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Abstract

A measurable quality characteristic is assumed to follow Inverse Rayleigh distribution. Variable control
charts based on the extreme values of each subgroup are constructed. The technique of analysis of means
(ANOM) is adopted to work out the decision lines of Inverse Rayleigh distribution. The preferability of the
proposed ANOM decision lines over that of Ott (1967) [11] is illustrated by some examples.
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Acronyms

IRD: Inverse Rayleigh Distribution

f(x) : probability density function (pdf)
F(x): cumulative distribution function (cdf)
o : scale parameter

ANOM: analysis of means

1. Introduction

The probability density function (pdf) of a Inverse Rayleigh Distribution (IRD) with scale
parameter G is given by
202 (622 1.0.1
f(x)=—5—e ; x>0, 0>0 (1.0.1)
X
Its cumulative distribution function (cdf) is

)
F(x)=¢ 2 'Y 1 x>0,0>0 (1.0.2)
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In order to construct a control chart using the extreme observations of a subgroup drawn
from the production process with the quality variate following IRD we need the
percentiles of extreme order statistics from IRD. Specifically, the test statistic on extreme
value control chart is the original sample vector X=(x,,Xx,,...,X,) from the ongoing

production. In this chart all the individual sample observations are plotted into control
chart without calculating any statistic out of them. A corrective action is taken after a

sample depending solely on the extreme values namely X, (sample minimum) and X,

(sample maximum) of the sample. Because of this, the chart is called extreme value
control chart.

Analysis of Means (ANOM) is a technique originally developed by Ott (1967) [11] for
comparing a group of treatment means to see if any one of them differs significantly from
the overall mean. This procedure is carried out by comparing the sample mean values to
the overall grand mean, about which decision lines have been constructed. If a sample
mean lies outside these decision lines it is declared significantly different from the grand
mean. An ANOM chart, conceptually similar to a control chart, portrays decision lines so
that statistical significance as well as practical significance of samples may be assessed
simultaneously.

For using the ANOM technique the concept of the control chart for means is viewed in a
different way — grouping of plotted means to fall within the control limits or some outside
the control limits. For the homogeneity of all the means, it is necessary that all the means
should fall within the control limits. We make an attempt to develop the ANOM
procedure of Ott (1967) when the data variate is suppose to follow IRD.

If (1 — ) is taken as the confidence coefficient we should have the probability of all the
subgroup means to fall within the control limits is (1 — ). Assuming independent of

subgroups the above probability statement becomes n™ power of the probability of a
subgroup mean to fall within the limits should be equal to (1 —).i.e., In the sampling

distribution of x the confidence interval for x to lie between two specified limits should

be equal to (1—0[)1/ " The same principle is adopted in the rest of this paper through
IRD.

Because of this paper aims at exploring ANOM using control limits of extreme value
statistics we have considered only the control chart aspects but not any recently
developed ANOM tables or techniques. However, a detailed literature about ANOM is
available in Rao (2005) and some related works in this direction are Enrick (1976),
Schilling (1979), Ohta (1981), Ramig (1983), Mason et al. (1989), Bakir (1994), Bernard
and Wludyka (2001), Wludyka et al. (2001), Montgomery (2001), Nelson and Dudewicz
and Nelson (2003), Farnum (2004), Guirguis and Tobias (2004) and references therein.
The rest of the paper is organized as follows. The basic exposure to extreme value control
chart is given in Section 2. ANOM applied to IRD using extreme value control charts of
IRD is given in Section 3 followed by illustrative examples in Section 4. Summary and
conclusions are given in section 5.
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2. Extreme Value Charts

The given sample observations are assumed to follow IRD model. The control lines are
determined by the theory of extreme order statistics based on IRD. The control lines are
to be determined in such a way that an arbitrarily chosen x, of X=(x,x,,...,x,) lies
with probability (l-a)l/ " within the limits. This can be formulated as a probability
inequality in the following way. P(x,<L)=a/2 and P(x, >U)=a/2. The theory of
order statistics say that the cumulative distribution function of the least and highest order

statistics in a sample of size n from any continuous population are [F'(x)]" and

I1-[1-F(x)]" respectively. where F'(x) is the cumulative distribution function of the
population. If (I — ) is the desired at 0.9973 then & would be 0.0027. Taking F'(x) as
the CDF of a standard IRD model (c = 1), we can get solutions of the two equations
1-[1-F(x)]" =0.00135 and [F'(x)]" = 0.99865, which in turn can be used to develop
the control limits of extreme value chart. The solutions of the above two equations for
n=2(1) 10 is given in Table 2.1 denoted as Z(1)0.00135 and Z(n)0.99865 .

Table 2.1: Control Limits of Extreme value charts

n Z(1)0.00135 Z1)0.99865
2 0.31540 58.38606
3 0.29881 71.50803
4 0.28806 82.57036
5 0.28024 92.31647
6 0.27415 101.12762
7 0.26921 109.23032
8 0.26508 116.77212
9 0.26153 123.85554
10 0.25844 130.55520

The values of Table 2.1 indicates the following probability statement:

P(Z1y0.00135 < Zi <Z(n)0.99865° ¥ 1=1:2:::51)=0.9973 (2.03)

P(o21)0.00135 <% < 9% n)0.998657 ¥ 1=b21)=0.9973 (2.0.4)

Taking x 1.7724 as an unbiased estimate of o, the above equation becomes

:P(D;} < x < D:}, Y i=1,2,..,n) = 0.9973

V4 Z
Where D* = M and D>l< = M . Thus D* and Dﬂ< would
3 1.7724 4 1.7724 3 4

constitute the control chart constants for the extreme value charts. These are given in
Table 2.2 forn=2 (1) 10.
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Table 2.2: Constants of Extreme value charts

* *
n D3 D4
2 |1 0.17795 | 32.94181
3 |1 0.16859 | 40.34531
4 10.16253 | 46.58675
5 1 0.15811 | 52.08557
6 | 0.15468 | 57.05689
7 10.15189 | 61.62848
8 | 0.14956 | 65.88362
9 | 0.14756 | 69.88013
10 | 0.14581 | 73.66012

3. Analysis of Means (ANOM) - Inverse Rayleigh Distribution

Suppose X,X7,.....,X} are arithmetic means of k subgroups of size ‘n’ each drawn

from an IRD model. If these subgroup means are used to develop control charts to assess
whether the population from which these subgroups are drawn is operating with
admissible quality variations. Depending on the basic population model, we may use the
control chart constants developed by us or the popular Shewart constants given in any
SQC text book. Generally we say that the process is in control if all the sub group means
fall within the control limits. Otherwise we say the process lacks control. If a is the level
of significance of the above decisions we can have the following probability statements.

P{LCL<)?Z., Vi=1lto k<UCLY=1-« (3.0.6)

Using the notion of independent subgroups (3.0.6) becomes

P{LCL < T, <ucLy=(1-a)/k (3.0.7)
With equi—tailed probability for each subgroup mean, we can find two constants say L*

and U* such that

1—(1-a)

_ % _ %
P{xl. <L }—P{xi >U } = 5

In the case of normal population L* and ;" satisfy y*-_;*. For the skewed
populations like IRD we have to calculate L* , " separately from the sampling

distribution of fl . Accordingly these depend on the subgroup size ‘n’ and the number of

subgroups ‘k’. We make us of the equations (3.07) and (3.08) for specified ‘n’ and ‘k’ to
get L* and ;* for a=0.01 and a = 0.05. These are given in Tables 3.2 and 3.3.

A control chart for averages giving ‘In Control ‘conclusion indicates that all the subgroup
means though vary among themselves are homogeneous in some sense. This is exactly
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the null hypothesis in an analysis of variance technique. Hence the constants of Tables
3.2 and 3.3 can be used as an alternative to analysis of variance technique. For a normal
population one can use the tables of Ott (1967) [11]. For an IRD our tables can be used.
We therefore present below some examples for which the goodness of fit of IRD model
assessed with Q—Q plot technique (strength of linearity between observed and theoretical
quantiles of a model) and tested the homogeneity of means involved in each case.

4. Illustrative Examples

Example 1: Wadsworth (1986): Consider the following data of 25 observations on “A
manufactures of metal products that suspected variations in iron content of raw material
supplied by five suppliers. Five ingots were randomly selected from each of the five
suppliers. The following table contains the data for the iron determinations on each ingots
in percent by weight.

Suppliers
1 2 3 4 5
3.46 | 3.59 | 3.51 | 3.38 | 3.29
348 | 346 | 3.64 | 340 | 3.46
3.56 | 342 | 3.46 | 3.37 | 3.37
339 | 349 | 3.52 | 346 | 3.32
3.40 | 3.50 | 3.49 | 3.39 | 3.38

Example 2: Three brands of batteries are under study. It is suspected that the life (in
weeks) of the three brands is different. Five batteries of each brand are tested with the
following results. Test whether the lives of these brands of batteries are different at 5 %
level of significance.

Weeks of life
Brand 1 | Brand 2 | Brand 3
100 76 108
96 80 100
92 75 96
96 84 98
92 82 100

Example 3: Four catalysts that may effect the concentration of one component in a three
component liquid mixture are being investigated. The following concentrations are
obtained. Test whether the four catalysts have the same affect on the concentration at 5 %
level of significance.

Catalyst
1 2 3 4
582 | 563 | 50.1 | 529
57.2 | 545 | 542 | 499
584 | 57.0 | 554 | 50.0
55.8 | 553 | 549 | 51.7
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The goodness of fit of data in these three examples as revealed by Q—Q plot (correlation
coefficient) are summarized in the following table, which shows that IRD is a better
model, exhibiting significance linear relation between sample and population quantiles.

IRD Normal

Example 1 | 0.9171 | 0.2067
Example 2 | 0.9580 | 0.4149
Example 3 | 0.9651 | 0.4447

Treating these observations in the data as a single sample, we have calculated the
decision limits for the Normal population as well as inverse Rayleigh population and
have given them in the Table 3.4 respectively.

Table 3.4
No. of subgroups fall
(LDL, UDL) With in the Coverage Outside the Coverage
decision lines | probability | decision lines | probability
Example 1 [3.379, 3.517] 3 0.6 2 0.4
n=5k=5a=0.05 [5.6299, 39.5272] 5 1.0 0 0.0
Example 2 [87.82,95.52] 2 0.7 1 0.3
n=5,k=3,0=0.05 | [106.4446,913.2634] 3 1.0 0 0.0
Example 3 [26.14, 82.84] 2 0.5 2 0.5
n=4,k=4,0=0.05 [59.0808, 632.7116] 4 1.0 0 0.0

In each cell the first row values represents the Normal distribution and second row values
represents the Inverse Rayleigh distribution.

5. Summary and Conclusions

ANOM tables of Ott (1967) [11] yield that the number of homogeneous means for each
data set are 3,2,2 respectively and those away from heterogeneity are 2,1,2 respectively.
On the other hand when the ANOM tables of our model (IRD) are used for data sets we
get the number of homogeneous means to be 5,3,4 respectively without exhibiting
deviation of any mean from homogeneity. Thus usage of normal model resulted in
homogeneity for some means and deviation from some other means, indicating a possible
rejection of these means. This decision is valid if Normal distribution is a good fit to the
data. As a comparison, we have already established by Q-Q plot that IRD is a better
model than Normal as supported by the Q-Q plot correlation coefficient of each data set
with Normal as well as IRD separately. Therefore, all the means to be homogeneous with
the help of IRD (Table 3.5) is a better decision than some means to be away from
homogeneity using Normal, ANOM procedure.
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Table 3.2: Inverse Rayleigh Distribution Constants for Analysis of Means
(1-a=0.99)

n k=1 2 3 4 5 6 7 8 9 10 15 20 30 40 50
5 0.85448 0.82339 0.79941 0.79589 0.78588 0.78062 0.77741 0.76043 0.75896 0.75749 0.72465 0.71382 0.70425 0.64107 0.57789
17.07730 21.83038 25.54116 28.16052 31.67590 34.65051 36.13404 37.84520 38.48962 39.91580 42.32666 44.65455 46.37594 47.67488 48.97382
3 0.97400 0.92399 0.88982 0.87709 0.85812 0.85585 0.84462 0.84258 0.83196 0.82135 0.81851 0.81717 0.78539 0.78166 0.77793
14.32808 19.23667 21.63157 26.66736 28.59329 33.34991 36.15921 40.72837 46.44379 55.16400 61.23094 66.37949 66.59434 79.66517 92.73600
4 1.06427 1.01391 0.99194 0.98495 0.97370 0.96215 0.95936 0.95618 0.95604 0.95589 0.94176 0.93938 0.92586 0.91257 0.89929
12.69503 18.11874 20.30165 24.16641 24.50200 25.12369 25.93983 26.56538 26.85261 27.02677 36.34138 53.97368 71.21388 85.23645 94.56236
5 1.16193 1.10037 1.08102 1.06457 1.05002 1.02919 1.02137 1.01763 1.00982 1.00201 0.97935 0.96892 0.94013 0.91807 0.89600
11.49139 14.88874 17.10290 20.22572 21.26451 22.07586 23.45721 28.30374 28.88048 29.36230 35.48009 48.31933 56.31998 67.56239 79.56237
6 1.19071 1.14640 1.10642 1.09794 1.08879 1.07830 1.04237 1.03263 1.02406 1.01549 1.01513 1.01512 0.97736 0.92793 0.87850
13.43964 19.03197 23.44173 29.05212 33.51589 34.12185 39.55799 47.35653 52.95726 59.63255 64.23568 70.23514 78.25639 89.56231 95.23659
7 1.25728 1.19569 1.16140 1.14872 1.14435 1.12808 1.11283 1.10672 1.09671 1.08669 1.06252 1.05936 0.96193 0.95918 0.95643
10.51804 13.49930 15.28878 18.68253 20.97097 21.03114 21.25473 21.86218 22.25846 23.42054 3551519 41.27640 49.31925 58.1234 69.25634
3 1.30714 1.23662 1.21004 1.20127 1.18365 1.16649 1.16082 1.15409 1.15131 1.14853 1.13918 1.13666 1.13136 1.11799 1.10462
10.33636 12.62289 14.31379 18.51217 18.85951 19.18591 19.38574 20.01832 22.10203 25.77496 36.34584 42.23564 50.12478 59.23564 71.02315
9 1.36316 1.31137 1.26927 1.25119 1.24503 1.23493 1.22933 1.22679 1.22496 1.22313 1.20260 1.19902 1.17335 1.16414 1.15494
9.96866 12.16147 13.88278 16.94146 16.39588 18.03501 19.70967 20.46421 21.08694 22.84848 32.39181 42.01325 56.03698 68.23014 74.23109
10 1.37832 1.34108 1.31834 1.30062 1.28208 1.27588 1.27326 1.27155 1.26978 1.26801 1.19279 1.17624 1.15606 1.13160 1.10714
9.29947 11.73556 13.57333 16.89849 17.26595 18.64872 18.67806 21.11200 25.36958 29.63442 35.20369 42.69387 50.23698 58.23410 69.23001

Table 3.3: Inverse Rayleigh Distribution Constants for Analysis of Means
(1-a.=0.95)

n 1 2 3 4 5 6 7 8 9 10 15 20 30 40 50
5 1.00597 0.94274 0.89226 0.87278 0.85451 0.84893 0.84036 0.82878 0.82594 0.82368 0.80118 0.79594 0.78552 0.76043 0.75749
8.24548 10.99050 13.24835 14.87059 17.06327 18.08129 19.46764 20.54635 20.90586 21.76887 25.54116 32.67590 34.29048 38.84520 38.91580
3 1.14055 1.07491 1.03026 0.99689 0.97805 0.96691 0.95948 0.94550 0.93312 0.92445 0.89154 0.88189 0.85594 0.84258 0.82135
7.25130 9.47307 11.82874 13.01135 14.26081 15.01537 17.61906 18.05645 18.91424 19.05136 21.63157 22.59329 27.76890 36.72837 55.16400
4 1.22500 1.14909 1.11631 1.08430 1.06491 1.05514 1.04624 1.03367 1.01805 1.01672 0.99274 0.98573 0.96830 0.95618 0.95589
6.79626 8.74355 10.10721 11.61205 12.66264 13.45529 14.19294 15.58742 17.86069 17.97045 20.30165 21.50200 24.66198 26.56538 27.02677
5 1.30963 1.23930 1.20703 1.18611 1.16366 1.15021 1.14144 1.11824 1.10598 1.10329 1.08328 1.07093 1.04636 1.01763 1.00201
6.45101 8.33600 9.96287 10.67705 11.49046 12.89824 13.56349 14.49699 14.63227 14.82594 17.10290 18.26451 21.52091 28.30374 29.36230
6 1.35342 1.27741 1.23807 1.20922 1.19087 1.17466 1.16683 1.16054 1.15180 1.14989 1.10814 1.10073 1.08807 1.03263 1.01549
6.26251 8.27609 9.73974 11.53357 13.06461 14.12457 15.51316 15.79422 17.72442 18.51918 23.44173 25.51589 33.87675 47.35653 58.63526
7 1.43083 1.35618 1.31410 1.28171 1.26203 1.23536 1.21879 1.21086 1.19877 1.19573 1.16356 1.14950 1.13843 1.10672 1.08669
5.88863 7.49318 8.66073 9.80909 10.45695 11.58157 12.29849 12.70628 13.25381 13.27092 15.28878 15.97097 20.99200 21.26218 23.42054
3 1.44695 1.38760 1.34869 1.32480 1.30813 1.29380 1.27270 1.25842 1.25063 1.24432 1.21376 1.20128 1.17876 1.15409 1.14853
5.71590 7.15846 8.21998 9.26921 10.25907 11.04316 11.61821 11.82029 12.29202 12.45219 14.31379 16.85951 19.07109 20.81832 25.77496
9 1.49412 1.42014 1.39235 1.37377 1.36327 1.34805 1.34141 1.33147 1.31711 1.31249 1.27015 1.25249 1.24421 1.22679 1.22313
5.60920 7.18460 8.28981 8.97227 9.91334 10.31926 10.84661 11.16278 11.75150 12.14814 13.88278 16.39588 17.06145 20.46421 22.84848
10 1.53157 1.46659 1.42323 1.39821 1.38339 1.36621 1.35741 1.35547 1.34542 1.34188 1.31966 1.30464 1.27891 1.27155 1.26801
5.37731 6.78438 8.03952 8.68432 9.28536 10.14494 10.57363 10.83351 11.41635 11.66737 13.57333 16.26595 17.63707 21.11200 29.63442
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