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Abstract 
This paper discusses maximum likelihood and Bayes estimation of the two unknown parameters of Nadarajah 

and Haghighi distribution based on record values. Different Bayes estimates are derived under squared error, 

balanced squared error and general entropy loss functions by using Jeffreys' prior information and extension 

of Jeffreys' prior information. It is observed that the associated posterior distribution appears in an intractable 

form. So, we have used Tierney and Kadane approximation method to compute these estimates. Finally, 

numerical computations are presented based on generated record values using R software. 
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1. Introduction: Suppose that  ; 1iX i   be a sequence of independent and 

identically distributed (iid) random variables from an absolutely continuous distribution 

function (cdf) )(xF  and probability density function (pdf) ).(xf  An observation jX  will 

be called an upper record value if its value exceeds that of all previous observations. Thus, 

jX  is an upper record if j iX X  for every .i j  If the sequence ( ) ; 1U n n   is defined 

by 

( )1 1,U =  ( ) ( ) ( ) 1
min : 1 , j U n

U n j j U n X X
−

=  −   

for 2,n   then the sequence ( ) ; 1n U n
R X n=   is called the upper record values. The 

sequence ( ) ; 1U n n   is called the upper record times. 

In a sequence of events, the event value that exceeds all previous values is of particular 

importance in the scientific and applied fields and so their values are recorded. In sporting 

events, for example, focus attention is usually on recording results that exceed their 

predecessor, as the hydrologists usually tend to monitor the higher values of the floods. 

Also, the meteorologists usually concern with upper and lower record temperatures. For 

more details on the concept of record values and their application, see, Ahsanullah (2004) 

and Arnold et al. (1998). The statistical treatment of the record values was introduced for 

the first time by Chandler (1952). Many studies on record values and their associated 
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statistical inference have been done for some distributions by several authors such as Selim 

(2012) who studied Bayesian estimation of Chen distribution based on record values. 

Nadarajah and Haghighi (2011) introduced a new extension of the exponential distribution 

as an alternative to the gamma, Weibull and the exponentiated exponential distributions. 

The corresponding cdf and pdf are as follows: 

( ) ( ) , 1 exp 1 1 ,F x


  = − − +         0, , 0x                                      (1.1) 

and 

( ) ( ) ( ) 1
, 1 exp 1 1 ,f x x

 
    

−
= + − +           0, , 0.x                  (1.2) 

Here 0  and 0  are scale and shape parameters, respectively. Henceforth, 

Nadarajah and Haghighi distribution will be denoted by (NH) distribution. Singh et al. 

(2015) discussed classical and Bayesian estimations for NH model under progressive type-

II censored data. The maximum likelihood estimators (MLE’s) and Bayes estimators of the 

unknown parameters of NH distribution under progressive type-II censored data with 

binomial removals have also been obtained by Singh et al. (2014). 

Jeffreys' prior exhibits many nice features that make it an attractive reference prior. 

Jeffreys' prior has the property of being approximately non informative in the sense of Box 

and Tiao (1973), who motivated Jeffreys' prior by introducing the notion of data translated 

likelihood. Bernardo (1979) showed that, under certain conditions, Jeffreys' prior is an 

optimal reference prior in the sense that it maximizes the missing information. Kass (1989, 

1990) emphasized that a main feature of Jeffreys' prior is that it is a uniform measure in an 

information metric, which can be regarded as the natural metric for statistical inference. In 

addition, for problems involving scale and location parameters, Jeffreys' (1946, 1961), Box 

and Tiao (1973), Bernardo (1979) and Kass (1990) pointed out that Jeffreys' multivariate 

prior should be modified as suggested by Jeffreys' (1946, 1961). 

Kumar et al. (2017) discussed the Bayes estimators under symmetric and asymmetric loss 

functions using Markov Chain Monte Carlo (MCMC) technique to compare the 

performance of the proposed methods based on record values. Gencer and Saraçoğlu 

(2016) compares the approximate Bayes estimators under different loss functions for 

parameters of odd Weibull distribution and the Bayes estimators of the parameters of 

Erlang distribution under different prior distributions have been obtained by Haq and Dey 

(2011). For detail survey one may refer to Jung and Chung (2018), Pandey and Kumari 

(2018a, b), Kayal et al. (2016) and Faizan and Sana (2018) amongst others. 

The approximate Bayes estimators of the unknown parameters of NH distribution using 

Lindley’s approximation method based on record values have been obtained by Selim 

(2018). In this paper, MLE’s and approximate Bayes estimators of the parameters of the 

NH distribution based on upper record values are obtained under squared error loss (SEL), 

balance squared error loss (BSEL) and general entropy loss (GEL) functions using Tierney 

and Kadane (TK) approximation technique with Jeffreys' prior information and extension 

of Jeffreys' prior information. Moreover, numerical computations using R software are 

given to illustrate the results. 

 

2. Estimation 

In this section, we derive the MLE’s of the parameters from record data. We will also study 

the Bayesian estimation of the two unknown parameters of NH distribution based on a 

sample of record values. 
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2.1      Maximum likelihood estimator 

Suppose we observe m  upper record values ,,...,, )(2)2(1)1( mmUUU xXxXxX ===  from NH 

distribution with cdf (1.1) and pdf (1.2). The likelihood associated with record data is given 

by (Ahsanullah, 2004) 


−

=

=
1

1

),;(),;()|,(
m

i

im xhxfxL                                                          (2.1) 

where 

),...,,( 21 mxxxx =        and       .
),;(1

),;(
),;(






i

i
i

xF

xf
xh

−
=  

Substituting (1.1) and (1.2) in (2.1), we get 

( ) ( )  ( )
1

1

, | exp 1 1 1 .
m

m m

m i

i

L x x x
 

     
−

=

= − + +                                (2.2) 

The log-likelihood function may then be written as 

( ) ( ) ( ) ( ) ( )
1

ln , | ln ln 1 1 1 ln 1 .
m

m i

i

L x m x x


      
=

= + + − + + − +            (2.3) 

Taking derivatives with respect to   and   of (2.3) and equating them to zero, we obtain 

the likelihood equations for   and   to be 

( )
( ) ( ) ( )

1

ln , |
1 ln 1 ln 1 0

m

m m i

i

L x m
x x x

 
  

  =


= − + + + + =


                       (2.4) 

and 

( )
( ) ( )

( )
1

1

ln , |
1 1 0.

1

m
i

m m

i i

L x xm
x x

x

 
  

  

−

=


= − + + − =

 +
                       (2.5) 

The Equations (2.4) and (2.5) cannot be solved analytically for   and . Therefore, we 

may use R software (using optim function, see, R Core Team (2018)) to solve these 

equations and find the MLE’s of the unknown parameters   and .  

 

2.2 Bayesian estimation 

For Bayesian estimation of the parameters   and  , prior distributions are needed. If once 

prior knowledge about the parameter is available, it is suitable to make use of an 

informative prior but in a situation where one does not have any prior knowledge about the 

parameter and cannot obtain vital information from experts in this regard, then a non-

informative prior will be a suitable alternative to use, (Guure et al., 2013). A commonly 

used reference prior in Bayesian analysis is Jeffreys' prior. It is obtained by applying 

Jeffreys' rule, which is to take the prior density to be proportional to the square root of the 

determinant of the Fisher information matrix (Lavanya and Alexander, 2016). In this study, 

Jeffreys' priors are use and these are as follows  

( )
1




 
   

 
                                                                                                (2.6)  

( )
1




 
   

 
                                                                                        (2.7) 
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The joint prior of parameters are 

( )
1

, . 


 
   

 
                                                                                            (2.8) 

We propose an extension of Jeffreys' prior information such that, 

( )
2

1
, ,

c

 


 
   

 
                                                                                        (2.9) 

where c  is the hyper parameter that is assumed to be non-negative and known. When 1c =

, we have the standard Jeffreys' prior information and undefined when 0.c =  Since our 

knowledge on the parameters is limited as a result of which a Jeffreys' prior information 

approach is employed on both parameters. It is important that one ensures the prior does 

not significantly influence the final result. If our limited or lack of knowledge influences 

the results, one may end-up giving wrong interpretation which could affect whatever it is 

we seek to address. 

 

2.2.1      Bayes estimation under squared error loss function 

In this section, we obtain Bayes estimates of   and   using SEL and BSEL functions. Let 

any function of   and   be ( ),u   = . We introduce the BSEL function as (Ahmed, 

2014) 

                                 
( ) ( )

2
2

0
ˆ ˆ ˆ( ) 1 ( ) ,L      = − + −−−  

where 0  
is a known estimator of   and 0 1.   This loss function reduces to the 

squared error, when 0. =  The Bayes estimate of   under the loss ( ).L  is obtained to be 

( ) ( ) ( )0
ˆ , 1 | .BSELu E x    = + −

                                                         
(2.10) 

SEL function is a symmetric function and was introduced by Legendre (1805). Let any 

function of   and   be ( ),u   = . The SEL function is as follows: 

                                 
2ˆ ˆ( ) ( ) ,L   − −                                                          

where ̂  is the estimate of the parameter .  Under the above loss function, the Bayes 

estimator ˆ
SEL  of θ is given by 

                                   
( )ˆ | ,SEL E x  =                                                                           

(2.11) 

where E  stands for posterior expectation. In this case, Bayes estimator of ( ),u    under 

SEL function which is a symmetric loss function is obtained as follows: 

                              
( ) ( )ˆ , , |SELu E u x    =    

                                              ( ) ( )
0 0

, , |u x d d     
 

=    

    

( ) ( ) ( )

( ) ( )

, | , |

0 0

, | , |

0 0

, e

,

e

l x x

l x x

u d d

d d

    

    

   

 

 
 +  

 
 +  

=
 

 

                                        (2.12) 
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where ( ),l x   is log-likelihood function and ( ), x  
 
is logarithm of joint prior 

distribution. 

 

2.2.2      Bayes estimation under general entropy loss function 

GEL function is an asymmetric function and was suggested by Calabria and Pulcini (1996). 

Dey and Liao (1992) have studied about Bayes estimation under GEL function. Let any 

function of   and   be ( ),u   = . The GEL function with parameter k  is given by 

                                                    

( )
ˆ ˆ

ˆ ln 1,L k
 

 
 

   
 − −      
   

−  

where ̂  is the estimate of the parameter .  

Under the above loss function, the Bayes estimator ˆ
GE  of   is given by 

( )
1

ˆ | ,k k
GEL E x 

−
− =

                                                        
(2.13) 

where E  stands for posterior expectation. The proper choice for k is a challenging task 

for an analyst because it reflects the asymmetry of the loss function. In this case, Bayes 

estimator of ( ), ,u    under GEL function which is an asymmetric loss function is obtained 

as follows: 

                                             
( ) ( ) 

1

ˆ , , |
k k

GELu E u x   
−

−  =    
 

                                     

( ) ( ) ( )

( ) ( )

1

, | , |

0 0

, | , |

0 0

, e

.

e

k
k l x x

l x x

u d d

d d

    

    

   

 

−
 

−  +  

 
 +  

 
   

 =
 
 
 

 

 

        (2.14) 

It is difficult to solve the equations (2.12) and (2.14) in closed form. Because of this reason, 

the Bayes estimators of the parameters   and   can be obtained using TK approximation 

method. 

 

3. Tierney-Kadane approximation 

Tierney and Kadane (1986) is one of the methods to find the approximate value of the 

mathematical explanations as the ratio of two integrals given in equations (2.12) and (2.14). 

We consider posterior expectation of ( ),u    with respect to the distribution ( ), | x   

and then assume that 

( )
( ) ( ) ( )

( ) ( )

, | , |

0 0

, | , |

0 0

, e

,

e

l x x

l x x

u d d

I x

d d

    

    

   

 

 
 +  

 
 +  

=
 

 

                        (3.1) 

where ( ),u    is any function of   and  , ( ), |l x   is defined in equation (2.3). 

( ), | x    is logarithm joint prior distribution and is defined as follows: 

For Jeffreys' prior information, 
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( ) ( )( ) ( ) ( ), | ln , 2 ln 2 lnx c c      =  = − −                      (3.2) 

and for extension of Jeffreys' prior information, 

( ) ( )( ) ( ) ( ), | ln , ln ln .x      =  = − −                              (3.3) 

We can approximate the function ( )I x  into an explicit expression by applying the TK 

approximation method. In sequel, we consider the functions defined by 

( )
( ) ( ), | , |

,
l x x

n

    
  

+
=

    
                                       (3.4) 

and 

( ) ( )
( )ln ,

, , .
u

n


 
      = +                                            (3.5) 

Now, we assume that ( )ˆˆ ,     and ( )ˆˆ ,
 

    maximize the functions ( ),    and 

( ), ,  
 respectively. 

We then approximate ( )I x
 
as 

( ) ( ) ( ) | | ˆ ˆˆ ˆexp , , .
| |

I x n
   
      


  = −

  
           (3.6) 

Here, | |  and | |

  denote the determinants of negative inverse hessian of ( ),    and 

( ), ,  
 respectively. | |  and | |

  are defined as follows: 

                                                               

1
2 2 2 2

2 2
| |

   

     

−

    
 = − 

        

and 

                                                             

1
2 2 2 2

2 2
| | .   



   

     

−
   

     
 = − 

      
 

Next, we observe that 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1

1
, ln ln 1 1 1 ln 1 2 ln 2 ln .

m

m i

i

m m x x c c
n


         

=

 
= + + − + + − + − − 

 
  

Now, we note that 

( ) ( ) ( )
1

1 2
1 ln 1 ln 1

m

m m i

i

m c
x x x

n


  

  =

  
= − + + + + −   


                                             

(3.7) 

and 

( ) ( )
( )

1

1

1 2
1 1 .

1

m
i

m m

i i

xm c
x x

n x


  

   

−

=

 
= − + + − − 

 +  
                                              

(3.8) 

Likewise the corresponding second-order derivatives are obtained by 
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( ) ( )( )
2

2

2 2 2

1 2
1 ln 1 ,m m

m c
x x

n


 

  

  
= − − + + +   

                                                           

(3.9) 

( )
( ) ( ) ( )

2 2
1 1

1

1
1 1 ln 1

1

m
i

m m m m m

i i

x
x x x x x

n x

  
   

    

− −

=

  
= = − + − + + 

    +  


        

  

(3.10) 

and 

( ) ( ) ( )
( )

22
22

22 2 2
1

1 2
1 1 1 .

1

m
i

m m

i i

xm c
x x

n x


   

  

−

=

 
= − − − + − − + 

 +  
                          

(3.11) 

 

3.1      Tierney-Kadane Bayes estimator of ( ),u    under squared error loss function 

Bayes estimator of ( ),u    under SEL function is defined as follows: 

                                                       ( ) ( )ˆ , , |
SEL

u E u x     =    

                                                ( ) ( ) 
| |

ˆ ˆˆ ˆexp , ,
| |

SEL

SEL
n



   
      






 = −
  

    (3.12) 

where 

                                                  
( ) ( )

( )ln ,
, , .

SEL

u

n


 
      = +  

Bayes estimators for parameters   and ,  using equation (3.12) under SEL functions are 

obtained as follows: 

i) If ( ), ,u   =  then 

( ) ( ) 
| |

ˆ ˆˆ ˆ ˆexp , , .
| |

SEL

SELSEL n


   
       






 = −
  

  (3.13) 

In order to compute | |
SEL

 , we first obtain the following expressions 

                                                  

2 2

2 2 2

1

n

 

  

 
= −

 
 

                                                  

2 2

2 2

 

 

 
=

 
 

                               

2 2 

   

 
=

   
 

ii) If ( ), ,u   =  then 

( ) ( ) 
| |

ˆ ˆ ˆˆ ˆexp , , .
| |

SEL

SELSEL n


   
       






 = −
  

        (3.14) 

In order to compute 
SEL

 , we first obtain the following expressions 
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2 2

2 2

 

 

 
=

 
 

                                

2 2

2 2 2

1

n

 

  

 
= −

 
 

                              

2 2

.
 

   

 
=

   
 

Similarly, we can compute the corresponding Bayes estimates of unknown parameters   
and   under the BSEL function. 

 

3.2 Tierney-Kadane Bayes estimator of ( ),u    under general entropy loss 

function 

Bayes estimator of ( ),u    under GEL function is defined as follows: 

                                         
( ) ( ) 

1

ˆ , , |
GEL

k k
u E u x    

−
−  =    

 

                                  

( ) ( ) 

1

| |
ˆ ˆˆ ˆexp , , ,

| |

GEL

GEL

k

n


   
      

−



 

  = −
   

 

(3.15) 

where 

                                        
( ) ( )

( )ln ,
, , .

GEL

k

u

n


 
     

−


  = +  

Bayes estimators for parameters   and   using equation (3.15) under GEL functions are 

obtained as follows: 

i) If ( ), ,ku    −=  then 

        

( ) ( ) 

1

| |
ˆ ˆˆ ˆ ˆexp , , .

| |

GEL

GEL

k

GEL n


   
       

−



 

  = −
   

 

(3.16) 

In order to compute | |
GEL

 , we first obtain the following expressions 

                                                

2 2
2

2 2

k

n

 


 


− 

= +
 

 

                                                

2 2

2 2

 

 

 
=

 
 

                             

2 2 

   

 
=

   
 

ii) If ( ), ,ku   −=  then 

        

( ) ( ) 

1

| |
ˆ ˆ ˆˆ ˆexp , , .

| |

GEL

GEL

k

GEL n


   
       

−



 

  = −
   

 

  (3.17) 

In order to compute | |
GEL

 , we first obtain the following expressions 
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2 2

2 2

 

 

 
=

 
 

                               

2 2
2

2 2

k

n

 


 


− 

= +
 

 

                             

2 2

.
 

   

 
=

   
 

 

4. Numerical computations 

In order to illustrate the usefulness of the inference procedures discussed in the previous 

sections, we generate five sets of record values of sizes 50, 100, 150, 200 and 250 from 

( )3,2NH  distribution as shown in Table 1. The percentage errors (PE) are computed to 

assess the performance of the estimators by formula as 

 

100%.
estimatevalue exact value

PE
exact value

−
=   

 

Taking loss parameter 0.6k =   and 1.6 , the Bayesian estimates of the parameters are 

derived with respect to three loss functions, SEL, BSEL and GEL functions. Also, we have 

considered the values of Jeffreys' extension prior 3.5,4.5c =  and 5.5.  The choice of the 

extension of Jeffreys' prior information is subjective since it is used to consider the 

proportion in which one will prefer the prior to influence the posterior density function. 

The Bayes estimator of   and   under SEL and BSEL function using extension Jeffreys' 

prior information are shown in the Table 2. The MLE’s calculated are also given in the 

same table. The Bayes estimator of   and   under SEL and BSEL loss function using 

Jeffreys' prior information are shown in the Table 4. Moreover, The Bayes estimator of   
and   under GEL function using extension Jeffreys' prior information and Jeffreys' prior 

information are shown in the Table 3 and Table 5. Also, the PE is shown along with the 

estimators. 

 

Table 1. Generated upper record values for different sample sizes. 

 

n x1 x2 x3 x4 x5 x6 x7 x8 x9 

20 0.07 0.29 0.38 0.49           

30 0.11 0.33 0.41 0.43           

10 0.12 0.17 0.19 0.2 0.24 0.3 0.42     

50 0.05 0.06 0.25 0.3 0.32 0.33 0.37 0.57   

40 0.01 0.02 0.05 0.07 0.35 0.36 0.37 0.39 0.46 
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Table 2. MLE’s and Bayes estimates using extension Jeffreys' prior information for SEL 

and BSEL function. 

 

 

  

n MLE c  
TK 

SEL BSEL 

0.2w =  0.4w =  0.6w =  0.8w =  

MLE  
MLE  SEL  

SEL  BSEL  
BSEL  BSEL  

BSEL  BSEL  
BSEL  BSEL  

BSEL  

50 2.85 
(4.9%) 

2.18 
(8.8%) 

3.5 
 

3.13 
(4.2%) 

2.21 
(10%) 

3.10 
(3.4%) 

2.16 
(8.2%) 

3.08 
(2.5%) 

2.12 
(6.2%) 

3.05 
(1.7%) 

2.08 
(4.1%) 

3.03 
(0.8%) 

2.04 
(2.1%) 

4.5 3.06 

(2.2%) 

2.19 

(5.9%) 

3.05 

(1.7%) 

2.09 

(4.7%) 

3.03 

(1.3%) 

2.07 

(3.6%) 

3.03 

(0.9%) 

2.05 

(2.4%) 

3.01 

(0.4%) 

2.02 

(1.2%) 

5.5 3.04 

(1.2%) 

2.08 

(4.0%) 

3.03 

(0.9%) 

2.06 

(3.2%) 

3.02 

(0.7%) 

2.05 

(2.4%) 

3.01 

(0.5%) 

2.03 

(1.6%) 

3.01 

(0.2%) 

2.07 

(0.8%) 

100 2.79 

(7.1%) 

2.25 

(12%) 

3.5 

 

3.02 

(0.7%) 

2.05 

(2.3%) 

3.08 

(0.6%) 

2.04 

(1.8%) 

3.01 

(0.5% ) 

2.03 

(1.4%) 

3.01 

(0.3%) 

2.02 

(0.9%) 

3.01 

(0.2%) 

2.01 

(0.5%) 

4.5 

 

3.02 

(0.5%) 

2.04 

(1.9%) 

3.01 

(0.4%) 

2.03 

(1.5%) 

3.01 

(0.3%) 

2.02 

(1.2%) 

3.01 

(0.2%) 

2.04 

(0.8%) 

3.01 

(0.1%) 

2.01 

(0.4%) 

5.5 

 

3.01 

(0.5%) 

2.03 

(1.6%) 

3.01 

(0.3%) 

2.02 

(1.3%) 

3.01 

(0.2%) 

2.02 

(0.9%) 

3.01 

(0.1%) 

2.01 

(0.7%) 

3.00 

(0.1%) 

2.01 

(0.3%) 

150 3.09 
(3.0%) 

1.93 
(3.4%) 

3.5 
 

3.03 
(1.0%) 

2.06 
(3.1%) 

3.02 
(0.8%) 

2.05 
(2.5%) 

3.02 
(0.6%) 

2.04 
(1.9%) 

3.01 
(0.4%) 

2.02 
(1.3%) 

3.01 
(0.2%) 

2.01 
(0.6%) 

4.5 
 

3.02 
(0.6%) 

2.05 
(2.4%) 

3.01 
(0.5%) 

2.04 
(1.9%) 

3.01 
(0.4%) 

2.03 
(1.5%) 

3.01 
(0.3%) 

2.02 
(0.9%) 

3.01 
(0.1%) 

2.01 
(0.5%) 

5.5 

 

3.01 

(0.3%) 

2.04 

(1.9%) 

3.01 

(0.3%) 

2.03 

(1.5%) 

3.01 

(0.2%) 

2.02 

(1.2%) 

3.01 

(0.1%) 

2.02 

(0.8%) 

3.00 

(0.1%) 

2.01 

(0.4%) 

200 3.01 

(0.1%) 

1.89 

(5.5%) 

3.5 

 

3.20 

(6.7%) 

2.32 

(16%) 

3.16 

(5.4%) 

2.26 

(12%) 

3.12 

(4.0%) 

2.19 

(9.6%) 

3.08 

(2.7%) 

2.19 

(6.4%) 

3.04 

(1.3%) 

2.06 

(3.2%) 

4.5 

 

3.09 

(3.2%) 

2.16 

(7.8%) 

3.08 

(2.5%) 

2.12 

(6.2%) 

3.06 

(1.9%) 

2.09 

(4.7%) 

3.04 

(1.3%) 

2.06 

(3.1%) 

3.02 

(0.6%) 

2.03 

(1.6%) 

5.5 3.06 

(1.9%) 

2.10 

(5.0%) 

3.04 

(1.5%) 

2.08 

(4.0%) 

3.03 

(1.1%) 

2.06 

(3.0%) 

3.02 

(0.7%) 

2.04 

(2.0%) 

3.01 

(0.4%) 

2.02 

(1.0%) 

250 2.84 

(5.2%) 

2.03 

(1.5%) 

3.5 

 

3.03 

(1.1%) 

2.06 

(3.1%) 

3.03 

(0.9%) 

2.05  

(2.5%) 

3.02 

 (0.9%) 

2.04 

 (1.9%) 

3.01 

 (0.5%) 

2.02  

(1.2%) 

3.01 

 (0.2%) 

2.01 

 (0.6%) 

4.5 
 

3.03 
(0.9%) 

2.05  
(2.6%) 

3.02 
 (0.7%) 

2.04  
(2.0%) 

3.02  
(0.5%) 

2.03 
 (1.5%) 

3.01  
(0.4%) 

2.02  
(1.0%) 

3.01  
(0.2%) 

2.01 
 (0.5%) 

5.5 

 

3.02 

(0.7%) 

 2.04 

(2.2%) 

3.02 

 (0.6%) 

2.03  

(1.7%) 

3.01 

 (0.4%) 

2.03 

 (1.3%) 

3.01 

 (0.3%) 

2.02  

(0.9%) 

3.00 

 (0.1%) 

2.01 

 (0.4%) 
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Table 3. Bayes estimates using extension Jeffreys' prior information for GEL function. 

 

 

Table 4. Bayes estimates using Jeffreys' prior information for SEL and BSEL function. 

 

  

n  m  c  TK 

GSEL 

GEL  
GEL  GEL  

GEL  GEL  
GEL  GEL  

GEL  

0.6k =  0.6k = −  1.6k =  1.6k = −  

50 7 3.5 

 

3.12 

(3.93%) 

2.18 

(8.82%) 

3.12 

(4.12%) 

2.19 

(9.87%) 

3.11 

(3.78%) 

2.16 

(8.14%) 

3.13 

(4.30% ) 

2.22 

(11.04%) 

4.5 
 

3.06 
(2.08%) 

2.11 
(5.40%) 

3.06 
(2.13%) 

2.12 
(5.78%) 

3.06 
(2.04%) 

2.10 
(5.14%) 

3.07 
(2.18%) 

2.12 
(6.15%) 

5.5 

 

3.04 

(1.17%) 

2.08 

(3.78%) 

3.04 

(1.19%) 

2.08 

(3.96%) 

3.03 

(1.16%) 

2.07 

(3.65%) 

3.04 

(1.21%) 

2.08 

(4.13%) 

100 4 3.5 
 

3.02 
(0.72%) 

2.04 
(2.22%) 

3.02 
(0.73%) 

2.05 
(2.28%) 

3.02 
(0.71%) 

2.04 
(2.17%) 

3.02 
(0.73%) 

2.05 
(2.34%) 

4.5 

 

3.02 

(0.51%) 

2.04 

(1.86%) 

3.02 

(0.51%) 

2.04 

(1.90%) 

3.02 

(0.51%) 

2.04 

(1.83%) 

3.02 

(0.52%) 

2.04 

(1.94%) 

5.5 

 

3.01 

(0.34%) 

2.03 

(1.58%) 

3.01 

(0.34%) 

2.03 

(1.61%) 

3.01 

(0.34%) 

2.03 

(1.56%) 

3.01 

(0.35%) 

2.03 

(1.64%) 

150 4 3.5 

 

3.03 

(0.99%) 

2.06 

(2.98%) 

3.03 

(1.01%) 

2.06 

(3.09%) 

3.03 

(0.99%) 

2.06 

(2.89%) 

3.03 

(1.02%) 

2.06 

(3.19%) 

4.5 
 

3.02 
(0.61%) 

2.05 
(2.33%) 

3.02 
(0.61%) 

2.05 
(2.39%) 

3.02 
(0.60%) 

2.05 
(2.28%) 

3.02 
(0.62%) 

2.05 
(2.46%) 

5.5 3.01 

(0.31%) 

2.04 

(1.87%) 

3.01 

(0.31%) 

2.04 

(1.91%) 

3.01 

(0.31%) 

2.04 

(1.84%) 

3.01 

(0.31%) 

2.04 

(1.95%) 

200 9 3.5 
 

3.18 
(6.06%) 

2.25 
(12.71%) 

3.19 
(6.53%) 

2.30 
(15.0%) 

3.17 
(5.73%) 

2.23 
(11.38%) 

3.21 
(7.02%) 

2.36 
(18.05%) 

4.5 

 

3.09 

(3.01%) 

2.14 

(6.90%) 

3.09 

(3.12%) 

2.15 

(7.53%) 

3.09 

(2.92%) 

2.13 

(6.48%) 

3.09 

(3.22%) 

2.16 

(8.18%) 

5.5 
 

3.05 
(1.80%) 

2.09 
(4.64%) 

3.06 
(1.85%) 

2.09 
(4.92%) 

3.05 
(1.78%) 

2.09 
(4.45%) 

3.06 
(1.88%) 

2.10 
(5.18%) 

250 8 3.5 

 

3.03 

 (1.12%) 

2.06 

 (2.95%) 

3.03 

 (1.13% ) 

2.06 

(3.06%) 

3.03 

 (1.10%) 

2.06 

 (2.87%) 

3.03  

(1.15%) 

2.06 

 (3.15%) 

4.5 
 

3.03 
 (0.87%) 

2.05 
 (2.45%) 

3.03 
 (0.88%) 

2.05 
 (2.52%) 

3.03 
 ( 0.86% ) 

2.05 
 (2.39%) 

3.03 
 (0.89%) 

2.05 
 (2.59%) 

5.5 3.02 

 (0.68%) 

2.04  

(2.09%) 

3.02 

 (0.69%) 

2.04 

 (2.14%) 

3.02 

 (0.68%) 

2.04 

 (2.04%) 

3.02  

(0.69%) 

2.04 

 (2.19%) 

n  m  TK 

SEL BSEL 

0.2w =  0.4w =  0.6w =  0.8w =  

SEL  
SEL  BSEL  

BSEL  BSEL  
BSEL  BSEL  

BSEL  BSEL  
BSEL  

50 7 2.79 

(6.9%) 

1.77 

(11%) 

2.83 

(5.5%) 

1.82 

(9.0%) 

2.88 

(4.1%) 

1.86 

(6.8%) 

2.92 

(2.8%) 

1.91 

(4.5%) 

2.96 

(1.4%) 

1.96 

(2.3%) 

100 4 3.06 

(2.1%) 

2.09 

(4.9%) 

3.05 

(1.6% ) 

2.08 

(3.9%) 

3.04 

(1.2%) 

2.06 

(2.9%) 

3.03 

(0.8%) 

2.04 

(1.9%) 

3.01 

(0.4%) 

2.02 

(0.9%) 

150 4 3.15 

(4.9%) 

2.22 

(11%) 

3.12 

(3.9%) 

2.18 

(8.8%) 

3.09 

(2.9%) 

2.13 

(6.6%) 

3.06 

(1.9%) 

2.09 

(4.4%) 

3.03 

(0.9%) 

2.05 

(2.2%) 

200 9 2.85 

(5.1%) 

1.83 

(8.5% ) 

2.88 

(4.1%) 

1.86 

(6.8% ) 

2.91 

(3.1%) 

1.89 

(5.1%) 

2.93 

(2.0%) 

1.93 

(3.4%) 

2.97 

(1.0%) 

1.97 

(1.7%) 

250 8 3.08 

(2.6%) 

2.13 

(6.3%) 

3.06 

(2.1%) 

2.10 

( 5.0% ) 

3.05 

(1.5%) 

2.08 

(3.8%) 

3.03 

(1.0%) 

2.05 

(2.5%) 

3.02 

(0.5%) 

2.03 

(1.3%) 
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5. Conclusion 

Theoretical results of the study are explained numerically in the above Tables. Here, MLE’s 

and Bayes estimators based on generated record values are obtained. In Table 2 and Table 

3, we observe that if the value of c  increases then we observed that we have the good 

estimators under different loss functions. From Tables 2, 3, 4 and 5, we see that, the PE of 

the Bayes estimates under SEL function using extension Jeffreys' prior information and 

Jeffreys' prior information are more than PE of the Bayes estimates under BSEL function 

using extension Jeffreys' prior information and Jeffreys' prior information. So we observe 

that Bayes estimates under BSEL function using extension Jeffreys' prior information and 

Jeffreys' prior information perform good compared to the SEL function using extension 

Jeffreys' prior information and Jeffreys' prior information. Moreover, the performances of 

all the estimators of BSEL function are improved when the value of   increases. Mostly, 

MLE’s have more PE as compare to Bayes estimators under SEL function using extension 

Jeffreys' prior information and MLE’s have less PE as compare to Bayes estimators under 

SEL function using Jeffreys' prior information. Mostly, MLE’s have more PE as compare 

to Bayes estimators under GEL function using extension Jeffreys' prior information for 

both negative and positive values of k  and MLE’s have less PE as compare to Bayes 

estimators under GEL function using Jeffreys' prior information for both negative and 

positive values of .k  Finally, we observe that Bayes estimators under extension Jeffreys' 

prior information perform good as compared to the Bayes estimators under Jeffreys' prior 

information. 
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