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Abstract
A measurable quality characteristic is assumed to follow Inverse Rayleigh distribution. Variable control
charts based on the extreme values of each subgroup are constructed. The technique of analysis of means
(ANOM) is adopted to work out the decision lines of Inverse Rayleigh distribution. The preferability of the
proposed ANOM decision lines over that of Ott (1967) [11] is illustrated by some examples.
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Acronyms
IRD: Inverse Rayleigh Distribution
f(x) : probability density function (pdf)
F(x): cumulative distribution function (cdf)
σ    : scale parameter
ANOM:  analysis of means

1. Introduction
The probability density function (pdf) of a Inverse Rayleigh Distribution (IRD) with scale
parameter σ is given by

2 2 22 (- / )( ) ; 0 , 03
xf x e x

x

     (1.0.1)

Its cumulative distribution function (cdf) is
2 2/( ) e ; 0, 0xF x x    (1.0.2)
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In order to construct a control chart using the extreme observations of a subgroup drawn
from the production process with the quality variate following IRD we need the
percentiles of extreme order statistics from IRD. Specifically, the test statistic on extreme
value control chart is the original sample vector 1 2X ( , ,..., )nx x x from the ongoing
production. In this chart all the individual sample observations are plotted into control
chart without calculating any statistic out of them. A corrective action is taken after a
sample depending solely on the extreme values namely 1x (sample minimum) and nx
(sample maximum) of the sample. Because of this, the chart is called extreme value
control chart.

Analysis of Means (ANOM) is a technique originally developed by Ott (1967) [11] for
comparing a group of treatment means to see if any one of them differs significantly from
the overall mean. This procedure is carried out by comparing the sample mean values to
the overall grand mean, about which decision lines have been constructed. If a sample
mean lies outside these decision lines it is declared significantly different from the grand
mean. An ANOM chart, conceptually similar to a control chart, portrays decision lines so
that statistical significance as well as practical significance of samples may be assessed
simultaneously.

For using the ANOM technique the concept of the control chart for means is viewed in a
different way – grouping of plotted means to fall within the control limits or some outside
the control limits. For the homogeneity of all the means, it is necessary that all the means
should fall within the control limits. We make an attempt to develop the ANOM
procedure of Ott (1967) when the data variate is suppose to follow IRD.

If (1 ) is taken as the confidence coefficient we should have the probability of all the
subgroup means to fall within the control limits is (1 ). Assuming independent of
subgroups the above probability statement becomes nth power of the probability of a
subgroup mean to fall within the limits should be equal to (1 ). i.e., In the sampling

distribution of x the confidence interval for x to lie between two specified limits should

be equal to 1(1 ) n . The same principle is adopted in the rest of this paper through
IRD.

Because of this paper aims at exploring ANOM using control limits of extreme value
statistics we have considered only the control chart aspects but not any recently
developed ANOM tables or techniques. However, a detailed literature about ANOM is
available in Rao (2005) and some related works in this direction are Enrick (1976),
Schilling (1979), Ohta (1981),  Ramig (1983), Mason et al. (1989), Bakir (1994), Bernard
and Wludyka (2001), Wludyka et al. (2001), Montgomery (2001), Nelson and Dudewicz
and Nelson (2003), Farnum (2004), Guirguis and Tobias (2004) and references therein.
The rest of the paper is organized as follows. The basic exposure to extreme value control
chart is given in Section 2. ANOM applied to IRD using extreme value control charts of
IRD is given in Section 3 followed by illustrative examples in Section 4. Summary and
conclusions are given in section 5.
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2. Extreme Value Charts
The given sample observations are assumed to follow IRD model. The control lines are
determined by the theory of extreme order statistics based on IRD. The control lines are
to be determined in such a way that an arbitrarily chosen ix of 1 2X ( , ,..., )nx x x lies
with probability (1-α)1/n within the limits. This can be formulated as a probability
inequality in the following way. 1( ) 2P x L   and ( ) 2nP x U   . The theory of
order statistics say that the cumulative distribution function of the least and highest order
statistics in a sample of size n from any continuous population are [ ( )]nF x and

1 [1 ( )]nF x  respectively. where ( )F x is the cumulative distribution function of the
population. If (1 ) is the desired at 0.9973 then  would be 0.0027. Taking ( )F x as
the CDF of a standard IRD model (σ = 1), we can get solutions of the two equations
1 [1 ( )]nF x  = 0.00135 and [ ( )]nF x = 0.99865, which in turn can be used to develop
the control limits of extreme value chart. The solutions of the above two equations for
n = 2 (1) 10 is given in Table 2.1 denoted as (1)0.00135Z and ( ) 0.99865nZ .

Table 2.1:   Control Limits of Extreme value charts

n Z(1)0.00135 Z(n)0.99865
2 0.31540 58.38606
3 0.29881 71.50803
4 0.28806 82.57036
5 0.28024 92.31647
6 0.27415 101.12762
7 0.26921 109.23032
8 0.26508 116.77212
9 0.26153 123.85554

10 0.25844 130.55520

The values of Table 2.1 indicates the following probability statement:

(2.0.3)

(2.0.4)

Taking x 1.7724 as an unbiased estimate of σ, the above equation becomes
* *( , 1, 2,..., ) 0.99733 4P D x x D x i ni     

Where (1)0.00135*
3 1.7724

Z
D  and ( )0.99865*

4 1.7724

Z nD  . Thus *
3D and *

4D would

constitute the control chart constants for the extreme value charts. These are given in
Table 2.2 for n = 2 (1) 10.

( , 1, 2, ..., ) 0.9973(1) 0.00135 ( ) 0.99865P Z Z Z i ni n    

( , 1,2,..., ) 0.9973(1)0.00135 ( )0.99865P Z x Z i ni n     
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Table 2.2: Constants of Extreme value charts

n *
3D *

4D

2 0.17795 32.94181
3 0.16859 40.34531
4 0.16253 46.58675
5 0.15811 52.08557
6 0.15468 57.05689
7 0.15189 61.62848
8 0.14956 65.88362
9 0.14756 69.88013

10 0.14581 73.66012

3. Analysis of Means (ANOM) - Inverse Rayleigh Distribution
Suppose x ,x ,.....,x1 2 k are arithmetic means of k subgroups of size ‘n’ each drawn
from an IRD model. If these subgroup means are used to develop control charts to assess
whether the population from which these subgroups are drawn is operating with
admissible quality variations. Depending on the basic population model, we may use the
control chart constants developed by us or the popular Shewart constants given in any
SQC text book. Generally we say that the process is in control if all the sub group means
fall within the control limits. Otherwise we say the process lacks control. If α is the level
of significance of the above decisions we can have the following probability statements.

{ , 1 } 1P LCL x i to k UCLi       (3.0.6)

Using the notion of independent subgroups (3.0.6) becomes

1{ } (1 ) kP L C L x U C Li     (3.0.7)

With equi–tailed probability for each subgroup mean, we can find two constants say *L
and *U such that

1 (1 )* *{ } { }
2

k
P x L P x Ui i

 
   

In the case of normal population *L and *U satisfy * *U L  .  For the skewed

populations like IRD we have to calculate *L , *U separately from the sampling

distribution of xi . Accordingly these depend on the subgroup size ‘n’ and the number of

subgroups ‘k’. We make us of the equations (3.07) and (3.08) for specified ‘n’ and ‘k’ to
get *L and *U for α = 0.01 and α = 0.05. These are given in Tables 3.2 and 3.3.

A control chart for averages giving ‘In Control ‘conclusion indicates that all the subgroup
means though vary among themselves are homogeneous in some sense. This is exactly
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the null hypothesis in an analysis of variance technique. Hence the constants of Tables
3.2 and 3.3 can be used as an alternative to analysis of variance technique. For a normal
population one can use the tables of Ott (1967) [11]. For an IRD our tables can be used.
We therefore present below some examples for which the goodness of fit of IRD model
assessed with Q–Q plot technique (strength of linearity between observed and theoretical
quantiles of a model) and tested the homogeneity of means involved in each case.

4. Illustrative Examples
Example 1: Wadsworth (1986): Consider the following data of 25 observations on “A
manufactures of metal products that suspected variations in iron content of raw material
supplied by five suppliers. Five ingots were randomly selected from each of the five
suppliers. The following table contains the data for the iron determinations on each ingots
in percent by weight.

Suppliers
1 2 3 4 5

3.46 3.59 3.51 3.38 3.29
3.48 3.46 3.64 3.40 3.46
3.56 3.42 3.46 3.37 3.37
3.39 3.49 3.52 3.46 3.32
3.40 3.50 3.49 3.39 3.38

Example 2: Three brands of batteries are under study. It is suspected that the life (in
weeks) of the three brands is different. Five batteries of each brand are tested with the
following results. Test whether the lives of these brands of batteries are different at 5 %
level of significance.

Weeks  of  life
Brand  1 Brand  2 Brand  3

100 76 108
96 80 100
92 75 96
96 84 98
92 82 100

Example 3: Four catalysts that may effect the concentration of one component in a three
component liquid mixture are being investigated. The following concentrations are
obtained. Test whether the four catalysts have the same affect on the concentration at 5 %
level of significance.

Catalyst
1 2 3 4

58.2 56.3 50.1 52.9
57.2 54.5 54.2 49.9
58.4 57.0 55.4 50.0
55.8 55.3 54.9 51.7
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The goodness of fit of data in these three examples as revealed by Q–Q plot (correlation
coefficient) are summarized in the following table, which shows that IRD is a better
model, exhibiting significance linear relation between sample and population quantiles.

IRD Normal

Example 1 0.9171 0.2067
Example 2 0.9580 0.4149
Example 3 0.9651 0.4447

Treating these observations in the data as a single sample, we have calculated the
decision limits for the Normal population as well as inverse Rayleigh population and
have given them in the Table 3.4 respectively.

Table 3.4

(LDL, UDL)

No. of subgroups fall

With in the
decision lines

Coverage
probability

Outside the
decision lines

Coverage
probability

Example   1
n = 5, k = 5, α =0 .05

[3.379 , 3.517]
[5.6299, 39.5272]

3
5

0.6
1.0

2
0

0.4
0.0

Example   2
n = 5, k = 3, α =0 .05

[ 87.82 , 95.52 ]
[106.4446, 913.2634]

2
3

0.7
1.0

1
0

0.3
0.0

Example   3
n = 4, k = 4, α =0 .05

[26.14, 82.84]
[59.0808, 632.7116]

2
4

0.5
1.0

2
0

0.5
0.0

In each cell the first row values represents the Normal distribution and second row values
represents the Inverse Rayleigh distribution.

5. Summary and Conclusions

ANOM tables of Ott (1967) [11] yield that the number of homogeneous means for each
data set are 3,2,2 respectively and those away from heterogeneity are 2,1,2 respectively.
On the other hand when the ANOM tables of our model (IRD) are used for data sets we
get the number of homogeneous means to be 5,3,4 respectively without exhibiting
deviation of any mean from homogeneity. Thus usage of normal model resulted in
homogeneity for some means and deviation from some other means, indicating a possible
rejection of these means. This decision is valid if Normal distribution is a good fit to the
data. As a comparison, we have already established by Q-Q plot that IRD is a better
model than Normal as supported by the Q-Q plot correlation coefficient of each data set
with Normal as well as IRD separately. Therefore, all the means to be homogeneous with
the help of IRD (Table 3.5) is a better decision than some means to be away from
homogeneity using Normal, ANOM procedure.
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Table 3.2: Inverse Rayleigh Distribution Constants for Analysis of Means
(1-α = 0.99)

n k =1 2 3 4 5 6 7 8 9 10 15 20 30 40 50

2 0.85448
17.07730

0.82339
21.83038

0.79941
25.54116

0.79589
28.16052

0.78588
31.67590

0.78062
34.65051

0.77741
36.13404

0.76043
37.84520

0.75896
38.48962

0.75749
39.91580

0.72465
42.32666

0.71382
44.65455

0.70425
46.37594

0.64107
47.67488

0.57789
48.97382

3 0.97400
14.32808

0.92399
19.23667

0.88982
21.63157

0.87709
26.66736

0.85812
28.59329

0.85585
33.34991

0.84462
36.15921

0.84258
40.72837

0.83196
46.44379

0.82135
55.16400

0.81851
61.23094

0.81717
66.37949

0.78539
66.59434

0.78166
79.66517

0.77793
92.73600

4 1.06427
12.69503

1.01391
18.11874

0.99194
20.30165

0.98495
24.16641

0.97370
24.50200

0.96215
25.12369

0.95936
25.93983

0.95618
26.56538

0.95604
26.85261

0.95589
27.02677

0.94176
36.34138

0.93938
53.97368

0.92586
71.21388

0.91257
85.23645

0.89929
94.56236

5 1.16193
11.49139

1.10037
14.88874

1.08102
17.10290

1.06457
20.22572

1.05002
21.26451

1.02919
22.07586

1.02137
23.45721

1.01763
28.30374

1.00982
28.88048

1.00201
29.36230

0.97935
35.48009

0.96892
48.31933

0.94013
56.31998

0.91807
67.56239

0.89600
79.56237

6 1.19071
13.43964

1.14640
19.03197

1.10642
23.44173

1.09794
29.05212

1.08879
33.51589

1.07830
34.12185

1.04237
39.55799

1.03263
47.35653

1.02406
52.95726

1.01549
59.63255

1.01513
64.23568

1.01512
70.23514

0.97736
78.25639

0.92793
89.56231

0.87850
95.23659

7 1.25728
10.51804

1.19569
13.49930

1.16140
15.28878

1.14872
18.68253

1.14435
20.97097

1.12808
21.03114

1.11283
21.25473

1.10672
21.86218

1.09671
22.25846

1.08669
23.42054

1.06252
35.51519

1.05936
41.27640

0.96193
49.31925

0.95918
58.1234

0.95643
69.25634

8 1.30714
10.33636

1.23662
12.62289

1.21004
14.31379

1.20127
18.51217

1.18365
18.85951

1.16649
19.18591

1.16082
19.38574

1.15409
20.01832

1.15131
22.10203

1.14853
25.77496

1.13918
36.34584

1.13666
42.23564

1.13136
50.12478

1.11799
59.23564

1.10462
71.02315

9 1.36316
9.96866

1.31137
12.16147

1.26927
13.88278

1.25119
16.94146

1.24503
16.39588

1.23493
18.03501

1.22933
19.70967

1.22679
20.46421

1.22496
21.08694

1.22313
22.84848

1.20260
32.39181

1.19902
42.01325

1.17335
56.03698

1.16414
68.23014

1.15494
74.23109

10 1.37832
9.29947

1.34108
11.73556

1.31834
13.57333

1.30062
16.89849

1.28208
17.26595

1.27588
18.64872

1.27326
18.67806

1.27155
21.11200

1.26978
25.36958

1.26801
29.63442

1.19279
35.20369

1.17624
42.69387

1.15606
50.23698

1.13160
58.23410

1.10714
69.23001

Table 3.3: Inverse Rayleigh Distribution Constants for Analysis of Means
(1-α = 0.95)

n 1 2 3 4 5 6 7 8 9 10 15 20 30 40 50

2 1.00597
8.24548

0.94274
10.99050

0.89226
13.24835

0.87278
14.87059

0.85451
17.06327

0.84893
18.08129

0.84036
19.46764

0.82878
20.54635

0.82594
20.90586

0.82368
21.76887

0.80118
25.54116

0.79594
32.67590

0.78552
34.29048

0.76043
38.84520

0.75749
38.91580

3 1.14055
7.25130

1.07491
9.47307

1.03026
11.82874

0.99689
13.01135

0.97805
14.26081

0.96691
15.01537

0.95948
17.61906

0.94550
18.05645

0.93312
18.91424

0.92445
19.05136

0.89154
21.63157

0.88189
22.59329

0.85594
27.76890

0.84258
36.72837

0.82135
55.16400

4 1.22500
6.79626

1.14909
8.74355

1.11631
10.10721

1.08430
11.61205

1.06491
12.66264

1.05514
13.45529

1.04624
14.19294

1.03367
15.58742

1.01805
17.86069

1.01672
17.97045

0.99274
20.30165

0.98573
21.50200

0.96830
24.66198

0.95618
26.56538

0.95589
27.02677

5 1.30963
6.45101

1.23930
8.33600

1.20703
9.96287

1.18611
10.67705

1.16366
11.49046

1.15021
12.89824

1.14144
13.56349

1.11824
14.49699

1.10598
14.63227

1.10329
14.82594

1.08328
17.10290

1.07093
18.26451

1.04636
21.52091

1.01763
28.30374

1.00201
29.36230

6 1.35342
6.26251

1.27741
8.27609

1.23807
9.73974

1.20922
11.53357

1.19087
13.06461

1.17466
14.12457

1.16683
15.51316

1.16054
15.79422

1.15180
17.72442

1.14989
18.51918

1.10814
23.44173

1.10073
25.51589

1.08807
33.87675

1.03263
47.35653

1.01549
58.63526

7 1.43083
5.88863

1.35618
7.49318

1.31410
8.66073

1.28171
9.80909

1.26203
10.45695

1.23536
11.58157

1.21879
12.29849

1.21086
12.70628

1.19877
13.25381

1.19573
13.27092

1.16356
15.28878

1.14950
15.97097

1.13843
20.99200

1.10672
21.26218

1.08669
23.42054

8 1.44695
5.71590

1.38760
7.15846

1.34869
8.21998

1.32480
9.26921

1.30813
10.25907

1.29380
11.04316

1.27270
11.61821

1.25842
11.82029

1.25063
12.29202

1.24432
12.45219

1.21376
14.31379

1.20128
16.85951

1.17876
19.07109

1.15409
20.81832

1.14853
25.77496

9 1.49412
5.60920

1.42014
7.18460

1.39235
8.28981

1.37377
8.97227

1.36327
9.91334

1.34805
10.31926

1.34141
10.84661

1.33147
11.16278

1.31711
11.75150

1.31249
12.14814

1.27015
13.88278

1.25249
16.39588

1.24421
17.06145

1.22679
20.46421

1.22313
22.84848

10 1.53157
5.37731

1.46659
6.78438

1.42323
8.03952

1.39821
8.68432

1.38339
9.28536

1.36621
10.14494

1.35741
10.57363

1.35547
10.83351

1.34542
11.41635

1.34188
11.66737

1.31966
13.57333

1.30464
16.26595

1.27891
17.63707

1.27155
21.11200

1.26801
29.63442


