8 732.558 737.403 777.753 

0.7 103.79 185.51 672.565 677.41 712.764 

0.8 102.5 181.42 621.654 626.499 657.852 

0.9 101.23 177.49 577.909 582.754 610.841 

1 100 173.74 539.92 544.76 570.14 

 

Population II Source: Sousa et al. (2010) 

𝑁 = 1000,      𝜌𝑦𝑥 = 0.8783,      𝑋̅ = 2,    𝑌̅ = 2,        𝑆𝑥 =2.4495,       𝑆𝑦 =1.4142 and 𝑛 =

50.  
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Table 5.4: Percent relative efficiencies of various estimators with respect to 𝝁̂𝒀𝒁 with 

𝜶 = 𝟏𝟎% 

 

Table 5.5: Percent relative efficiencies of various estimators with respect to 𝝁̂𝒀𝒁 with 

𝜶 = 𝟐𝟎% 

 

W
 𝑃
𝑅
𝐸
(𝜇
𝑌
𝑍
) 

𝑃
𝑅
𝐸
(𝜇
𝑌
Ƶ
) 

𝑃
𝑅
𝐸
(𝜇
𝑅
𝑍
) 

𝑃
𝑅
𝐸
(𝜇
𝑅
Ƶ
) 

𝑃
𝑅
𝐸
(𝜇
𝑅
𝑒
𝑔
𝑍
) 

𝑃
𝑅
𝐸
(𝜇
𝑅
𝑒
𝑔
Ƶ
) 

𝑃
𝑅
𝐸
(𝜇
𝐺
𝑅
𝑅
𝑍
) 

𝑃
𝑅
𝐸
(𝜇
𝐺
𝑅
𝑅
Ƶ
) 

𝑃
𝑅
𝐸
(𝜇
𝑒
𝑥
𝑝
𝑍
) 

𝑃
𝑅
𝐸
(𝜇
𝑒
𝑥
𝑝
Ƶ
) 

0.1 

100 

102.69 

104.3 

 

107.23 

398.31 

 

444.75 

399.32 

 

445.76 

404.26 

 

451.55 

0.2 102.39 106.9 439.07 440.07 445.76 

0.3 102.08 106.57 433.52 434.53 440.11 

0.4 101.78 106.24 428.12 429.12 434.6 

0.5 101.48 105.91 422.84 423.85 429.23 

0.6 101.18 105.58 417.7 418.71 424 

0.7 100.88 105.26 412.68 413.68 418.88 

0.8 100.59 104.94 407.78 408.78 413.89 

0.9 100.29 104.62 402.99 404 409.02 

1 100 104.3 398.31 399.32 404.26 

W
 

𝑃
𝑅
𝐸
(𝜇
𝑌
𝑍
) 

𝑃
𝑅
𝐸
(𝜇
𝑌
Ƶ
) 

𝑃
𝑅
𝐸
(𝜇
𝑅
𝑍
) 

𝑃
𝑅
𝐸
(𝜇
𝑅
Ƶ
) 

𝑃
𝑅
𝐸
(𝜇
𝑅
𝑒
𝑔
𝑍
) 

𝑃
𝑅
𝐸
(𝜇
𝑅
𝑒
𝑔
Ƶ
) 

𝑃
𝑅
𝐸
(𝜇
𝐺
𝑅
𝑅
𝑍
) 

𝑃
𝑅
𝐸
(𝜇
𝐺
𝑅
𝑅
Ƶ
) 

𝑃
𝑅
𝐸
(𝜇
𝑒
𝑥
𝑝
𝑍
) 

𝑃
𝑅
𝐸
(𝜇
𝑒
𝑥
𝑝
Ƶ
) 

0.1 

100 

110.67 

103.94 

 

115.52 

321.29 

 

465.52 

322.39 

 

466.62 

325.93 

 

472.58 

0.2 109.38 114.11 443.41 444.5 450.06 

0.3 108.11 112.73 423.3 424.39 429.59 

0.4 106.87 111.39 404.93 406.03 410.91 

0.5 105.66 110.07 388.09 389.19 393.79 

0.6 104.48 108.79 372.6 373.7 378.04 

0.7 103.32 107.54 358.3 359.39 363.5 

0.8 102.19 106.31 345.05 346.15 350.05 

0.9 101.08 105.11 332.75 333.84 337.56 

1 100 103.94 321.29 322.39 325.93 
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Table 5.6: Percent relative efficiencies of various estimators with respect to 𝝁̂𝒀𝒁 with 

𝜶 = 𝟑𝟎% 
W
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𝑌
𝑍
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𝑃
𝑅
𝐸
(𝜇
𝑌
Ƶ
) 

𝑃
𝑅
𝐸
(𝜇
𝑅
𝑍
) 

𝑃
𝑅
𝐸
(𝜇
𝑅
Ƶ
) 

𝑃
𝑅
𝐸
(𝜇
𝑅
𝑒
𝑔
𝑍
) 

𝑃
𝑅
𝐸
(𝜇
𝑅
𝑒
𝑔
Ƶ
) 

𝑃
𝑅
𝐸
(𝜇
𝐺
𝑅
𝑅
𝑍
) 

𝑃
𝑅
𝐸
(𝜇
𝐺
𝑅
𝑅
Ƶ
) 

𝑃
𝑅
𝐸
(𝜇
𝑒
𝑥
𝑝
𝑍
) 

𝑃
𝑅
𝐸
(𝜇
𝑒
𝑥
𝑝
Ƶ
) 

0.1 

100 

123.66 

103.46 

 

129 

254.72 

 

496.89 

255.96 

 

498.13 

258.46 

 

504.33 

0.2 120.49 125.55 449.42 450.66 456.03 

0.3 117.48 122.29 410.22 411.46 416.19 

0.4 114.62 119.19 377.31 378.56 382.77 

0.5 111.89 116.25 349.29 350.54 354.33 

0.6 109.29 113.44 325.15 326.39 329.83 

0.7 106.81 110.77 304.12 305.37 308.52 

0.8 104.44 108.22 285.65 286.9 289.8 

0.9 102.17 105.79 269.3 270.54 273.23 

1 100 103.46 254.72 255.96 258.46 

 

From the Table 5.1 to Table 5.6, we observe the following facts: 

(i) The percent relative efficiencies of the all estimators with optional RRT decrease as 

the value of 𝑊 increases. 

(ii) The proposed estimator 𝜇̂𝑒𝑥𝑝Ƶ is always more efficient than the various existing 

estimators considered in this paper.  

(iii) It is important to note that various estimators with optional RRT model are always 

more efficient than the corresponding estimator with traditional RRT model. 

(iv) The estimators with optional RRT are equally efficient to their corresponding 

estimators with traditional RRT model only when 𝑊 = 1. (see Remark: 2.1) 

 

6. Conclusion: By applying optional RRT model in the estimator of Koyuncu et al 

(2014), we not only improve the efficiency of estimator suggested by Koyuncu et al 

(2014)  but also obtain an estimator which is more efficient than Gupta et al (2014)’s 

estimators based on optional RRT model.  
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