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Abstract  

This paper examines the potential usefulness of the transmuted modified inverse Weibull distribution. The 

four-parameter model holds eleven lifetime distributions as special cases. Some theoretical properties of the 

transmuted modified inverse Weibull distribution are studied; which includes the quantile, median, entropy, 

mean deviations, mean, geometric mean and harmonic mean. The estimation is obtained by using the method 

of maximum likelihood. An application to real dataset is provided to show the better fit of the transmuted 

modified inverse Weibull distribution. 
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1. Introduction  

In the field of reliability, the well-known inverse Weibull family of distributions has proved 

to be of considerable interest in modeling various mechanism with instantaneous failure 

rates. Elbatal (2013) introduced and studied the transmuted modified inverse Weibull 

distribution and formulated some of its mathematical properties. This paper investigates 

the potential usefulness of the transmuted modified inverse Weibull distribution for 

analyzing survival data.  This paper presents the visualization of the density function and 

instantaneous failure rate function for some selected values of parameters. The subject 

model has the flexibility to approach eleven different lifetime distributions. The quadratic 

rank transmuted map (QRTM) technique was used to develop the transmuted modified 

inverse Weibull distribution in order to generate a flexible lifetime model. Many 

researchers have proposed transmuted family of lifetime distributions by using QRTM 

technique such as: transmuted Weibull distribution by Gokarna el al. (2011), the 

transmuted modified Weibull distribution by Khan and King (2013), the transmuted 

inverse Weibull distribution by Khan, King and Hudson (2014a) and Khan and King 

(2014b), Elbatal el al. (2014) proposed the transmuted exponentiated Frechet distribution 

with Applications and the transmuted G-family of distribution was introduced by 

Bourguignon et al. (2016). This paper focuses on the mathematical properties of the 

transmuted modified inverse Weibull distribution along with its reliability behavior. 

Khan and King (2012) introduced and developed the modified inverse Weibull distribution. 

The random variable has the modified inverse Weibull distribution, if its cumulative 

distribution function (cdf) is given by 

1
( ; , , ) expF t

t t




   
   

= − −  
   

    (1) 

where , 0    are the scale parameters and 0  is the shape parameter. The modified 

inverse Weibull distribution approaches to the modified inverse Rayleigh distribution for  
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2 = . It coincides with the modified inverse exponential distribution for 1 = . A random 

variable T is said to have transmuted distribution if its cumulative distribution function 

(cdf) is given by 

( ) 2( ) 1 ( ) ( ) , 1F t G t G t  = + −      (2) 

and 

( ) ( ) ( ) 1 2 ( ) ,f t g t G t = + −     (3) 

 

where ( )G t is the cdf of the baseline model. Elbatal (2013) introduced the transmuted 

modified inverse Weibull distribution by using the quadratic rank transmutation map 

technique pioneered by Shaw et al. (2009). The article is organized as follows, Section 2 

presents the flexibility of the transmuted modified inverse Weibull distribution and special 

sub-models. Section 3 demonstrates a range of mathematical properties, which includes 

quantile functions, mean deviation, entropy, mean, geometric mean and harmonic mean. 

The maximum likelihood estimates (MLEs) and the asymptotic confidence intervals of the 

unknown parameters are presented in Section 4. In Section 5, a real lifetime dataset is 

analyzed to show the flexibility of the transmuted modified inverse Weibull distribution. 

Finally, some concluding remarks are given in Section 6. 

2.   Transmuted modified Inverse Weibull distribution 

Consider a system with lifetime T follow the transmuted modified inverse Weibull 

distribution with parameters 𝛼, 𝛽, 𝛾 > 0, |𝜆| ≤ 1 and 𝑡 > 0. The probability density 

function is defined as  

  

( )
1 2

1 1 1 1
( ; , , , ) 1 2λ

β β β
α α

f t = α+ βγ exp γ + λ exp γ
t t t t t t

   

−                   
− − − − −             

                   

   (4) 

 

The cumulative distribution function (cdf) for t  is given by 

( )
1 1

( ; , , , ) 1 λ

β β
α α

F t = exp γ + λ exp γ
t t t t

   
          

− − − − −       
           

,                           (5) 

 

where 𝛼 and 𝛾 are the scale parameters and 𝛽 is a shape parameter and λ  is the transmuted 

parameter of the transmuted modified inverse Weibull distribution. If the random variable 

𝑇 has a pdf (4), then it can be denoted as 𝑇~TMIW(𝛼, 𝛽, 𝛾, 𝜆).  The TMIW distribution 

contains several lifetime models which are widely used in reliability theory listed in Table 

1. The flexibility of the transmuted modified inverse Weibull distribution is explained in 

table 1. The reliability function (RF) of the transmuted modified inverse Weibull distribution is 

denoted by 𝑅(t) also known as the survivor function defined as  

 

( )
1 1

( ; , , , ) 1 1 λ

β β
α α

R t = exp γ + λ exp γ
t t t t

   
          

− − − − − −       
           

.                  (6) 

 

The hazard function (HF) of the transmuted modified inverse Weibull distribution also 

known as instantaneous failure rate denoted by ℎ(𝑡) and defined as  
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( )

( )

1 2
1 1 1 1

1 2λ

( ; , , , ) .
1 1

1 1 λ

β β β

β β

α α
α+ βγ exp γ + λ exp γ

t t t t t t
h t =

α α
exp γ + λ exp γ

t t t t

   

−                   
− − − − −             

                   

          
− − − − − −       

           

        (7) 

The reversed hazard function is quite popular in distribution theory. The reversed hazard 

function for the transmuted modified inverse Weibull distribution also known as failure 

rate denoted by 𝑟(𝑡) defined as  

( )

( )

1 2
1 1 1

1 2λ

( ; , , , ) .
1

1 λ

β β

β

α
α+ βγ + λ exp γ

t t t t
r t =

α
+ λ exp γ

t t

   

−             
− − −         

             

    
− − −   

     

                      (8) 

 

Table 1:  Transmuted modified inverse Weibull sub-models 

S. No Distribution TMIW  

          

1 TMIE   1     

2 TMIR    2     

3 MIW        0 

4 MIR    2   0 

5 MIE    1   0 

6 TIW  0       

7 TIR  0 2     

8 TIE  0 1     

9 IW  0     0 

10 IR  0 2   0 

11 IE  0 1   0 
Note: T, Transmuted; M, Modified; I, Inverse; W, Weibull; E, Exponential; R, Rayleigh 

 

The TMIW distribution includes as special cases: the transmuted modified Inverse 

exponential, transmuted modified Inverse Rayleigh, Modified Inverse Weibull, Modified 

Inverse Rayleigh and Modified Inverse exponential distributions. Fig. 1 shows the 

transmuted modified inverse Weibull pdf for some selected values of parameters. The 

Cumulative hazard function (CHF) of the transmuted modified inverse Weibull distribution 

is denoted by 𝐻(𝑡) defined as  
 

( )
1 1

( ; , , , ) ln 1 λ .

β β
α α

H t = exp γ + λ exp γ
t t t t

   
          

− − − − − −       
           

              (9) 

 

Fig. 2 shows the hazard function of the TMIW distribution for some selected choice of 

parameters. It is seen that the TMIW distribution has upside down bathtub shaped 

instantaneous failure rate pattern. 
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Figure 1: Transmuted modified inverse Weibull pdf 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Transmuted modified inverse Weibull hazard function 
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3. Statistical Properties 

 

 This section explains some basic statistical properties of the TMIW(𝛼, 𝛽, 𝛾, 𝜆) 

distribution, such as quantile and median, mean, geometric mean, harmonic mean, mean 

deviations and Rényi entropy. 

 

3.1 Quantile and median 

 

The quantile 𝑡𝑞 of the TMIW(𝛼, 𝛽, 𝛾, 𝜆) is the real solution of the following equation 

2

1 2λ
ln 0.

1 1 4λ 1

β

q q

α
γ + + =

t t ( + λ) ( + λ) ( q)

  
  

   − − −   

                       (10) 

The above equation (10) has no closed form solution in 𝑡𝑞, so we have different cases by 

substituting the parametric values in the above quantile equation. The q-th quantile of the 

TMIR(𝛼, 𝛾, 𝜆) can be obtained by substituting 𝛽 = 2 

 

( ) ( ) ( )

2

2

2γ
.

2λ
4 γ ln

1 1 4λ 1

qt =

α+ α
+ λ + λ q

 
 − −
 

− − − 

 

By substituting q= 0.5  in equation (10), we obtain the median of the TMIW(𝛼, 𝛽, 𝛾, 𝜆). 

The median life of the transmuted modified inverse Weibull distribution is the 50th 

percentile. In practical this is the life by which 50% of the units will be expected to have 

failed and therefore it is the life at which 50% of the units would be expected to still survive.  

 

3.2 Mean Deviations   
          

The degree of scatter in a population is widely measured by the totality of deviations from 

the mean and median. If 𝑇 has the transmuted modified inverse Weibull distribution, then 

the mean deviation about mean 𝜇 = 𝐸(𝑇) and about the median M can be obtained from 

the following equations  

 )()(1  −= F ,       )(22 M −=                                     (11) 

The mean 𝜇 = 𝐸(𝑇) is obtained from equation (11) and the median M is the solution of the 

non-linear equation, where 𝜓(𝑎) can be obtained as 

( )
1 ( 1)

0 0

( 1) ( 1, ) ( 1) ( ( 1), )
( ) 1 2

! !

i i i i i i

i i

i a i a
a

i i

        
  

− + − + 

= =

 − + − +
= + + − 

 
   
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( ) ( )1 1 11 ( 1)

0 0

( 1) 2 ( 1, ) ( 1) 2 ( ( 1), )

! !

i i ii i i i i i

i i

i a i a

i i

         
− − − − + +− + − + 

= =

 − + − +
+ 

 
   (12) 

where ( ) dwewt
t w
=

−−

0

1,   for ( )0  is the incomplete gamma function. Hence, the 

measure in equation (11) can be obtained from equation (12). The quantity 𝜓(𝑎) can also 

be used to find Bonferroni and Lorenz curves which have applications in econometrics and 

finance. They are given by 

( )




p

q
PB

)(
= ,           ( )



 )(q
PL =  

where ( )PQq =  is calculated from equation (5) for a given probability 𝑃. 

 

 3.3 Entropy 

 

 The entropy of a random variable T with density f (t) is a measure of variation of 

the uncertainty. A large value of the entropy shows the greater uncertainty in the data. The 

Rényi entropy is defined as 

 1
( ) log ( )

1
RI f t dt


=

−   

where 0 and 1 . The integral in )(RI  of the TMIWD(𝑡, 𝛼, 𝛽, 𝛾, 𝜆) can be defined as 

( ) 
 −

−+



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


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Finally the above integral reduces to 
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
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Therefore, the Rényi entropy of 𝑇 can be expressed by 
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( )
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2

1
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i k i

k kj i k i
j

 
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 
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 +  + + − +     +  

 (13)  

3.4 Mean, Geometric mean and harmonic mean 

 

For a random variable 𝑇 with density (4) for the TMIW distribution then it can be 

formulated for mean as follows 

 

( ) ( )
1 2

0

1 1 1 1
1 2λ

β β β
α α
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The above expression reduces to 
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the above integral simplified to 
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the above integral reduces to the first moment of the TMIW distribution 
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For non-negative random variable 𝑇 with density (4) for the TMIW distribution could be 

formulated geometric mean as follows 

 

( ) ( )
1 2

0

1 1 1 1
log 1 2λ

β β β
α α

G = t α+ βγ exp γ + λ exp γ dt
t t t t t t

−                   
− − − − −             

                   


. 

The above expression reduces to 
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( ) ( ) ( )
2 1

0 0

1 1 1 1
1 log log

β β
α α

G = + λ α t exp γ dt βγ t exp γ dt
t t t t t t

 +               
− − + − −           

               
 

 

( ) ( )
2 1

0 0

1 2 1 1 2 1
2 log 2 log 2

β β
α α

α t exp γ dt βγ t exp γ dt
t t t t t t





+               
− − − + − −           

               
 

. 

By solving the exponent, the above integral reduces to   

 

( )
( )

( )
( )

( ) ( )1 12

0 00 0

1 1
1 log log

! !

i ii i

ii

i i

α α
G = + λ α t t exp dt βγ t t exp dt

i t i t

   
− + −− −

= =

 − −   
− + −    
     

  
 

( )
( )

( )
( ) ( )1 12

0 00 0

2 22 2
2 log log

! !

i ii i

ii

i i

α α
α t t exp dt βγ t t exp dt

i t i t

 


  
− + −− −

= =

 − −   
− − + −    

     
  

. 

By using the 𝑛𝑡ℎ order derivative of gamma function is given by 

( )
( )

( ) ( ) ( )( )
( )

( ) ( )( ) ( )( )1 23

0 0

1 1
1 log 1 log 1

! !

i ii i
ii

i i

G = + λ α βγ
i i

 
 

 
− + −− −

= =

 − −
+ + + 

  
   

( )
( ) ( ) ( )( )

( )
( ) ( )( ) ( )( )1 23

0 0

2 2
2 log 2 1 log 2 1

! !

i ii i
ii

i i

α βγ
i i

 
  

 
− + −− −

= =

 − −
− + + + 

  
  . (15) 

For a random variable 𝑇 with density (4) for the TMIW distribution then it can be 

formulated for harmonic mean as follows 

( )
1 2

0

1 1 1 1 1 1
1 2λ

β β β
α α

= α+ βγ exp γ + λ exp γ dt
H t t t t t t t

−                   
− − − − −             

                   


 

The above expression reduces to 

( )
3 2

0 0

1 1 1 1 1
1

β β
α α

= + λ α exp γ dt βγ exp γ dt
H t t t t t t

 +               
− − + − −           

               
 

 

3 2

0 0

1 2 1 1 2 1
2 2 2

β β
α α

α exp γ dt βγ exp γ dt
t t t t t t





+               
− − − + − −           

               
 

 

By solving the exponent, the above integral simplified to 

( )
( ) ( ) ( )1 23

0 00 0

1 11
1

! !

i ii i

ii
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α α
= + λ α t exp dt βγ t exp dt

H i t i t

   
− + −− −

= =

 − −   
− + −    
     

  
 

( ) ( ) ( )1 23

0 00 0

2 22 2
2

! !

i ii i

ii

i i

α α
α t exp dt βγ t exp dt

i t i t

 


  
− + −− −

= =

 − −   
− − + −    

     
  

. 

Finally, the above integral simplified to harmonic mean as 

( )
( )

( ) ( ) ( )
( )( )1 12

0 0

1 11
1 2 1 1

! !

i ii i

ii

i i

= + λ α i α βγ i
H i i

  
 

 
− + −− −

= =

 − −
 + +  + + 

  
   
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( )
( )

( )

( )

( )
( )( )

1 11

2 1 1
0 0

2 2
2 2 1 1

2 ! !2

i ii iii

i i
i i

α α
i βγ i

i i



 

 
  

− + −− −  

+ + +
= =

 − −
−  + +  + + 

  
  .   (16) 

 

One can easily compute these integrals numerically in software such as R and SAS 

languages to obtain the mean, geometric mean and harmonic mean.    

         

4. Maximum Likelihood Estimation 
      

Consider the random samples nt,t,t ......21 consisting of n observations from the transmuted 

modified Inverse Weibull distribution. Then from (4), the log-likelihood function is given 

by 

( )
1

1 1 1 1 1

1 1 1 1 1
ln ln 2 ln ln 1 2λ

β β β
n n n n n

i= i= i= i= i=i i i i i i

α
L = α+ βγ + α γ + +λ exp γ

t t t t t t

−                  − − − − −            
                 

          

(17) 

By differentiating ln L with respect to γβ,α,  and λ , the likelihood equations are obtained 

as follows 

1
1 1 1

1 1
2λ

ln 1 1
0

1 1
1 2λ

β

n n n
i i i

β β
i= i= i=i

i i i

α
exp γ

t t tL
= + =

α t
α

α+ βγ ( + λ) exp γ
t t t

−

  
 − −  
     −  

         
    − − −              

  
      (18)                            

1

1
1 1

1 1 1 1 1
ln 1 2 exp ln

ln 1 1
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1 1
1 2λexp

β β β

β
n

i i i i i i

β β
i= i=i i

i i i

α
γ β + λγ γ

t t t t t tL
= γ +

β t t
α

α+ βγ ( + λ) γ
t t t

−

−

             
   − −                               −    

           
    − − −              


1

0
n n

i=

= 
   (19)                   

  

1

1
1 1 1

1 11 2λ exp

ln 1
0

1 1
1 2λexp

β β
β

β
n n n

i i i
i

β β
i= i= i=i

i i i

α
γβ

t t ttL
= + =

γ t
α

α+ βγ ( + λ) γ
t t t

−

−

       − −               −  
         

    − − −              

     (20)                      

1

1
1 2 exp

ln
0

1
1 2λexp

β

n
i i

β
i=

i i

α
γ

t tL
= =

α
( + λ) γ

t t



  
 − − −  
    

    
  − − −  

     

                                                           (21) 
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By solving equations (18), (19), (20) and (21), these solutions will yield the ML estimators 

γ,β,α ˆˆˆ  and λ̂ . These equations can be solved through numerical iterative method by using 

the R package (2013). For the transmuted modified inverse Weibull distribution pdf all the 

second order derivatives are exist. Thus, the observed information matrix is 

2 2 2 2

2

2 2 2 2

2

1

2 2 2 2

2

2 2 2 2

2

ln ln ln ln

ln ln ln ln

ln ln ln ln

ln ln ln ln

L L L L

L L L L

V E
L L L L

L L L L

      

      

      

      

−

    
 
       

    
 
       

= −
    
 
       

 
    

        

                                      (22) 

By solving this observed information matrix, these solutions will yield the asymptotic 

variance and co-variances of these ML estimators for γ,β,α ˆˆˆ  and λ̂ .  By using (22), 

approximately the 100 1 %( )− approximate confidence intervals for the parameters λγ,β,α,  

can be determined as 

/2 11
ˆα̂ ± Z V , /2 22

ˆ ˆβ ± Z V ,  /2 33
ˆγ̂ ± Z V , /2 44

ˆ ˆλ± Z V               (23) 

where /2Z  is the upper th  percentile of the standard normal distribution. 

 

5. Data Analysis 

 

This section provides the data analysis to assess the goodness-of-fit of the TMIW 

distribution with respect to survival remission times (in months) of bladder cancer data to 

see how the subject model works in practice. The data have been obtained from Lee and 

Wang (2003, p. 231): 0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 4.98, 

6.97, 9.02, 13.29, 0.40, 2.26, 3.57, 5.06,7.09, 9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 

7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 2.62, 3.82, 

5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39, 10.34, 14.83, 34.26, 0.90, 2.69, 4.18, 

5.34, 7.59, 10.66, 15.96, 36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 

4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 5.49, 7.66, 11.25, 17.14, 1.35, 2.87, 5.62, 

7.87, 11.64, 17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 11.79, 18.10, 1.46, 4.40, 5.85, 8.26, 11.98, 

19.13, 1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 

3.36, 6.76, 12.07, 21.73, 2.07, 3.36, 6.93, 8.65, 12.63, 22.69. 

 

Table 2: MLEs of the Parameters for the TMIW, MIW, MIR, TIR and TIE models  

                for bladder cancer data set. 

 

Model 

MLE of the Parameters  AIC 

 

BIC 

̂  ̂  ̂  ̂  

TMIW 0.0168 

(0.7531) 

0.7562 

(0.0477) 

2.4179 

(0.5807) 

0.0011 

(0.4188) 

881.69 893.07 

MIW 

 

MIR 

2.4659 

(0.2188) 

2.4660 

(0.2307) 

1.5692 

(1.2335) 

- 

 

0.0079 

(2.0208) 

0.0062 

(0.0902) 

- 

 

- 

911.03 

 

909.04 

919.56 

 

914.72 
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TIR 

 

TIE 

- 

 

- 

- 

 

- 

0.6125 

(0.0546) 

2.4659 

(0.4323) 

0.0002 

(0.0970) 

0.0013 

(0.3232) 

1526.87 

 

909.05 

1532.56 

 

914.75 

 
Figure 3:  Histogram of the data verses fitted models 

 

The MLEs of the unknown parameters are obtained for these models namely: Transmuted 

modified Inverse Weibull (TMIW), Modified Inverse Weibull (MIW), Modified Inverse 

Rayleigh (MIR)  Transmuted Inverse Rayleigh (TIR) and Transmuted Inverse Exponential 

(TIE) distributions and results are displayed in Table 2. The MLEs of the parameters with 

their corresponding standard errors are given in parenthesis with their corresponding the 

Akaike information criteria (AIC) and Bayesian information criterion (BIC) for the fitted 

models are given in Table 2. To compare the TMIW distribution with other four lifetime 

distributions, I also consider the K-S test, Cramérvon Mises, and Anderson-Darling 

goodness-of-fit statistics displayed in Table 3.  According to these goodness of-fit tests in 

table 3 shows that the TMIW distribution gives a better fit than the other four distributions 

for bladder cancer data. 

Table 3: The Cramér-von Mises and Anderson-Darling goodness of-fit tests 

Model K-S test 𝒲 𝒜 

TMIW 0.1451 0.7774 4.7671 

MIW 0.2320 1.1446 6.8039 

MIR 0.2319 1.1445 6.8038 

TIR 0.7503 2.4112 13.4168 

TIE 0.2322 1.1446 6.8049 
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Using the maximum likelihood estimates of the unknown parameters, the approximately 

95% two-sided confidence interval for the parameters displayed in Table 4. Hence the data 

points from the transmuted modified Inverse Weibull (TMIW) has better relationship with 

remission times of bladder cancer data and could be an appropriate model for fitting 

survival data. 
 

Table 4: Estimated Parameters of the TMIW distribution with 95% confidence 

interval  

   95% Confidence Interval 

Parameter ML estimate Standard error          Lower                  Upper 

𝛼 0.0168 0.7531 -1.4736 1.5072 

𝛽 0.7562 0.0477 0.6618 0.8506 

𝛾 2.4179 0.5807 1.2687 3.5671 

𝜆 0.0011 0.4188 -0.8277 0.8299 

 

 

6. Conclusion 
 

This paper studied the transmuted modified inverse Weibull distribution and formulated 

some of its theoretical properties. It is seen that the TMIW distribution has several desirable 

properties and numerous existing well-known distributions. From the instantaneous failure 

rate analysis, it is seen that it has increasing and decreasing failure rate pattern for lifetime 

data. From data analysis it concludes that the TMIW distribution yields an improved fit 

than the other four lifetime distributions. 
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