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Abstract

In this paper, we introduce the new biased estimator to deal with the problem of multicollinearity. This
estimator is considered a modification of Two-Parameter Ridge-Liu estimator based on ridge estimation.
Furthermore, the superiority of the new estimator than Ridge, Liu and Two-Parameter Ridge-Liu estimator
were discussed. We used the mean squared error matrix (MSEM) criterion to verify the superiority of the
new estimate. In addition to, we illustrated the performance of the new estimator at several factors through
the simulation study.
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Introduction

The problem of multicollinearity is one of the problems that have preoccupied the
statisticians for a long time. Many studies have been interested in how to overcome this
problem in linear regression models, and was based primarily on ability to overcome the ill
condition that appears in mean squared error method. In literature, a set of biased estimators
has been proposed to overcome this problem. Horal and Kennard (1970) suggested a ridge
estimator which depends on a small constant value known as ridge parameter which adding
to the diagonal values of the matrix (X"X) to overcome the ill condition. In the same context,
Liu (1993) introduce Liu estimator which it is a combination ridge and stein estimator which
proposed by Stein (1956). Actually, the value of the ridge parameter may not be large enough
to overcome the multicollinearity problem. Therefore, Liu (2003) suggested Liu-type
estimator which has two parameters, so that the increase in one parameter can be limited by
the other. There is a series of studies had been directed at improving Liu and Liu-type
estimators. Yalian and Yang (2012) modified Liu estimator with prior information for the
vector of parameters. Ozkale and Kaciranlar (2007) introduced two-parameter Ridge-Liu
estimator that is superior to the Liu-type estimator through the mean square error matrix
criteria. Sadullah and Selahattin, (2008), Yang H. and Chang, X. (2010) suggested a new
biased estimator that makes Liu estimator based on ridge estimation. Jibo, (2014) proposed
unbiased two parameter estimator based on prior information.
In this paper, we introduce a new biased estimator that make two parameter Ridge-Liu
estimator based on ridge estimation and we show that the new biased estimator is superiority
to ridge, Liu and two-parameter Ridge-Liu estimator and we use the simulation study to
explain the theoretical results.

1. Background:

Consider the linear regression model
Y=XB+¢ 1)
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Where Y represents an n X 1 observation of response vector, X represents an knownn X p
design matrix of rank p, S represents an p X 1 vector of unknown parameters and eisn X 1
of random error with E(g) = 0,,; vector and E(ee) =X = o?l, is nxn variance
covariance matrix for errors. The ordinary least squares estimator (OLS) of model (1) is
given by

Bors = X'X)'XY ()

This estimator is the best unbiased estimator. However, the existence of the problem of
multicollinearity makes this estimator have large least squares error. To overcome the
multicollinearity problem, Hoerl and Kennard (1970) introduced the ridge estimator (RE)
that has a lower mean squares error than the (OLS) estimator and it is given by
Bre(k) = (XX + kD' XY 3
Where k > 0 is ridge biasing parameter.
Liu (1993) introduced the biased estimator which is known as Liu estimator (LE) and that
has been obtained by combining the stein estimator which is introduced by Stein (1956) and
the RE and it is defined by
Bre(d) = XX +DHXY + dBoss) 4)
Where 0 < d < 1 is Liu biasing parameter.
This estimator get by augmenting the equation df,.s = B + € to the model in (1) and then
using the ordinary least squares method.
Liu (2003) introduced Liu-type estimator that improve the Liu estimator, since it has two
parameters, by augmenting the equation (—d/kl/Z)BOLS = B + € to the model in (1) and
then using the ordinary least squares method and is given by

Bk, d) = (XX + kl)_l(X'Y + dﬁoLs) (5)
Sadullah and Selahattin, (2008) suggested a new biased estimator
Brrs(k,d) = (XX + 17 (XY + dPre (i) (6)

by augmenting the equation (—d/k/?)Bgg(k) = k1/?B + € to the model in (1) and then
using the ordinary least squares method . This estimator has superior to ridge and Liu-
estimator. Yang H. and Chang, X.(2010) proposed another form of the new Liu biased
estimator which defined as

Bre(k,d) = (X’X + D' (X'X + dD(X'X + kD™'X'Y (7
Ozkale and Kaciranlar (2007) introduced two parameter ridge-Liu estimator. This estimator
is augmenting the equation (dk*/2)BoLs = kB + € to the model in (1) and then using the
ordinary least squares method and is given by

Brie(kd) = (XX + kD™H(X'Y + kdBoys) (8)

2. The new biased Two-Parameter Ridge-Liu Estimator:

We can improve the two parameter ridge-Liu estimator in (8) by augmenting the
equation (dk/2)Brg(k) = kB + € to the model in (1) and then using the ordinary least
squares method, we can get the new estimator as

Breee(k, d) = (XX + kD)™ (X,Y + kdBRE(k)) )
Where 0 <d <1,k >0 andBgrz(k) = (XX + kD1X'Y.
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The new biased estimator has more advantage than two-parameter Ridge-Liu estimator and
at the same time includes the features in OLS estimator, ridge estimator and Liu estimator.
We can illustrate the special cases of the new estimator as following:

,BETRLE(k, 0) = @RE (k)
ﬁTlRLE(lr d) = ﬁLAE(d)
BrrLe 0,1) = BoLs

Let Q and A are eigenvector and eigenvalues of X’X and Z'Z = Q’X’XQ = A = diag
(A4, Ay, .o, Ap) wWhere Ay = A, =+ =>2Ap >0 then we can rewrite the model in (1) in
canonical form

Y=Za+¢ (10)
Where: Z = XQ, a = Q’f. Accordingly, the estimators are re-represented as
&OLS = A_lz,Y (ll)
Arp(k) = (A+ kD™Z’Y = H,Y (12)
Gre(kd) = (A+D7Y(ZY + dage (k) (13)

=A+DYA+ (d+ k)Dage(k)
=A+DT A+ @+ KDA+EKDZY
= H,Y
Arie(k,d) = (A+ kD™Y(Z'Y + kd@y.s) (14)
= A+ kDA + kd)@g.s
=A+kDYA+kd)AIZY = HyY
Qrrie(k d) = (A+ kD)™Y(Z'Y + kda@gg (K)) (15)
= A+ kD 1A @y g + kd(A + kD) tage (k)
=[(A+ kDt +kd(A+kD)2|ZY
=[D;' + kdD;?|1Z’Y =H,Y
Where: Dt = (A+ kI)™1
3. Superiority for the new biased Two-Parameter Ridge-Liu Estimator:

In this section, we use the mean squared error matrix (MSEM) criteria to illustrate
the superiority of the new bias estimators to other estimators.

MSEM(B) = Var(B) + Bias(B)Bias(B)’
Where Var(B) = E [(B - E(B)) (G — E(G)) ] is denote the dispersion matrix and
Bias(B) = E(B) — B is bias vector. In fact, for any two estimator B, B,, iff MSEM(B, ) —
MSEM( B,) = 0, we can say that the 3, is superior to B, in MSEM criteria.
As follows, we illustrate the superiority of the new bias estimator to the @z (K) , @ zrg (K, d)
and By, (k d) estimators. The following lemma can be help.
Lemma (1) : (Trenkler,1980) Let Bj = Ajy,j = 1,2 be two homogenous linear estimators
of B, such that D = Var(B;) — Var(B;) is p.d If Bias(B,)’ D 'Bias(B,) < ¢?, then
MSEM(B,) — MSEM(B,) is P.d.
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Lemma (2) :( Rao et al, 2008) Let N>0, M>0, then N>M, iff A,,,(MN™1) < 1.
We illustrate the superiority of the new bias estimators @;z.g(k,d) to @zg (k)

The expected value, the bias and MSEM for @,z (k,d) estimator and @zg(k) estimators
are given at following:

E[ @rrie(k, d)] = D' AE[@pLs] + kdDg 'E[@gg (k)]
= (A + (k + kd)DAD; *a

Bias[@rgr(k, d)] = (A + (k + kd)DAD; *a — a
- ((AZ + 2kA + k2I) — k2 — D + kdA — kA)Dk‘Za
= —(k?I — (d + 1)kA)D; %ax
Var(@rp.p(k, d)) = 0%[Di* + kdDi *]A[D;* + kdDi %]
= 02D (I — kdD;)(I + kdD;1)? (16)
MSEM(@rp.z(k d)) = 02D *(I — kdD)(I + kdDi*)? +
(k21 — (d + DkA)D; ?aa’ D2 (k2 — (d + 1)kA)
= 02D *(I — kdDiV)(I + kdDi*)? +
(k21 — (d + 1)kA) D 2aa’ D2 (k21 — (d + 1)kA) =H (17)
And  SMSEM (&g, (k,d)) = tr (MSEM(&TRLE(k, d))) = YP_H,

Azi lxi[1 FdkQy + K (k% — dk — kxi)zl

LT rw? Qi+ R
_ 622”: IO+ k) + dk]? a2k — dkd; — k2)?)
A + k)* A + k)*

_ 622”: A+ k(d + D2 a2(k% — dikd; — kA)?)
A + k)* A + k)*

_ 622”: Al + k(d + D2 + a2 (k% — dikd; — kA)?]
(A + k)*
Where «a; isithelementof Q°f,i =1,2,...p.
We can write (17) as the following form
MSEM(@rg.e(k d)) = 02D (I — kdDg*)(I + kdDiH)? +
(k21 = (d + DkA)D;?aa’ D (k21 — (d + 1)kA)’ (18)
Elags (k)] = Dk_lAa
Bias[@grg (k)] = —kD;;*a
Var(@gg(k)) = oD *ADY
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= 02D Y(A + kI — kI)D;
=02(I — kD;')D;;t (19)
Then:
MSEM(@gg(k)) = 02D *AD;* + k%D oo’ DY (20)
Using (16) and (19), we get the difference as
D, =Var(@gg(k)) — Var(@rg.s(k,d))
=o?[(I — kDyY)D;t — D (I — kdD; ) (I + kdD; 1)?]
= o?[(Dg' — kD ?) — (D = kdDg*)(I + kdDiH)?]
= 02Dt — kD;?)[I — (I + kdD;*)?]
= 0%(Di* — kD *)[2kdD;;* + k?d?D;?]
= 02D *AD; Y [2kdD;t + k?d? Dy ?] (21)
Since [2kdDg* + k*d?*Di?] > 0 and D, > 0 then for lemma 1, MSEM(&gg(k)) —
MSEM(@rg.z(k d)) is P.d if
o D2 (k?1 = (d + 1)kA) | D *AD;V [2kd Dt + kzdsz‘Z]]_l(kZI — (d + DkA)D2a
< o2
Theorem (1): Let Gj = Ajy,j = 1,2 be two homogenous linear estimators of 8, such that
D = Var(@gg(k)) — Var(@rgz(k, d)) is p.d If a’D?(k? — (d +
1)kA)'[D,;1AD,;1'[2de,;1 + kdeDk‘Z]]_l(kZI — (d+ DkA)D%a < o2 , then 4 =
MSEM(@gg(k)) — MSEM(@rg .z (k,d)) is P.d.

We illustrate the superiority of the new bias estimators @rg.g(k,d) to @ ze(k, d)

(Sadullah and Selahattin, (2008)) got theE[ @, rz(k, d)], Bias[@ g (k, d)],
Var(@,gg(k,d)) and MSEM(@&,zg(k,d)) as the following equation
El@rekd)] =AW+ D ((A+dDA+ kD™ + k(A + kD)) Aa
Bias[@rg(k )] = ((A+ D XA +dDA+ kD™ +k(A+ D XA+ kD™ )A - I)a
= (F;:A — Da
Where Fi; = (A+ DA +dDA+ kD +k(A+ DA+ kD1

Var(@ge(k d))
=d?((A+ D YA+ kD YA+ dD)
+k(A+dD YA+ ED ™) AN+ DA+ kDA + dI)
+k(A+dD7 YA+ kDY)

=A+D YU +dDH) AU +dDY) (A+ 1)1
= 02F3 AF3, (22)
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Then:
MSEM(@,zg(k,d)) = 0%F; AF;" + (F3A — Daa’(FsA — 1)’

Using (16) and (22), we get the difference as
D, = Var(@,zg(k,d)) — Var(@rp,s(k, d))

= 02F; AFy’ — 02F,AF,’

= 02[(A + DA +dDgY) AU+ dDgY) (A+ D7t — [Dt + kdDi 2]A[Dt +
kdDi?]|

=a2[(A+ DU +dD;D) (A+ kI — kDI +dDY) (A+ D™ =D (I -
kdD;?)(I + kdD;1)?]

=o?[(A+ D A+ kI +dl) —k(I+dD)]U +dDY) (A+ 1)1 —
Di;*(I — kdDi*)(I + kdD;*)?]

=o?[(A+ D YA+ dI) —dkDY (I +dD;Y) (A+ D™t =Dt —
kdD;*)(I + kdD;1)?]

=o?[(A+ D7YAU + dD;Y) + d(I — kD) +dD; D] (A+ D71 —
D; (I — kdDi;*)(I + kdD;1)?]

Since [(A + DA + dD;Y) + d(I — kDY) + dD )] (A+ 1)1 > 0 and
D;*(I — kdD;*)(I + kdD;*)? > 0 then by lemma (2) iff Ayl D —
kdD;*)(I + kdDi V)?[(A+ DA + dD;Y) + d(I — kD) + dD M) (A +
D™ < 1then (A+ D7HAU +dDY) +d(I — kD) +dD D] (A+ 1)1 —
DI — kdDg®)(I + kdDi*)? = 0 ,then by lemma (1) A,= MSEM(@,zz(k,d)) —
MSEM(@rpoe(k,d)) is P.d.

Theorem (2): Iff Apax[ D (I — kdD;?)(I + kdDi;)?[(A + DA + dDit) +
d(I — kD) +dD D] (A+ D717 < 1, the @rg g (k, d) estimator is superior to the
a,re(k, d) estimator.
We illustrate the superiority of the new bias estimators @;g.z(k,d) to @ z(k, d)
E[&TLE(kI d)] = (A + kl)_l(A + de)O(
Bias[@r,g(k,d)] = Dél[(d — Dkl]a

Var(@r.z(k,d)) = 0D *(A+ kd)A"*(A+ kd)Dg*  (23)

Then:

MSEM (@7 (k d))
= 02D Y(A + kd)A™1(A + kdI) Dt
+ D [(d — DkI]aa’[(d — 1)kI]'D;t

Using (16) and (23), we get the difference as
D; = Var(&TLE(k; d)) - Var(&TRLE (k, d))
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= 02D '(A+ kdDA Y (A + kd) D' — [Di ! + kdDi *]A[D;* + kd Dy ]
= aZD,;l[(A + kdDA™ (A + kdl) — [I + kdD7Y]A[I + de,;l]]D,;l
= 02D [(A + kDI + kdA™ ) (A + kdD) (A + kD) — [(A + kI) + kdI]A[(A + kD) +
kdI]| Dy
= g2D;2 [(A + kD((A + kdI) + kdA~ (A + kdI))(A + kI) — [(A+ kD) +
kdIA[(A + kI) + kdl]] D;2

= 92D} [(A + kD (A + kdl) + k2d? A1 + kdl)(A + kI) — [(A+ kD) +
kdI)A[(A + KI) + kdI]| D2

= 02D [(A+ kD)((A + kdl) + kd (I + kdA™)) (A + kI) — [(A + kI) +
kdIA[(A + kI) + kdl]] D;2
= 2D ?[(A+ kD) (A + kdD) (A + kD) + kd(A + kDI + kdA™Y) (A + kI) —
[(A+ kDA + kdA][(A + kI) + kdI]| D2

= 2D *[(A + kI)(A + kdD) (A + kI) + kd(A+ kDI + kdA™Y) (A + kI) —
(A+ kDA(A + kI) — kdA(A + kI) — kdA(A + kI) — k*d?A]D;?

= 02D 2[(A+ kD)(A+ kdD) (A + kI) + kd(A+ kDI + kdA™Y) (A + kI) —
(A + kDA + kI) — 2kdA(A + kI) — k?d?A]D;?

= 02D 2[(A+ kD)(A+ kdD) (A + kI) + k2d*(A+ kDA (A + k) + kd(A+ kI)(A +
kD) — (A + kDA(A + kI) — 2kd (A + kDDA — k?d?A]D;?

=02D 2[(A+ kD) (A + kdD)(A + kI) + k2d?(1+ KA (A + kI) + kd(A + kD (A +
kD) — (A + kDA(A + kI) — 2kd (A + kDDA — k?d?A]D;?

= 02D 2[(A+ kD)(A+ kdD) (A + kI) + k2d?(A + kI) + k3d2A~1(A + ki) +
kd(A+ kD (A + kI) — (A + kDAA + kI) — 2kd(A + kI)A — k2d?A]D;?

= 02D 2[(A+ kDAA + kI) + kd(A + kD) (A + kI) + k?d?(A + kI) +
K3d2A~Y(A+ k) + kd(A+ kD(A+ kI) — (A + kKDA(A + kI) — 2kd (A + kDA —
k?d?A]D;?

= 02D *[kd(A + kDA + k2d(A + kI) + k?d?(A + kI) + k3d?A~1(A + kI)
+ kd(A+ kDA + k2d(A+ kI) — 2kd(A + kI)A — k?d?A]D; ?

= 02D ?[k?dA + k3dI + k?d?A + k3d?1 + k3d?] + k*d?A~Y + k?dA + k3dI
— k2d%A]D;?

= 02D ?[2k?dA + 2k3dl + 2k3d?1 + k*d? A D ?
Since [2k2dA + 2k3dI + 2k3d?I + k*d?A~1] > 0 then D; > 0 and for lemma 1,
MSEM(@ kg (k, d))-MSEM(@7g.z(k d)) > 0

Theorem (3): Let Bj = Ajy,j = 1,2 be two homogenous linear estimators of B, such that
D= Var(&LRE(k, d)) — Var(&TRLE(k, d)) isp.dIf
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Bias(@rg.g (k d))' D™ 'Bias(@rg.z(k d)) < 02, then 4 = MSEM(@ e (k, d))-
MSEM(@rg.z(k d)) is P.d.
2. Choicefordandk :

For chose the optimal shrinking parameter (d), we differentiating the trace mean squared

error matrix TMSEM(&TRLE (k, d)) with respect to d and equating the result to zero and then

we can get the optimal estimators for shrinking parameter (d) as the following:

OTMSEM (&g, (k,d))
ad

p
= 207 [Z (kXA + k(d + D]] - 2 ka2, (k2 — dk; — k)
i=1 i=1

=0

M-s

[k}\-[A- +k(d + 1)]] |k3a,"%; — k2da "2 - K?a?22] = 0

gl

i=1

14
[dkz;\ + kA2 + k2] z [k2ah - dk2a2 — K2a23?] = 0

N

i=1
14
dz [kzk + kzal iz] - Z [k3ai27\i — k2a?\* = kA® - kz)‘i] =0
p l=12 2,2 2 2
iPaa - k2?2 - ka® — k2]

d . -
opt P [k22 + k2a;* 2%

3, k20,2 — ka2 = 27 = kay|
opt = Zle[k[l + Ofizlli]]

(24)

We chose the k parameter which minimize the Generalized Cross Validation (GCV):
n (Y. —7Z.8)>
GCV (k) = =i~ Zi0) > (25)
(1 — n‘ltr(hi(k))>
Where tr(h(k)) is trace for hat matrix h(k) = Z'(A+ kI)Z.

3. The simulation study:

This section conducts a simulation study to compare the performance of the two-parameter
ridge-Liu estimator (’o‘cTRLE(k, d)) with other estimators. To generate the explanatory
variable with deferent degrees of collinearity, we follow (Liu, 2003) who use the following
equation

xij = —yHY2Z,;+vZy,,i = 1,2,...0,) = 1,2,...,p— 1

Where Z;; and Z;,, are the independent standard normal pseudo-random numbers and it they
are generated independently from N(0,5) and vy is specified so y? is the correlation between
any two explanatory variables. We use the three sets of correlations y = 0.65,0.80,0.95 to
show the effect of the week and strong correlation between the explanatory variables. The
observations on dependent variable are generate by the following equation
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Vi = BlXil + BZXiZ + ...+ BpXip + e , ei~N(O, O'Zln) ,i = 1,2, .,Tl,j = 1, 2, P
We use sample size n=150,50 and we select 6% = 0.01,0.25. The value of d and k are
calculate by the equations (24), (25). The parameters {3, Wwere set to be
(1,2, ...,5) and (1,2, ...,10).We repeated the simulation 2000 times and we use the standard

mean squares error MSE to illustrate the superior for the new estimator which is defined by
2000

A 1 A A
MSE(R) = 3555 0. (B~ BY (B~ p)

Where B; is the estimator in ith replication and B is the true parameter values.

The result of the simulation was summarized at table (1- 4). We chose the number of
independent variable p , the degree of correlation y , the number of observation n and the
variance of the disturbance term ¢%. The result of the simulation study showed the OLS
estimator had a worst for other estimator in all case. They illustrate that the RE, LRE, TLE,
TRLE estimators work will at the several degrees of multicollinearity. The new estimator
performs well especially when the degrees of multicollinearity is decreases and also it is not
affected by the multicollinearity like the other estimator. Moreover, when n increases and
at the same time o2 decreases, the MSE value for our new estimator is decreases. It is clear
that, increase in the number of observation n and decreases in the number of independent
variable p at the several degrees of multicollinearity had a good effect on the work of all
estimators especially on the new estimator.

Table (1) The value for MSE for different estimators p=5,62 = 0.01, d,,,. k

Estimators n=150 n=50
v=0.65 v=0.80 v=0.95 v=0.65 v=0.80 v=0.95
OLS 12.251 20.195 25.112 13.892 23.451 28.602
RE 9.185 9.194 9.754 11.163 10.229 13.35
LRE 5.951 5.559 7.054 8.171 8.252 9.792
TLE 4.024 4.081 5.011 6.419 5.544 8.884
TRLE 0.253 0.893 1.085 1.981 2.025 4.128

Table (2) The value for MSE for different estimators p = 5,62 = 0.25,d,,,,. k

Estimators n=150 n=50
v=0.65 v=0.80 v=0.95 vy=0.65 v=0.80 v=0.95
OLS 14.082 24.051 29.932 15.081 27.191 33.219
RE 3.571 4572 10.121 3.936 5.982 14.575
LRE 1.795 4,042 5.255 2.025 5.215 10.682
TLE 4.192 4.215 5.527 6.917 6.644 9.928
TRLE 1.029 1.216 1.583 2.045 2.141 6.376

Table (3) The value for MSE for different estimators p=10, 6% = 0.01, d,,,;. k

Estimators n=150 n=50
v=0.65 v=0.80 v=0.95 v=0.65 v=0.80 v=0.95
OLS 35.231 42.321 79.654 43.564 62.545 93.654
RE 15.324 19.672 26.902 19.985 25.743 33.215
LRE 10.325 14.021 20.654 16.262 18.321 24.109
TLE 8.658 9.945 12.358 12.252 14.068 18.325
TRLE 1.927 2.059 3.325 4.024 4921 6.179

Table (4) The value for MSE for different estimators p = 10, 6% = 0.25,d .. k
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Estimators n=150 n=50
v=0.65 v=0.80 v=0.95 v=0.65 v=0.80 v=0.95
OLS 44.489 69.052 85.065 51.360 68.901 98.654
RE 19.984 26.325 30.032 35.212 43.021 50.193
LRE 15.023 16.215 23.065 17.029 20.093 28.097
TLE 13.335 16.685 14.594 18.094 16.009 20.095
TRLE 2.304 2.905 3.531 4.906 5.302 7.932

4. Conclusions:

In these paper, we introduce the new biased estimator that modifies the two-parameter
Ridge-Liu estimator. Moreover, we checked the superiority for the new estimator over the
ridge estimator, Liu estimator, and two-parameter Ridge-Liu estimator. The theoretical study
was supported by a simulated study which depended on (MSE) criterion to verify the
advantage of the new biased estimator. The result of the simulation study showed the new
biased estimator had a superiority over other estimators.
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