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Abstract 

In this work, we introduce a new class of continuous distributions called the generalized 

Poisson family which extends the quadratic rank transmutation map. We provide some 

special models for the new family. Some of its mathematical properties including Rényi 

and q-entropies, order statistics and characterizations are derived. The estimations of the 

model parameters are performed by maximum likelihood method. The Monte Carlo 

simulation is used for assessing the performance of the maximum likelihood estimators. 

The flexibility of the proposed family is illustrated by means of two applications to real 

data sets. 

Keywords: Entropy; Generating function, Maximum likelihood estimation, Order 

statistics, Characterizations. 

1. Introduction 

In many practical situations, classical distributions do not provide adequate fit to real 

data. For example, if the data are asymmetric, the normal distribution will not be a good 

choice. So, several generators based on one or more parameters have been proposed to 

generate new distributions. Some well-known generators are Marshal-Olkin generated 

family by Marshal and Olkin (1997), the beta-G by Eugene et al. (2002), Jones (2004), 
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Kumaraswamy-G by Cordeiro and de Castro (2011), McDonald-G by Alexander et al. 

(2012), gamma-G (type 1) by Zografos and Balakrishanan (2009), gamma-G (type 2) by 

Ristić and Balakrishanan (2012), gamma-G (type 3) by Torabi and Montazari (2012), 

log-gamma-G by Amini et al. (2012), logistic-G by Torabi and Montazari (2012), 

exponentiated generalized-G by Cordeiro et al. (2013), Transformed-Transformer (T-X) 

by Alzaatreh et al. (2013), exponentiated (T-X) by Alzaghal et al. (2013), Weibull-G by 

Bourguignon et al. (2014), Exponentiated half logistic generated family by Cordeiro et al. 

(2014), Kumaraswamy odd log-logistic by Alizadeh et al. (2015), Lomax Generator by 

Cordeiro et al. (2014), Kumaraswamy Marshal-Olkin family by Alizadeh et al. (2014), 

generalized transmuted-G family by Nofal et al. (2015) and transmuted exponentiated 

generalized-G family by Yousof et al. (2016), another generalized transmuted-G by 

Merovci et al. (2015), transmuted geometric-G by Afify et al. (2016a), Kumaraswamy 

transmuted-G by Afify et al. (2016b), beta transmuted-H by Afify et al. (2016c), 

Zografos-Balakrishnan odd log-logistic by Cordeiro et al. (2016b), type I half-logistic-G 

by Cordeiro et al. (2016a), Burr X-G by Yousof et al. (2016) and odd-Burr generalized-G 

families by Alizadeh et al. (2016), a new generalized two-sided class of distributions by 

Korkmaz  and Genç  (2017), Marshall-Olkin generalized-G family of distributions by 

Yousof et al. (2018a), new extended G famil by Hamedani et al. (2018), Burr-Hatke-G by 

Yousof et al. (2018b), generalized odd Weibull generated family by Korkmaz et al. 

(2018a), the Marshall-Olkin generalized G Poisson family by Korkmaz et al. (2018c), 

extended odd Frechet family by Yousof et al. (2018c), new Weibull class of distributions 

by exponential Lindley Odd Log-Logistic-G Family by Korkmaz et al. (2018b), the 

extended Weibull-G family by Yousof et al. (2018b), Korkmaz (2019), Type II general 

exponential class of distributions by Hamedani et al. (2019) and Weibull Marshall-Olkin 

family Korkmaz et al. (2019), among others. 

 

Consider the probability density function (pdf)  ( )p t   of a random variable  [ , ]T a b   for  

a b−     and consider a function of the cumulative distribution function (cdf) of a 

random variable  X  ,   ( )W G x  , where   ( )W G x   satisfies the following conditions:  

 

 

   

( ) ( ) [ , ],

( ) ( )  is differentiable and monotonically non-decreasing, and

( ) ( ) as and ( ) as .

i W G x a b

ii W G x

iii W G x a x W G x b x

 




→ →− → →

 

 

 

(1) 

 

Recently, Alzaatreh et al. (2013) defined the T-X family of distributions by  
 ( )

( ) ( ) ,
W G x

a
F x p t dt=   

 

(2) 

where  ( )W G x  satisfies the conditions. The pdf corresponding to is given by  

     ( ) ( ) / ( ) .f x dW G x dx p W G x=  (3) 

Further details about the T-X family were explored by Alzaatreh et al. (2013). Based on 

complementary power series distribution, first we define the transmuted complementary 

Poisson (TCP) distribution with cdf and pdf given, respectively, by  

( ) ( )
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( ) 1 1 / 1

1

x

x
e

e

TCP

e e
F x e e

e






   




−

−
−

−
 −   = − + −

   − 
 

 



The Generalized Transmuted Poisson-G Family of Distributions: Theory, Characterizations and Applications 

Pak.j.stat.oper.res.  Vol.XIV  No.4 2018  pp759-779 761 

and  

( ) ( )
( )

( )
1

1, ,
( ) 1 2 / 1 ,

1

x

x
e

ex

TCP

e e
f x e e e

e






    


  

−

−
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−−
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− 
 

 

where  , 0     and  | | 1   . For   [ ( )] log 1 ( ; )W G x G x= − −    and  ( )p t   the pdf of 

transmuted complementary exponential Poisson with scale equal one, we define the cdf 

of the new generalized transmuted Poisson family (GTP-G for short) of distributions by  

   

( )  
1 1

log 1 ( ; ), ,

0
( ) 1 2

1 1

t te et
G x

GTP G

e e e e
F x dt

e e

 
 

 


 

− −   − −−    − −

−

 −
 = − +

− − 
 




 

where  ( ; )G x    is the baseline cdf depending on a parameter vector   and  0    and  

| | 1    are two additional shape parameters. GTP-G is a wider class of continuous 

distributions. It includes the transmuted family of distributions when 0 → . 

 

The paper is organized as follows. In Section 2, we define the GTP-G family, describe 

the shape of the pdf and hazard rate function (hrf) analytically, derive a useful mixture 

representation for its pdf and present two special models and plots of their pdf's and hrf's. 

In Section 3, we derive some of its general mathematical properties including Rényi and 

q-entropies, order statistics and some useful characterizations. Maximum likelihood 

estimations of the model parameters are addressed in Section 4. In section 5, simulation 

results to assess the performance of the proposed maximum likelihood estimation 

procedure are discussed and two applications to real data to illustrate the importance and 

flexibility of the new family are provided. Finally, some concluding remarks are 

presented in Section 6. 

2. The new family and its motivation 

2.1 Genesis 

The cdf of the GTP-G family is now defined by  

( ) ( ) ( )
( ; )

, , ( ; ) 1
( ) ; , , 1 1 / 1 .

1

G x
G x

GTP G

e
F x F x e e

e


   


   −
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 = = − + − −   − 


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(4) 

The pdf corresponding to (cdfgt) is given by  

( ) ( ) ( )
( ; )

, , ( ; ) 1
( ) , , , ( ; ) 1 2 / 1 .

1
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e
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(5) 

The reliability function (rf) and hrf of  X   are, respectively, given by 
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We are motivated to introduce the GTP-G family because it exhibits the increasing, the 

decreasing and the upside-down hazard rates as illustrated in Figures 1 and 2. It is shown 

in Subsection 2.2 that the GTP-G family can be viewed as a mixture representation of the 

exponentiated G (Exp-G) densities. The new family can also be viewed as a suitable 

model for fitting the symmetric, the right-skewed, and bimodal data (see Subsection 5.2). 

The peneralized transmuted Poisson Lindley is much better than the Kumaraswamy 

Lindley, beta Lindley, Lindley-Poisson, power Lindley, Transmuted Lindley and Lindley 

models in modeling the relief times data as well as the generalized transmuted Poisson 

Weibull is much better than the beta transmuted Weibull, transmuted exponentiated 

generalized Weibull, Kumaraswamy Weibull, McDonald Weibull, transmuted modified 

Weibull, beta Weibull and Weibull models in modeling the nicotine data. 

2.2 Special models 

In this section, we provide some examples of the GTP-G family. The pdf (pdfgt) will be 

most tractable when  ( ) ( );G x G x=    and  ( ) ( );g x g x=    have simple analytic 

expressions. These special models generalize some well-known distributions reported in 

the literature. Here, we provide two special models of this family corresponding to the 

baseline Weibull (W) and Lindley (Li) distributions to show the flexibility of the new 

family. 

The GTPW distribution 

Consider the cdf and pdf (for  0x   )  ( )( ) 1 xG x e


−= −   and  1 ( )( ) xg x x e


   − −=  , 

respectively, of the Weibull distribution with positive parameters     and    . Then, the 

pdf of the GTPW model is given by  

( )

( )
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1
, , , 1 ( ) 1

( ) 1 2 .
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The GTPW density and hrf plots for selected parameter values are displayed in Figure 1. 

The GTPLi distribution 

The Lindley distribution with parameter  0    has pdf and cdf (for  0x   ) given by  
2

1
( ) (1 ) xg x x e 



−

+
= +   and  1

1
( ) 1 xxG x e  



−+ +
+

= −  , respectively. Then, the pdf of the 

GTPLi model is given by 
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The plots of the GTPLi pdf and hrf are displayed in Figure 2 for some parameter values. 

2.3 Mixture representation 

We provide a useful representation for (pdf) using the concept of exponentiated 

distributions. 
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The density (pdf) can be expressed as  

( ) ( )
( ) ( )

( ) 2 ( ) ( )
, ,

2 2

( ) ( ) ( )
( ) 1 2 2 .

1 1 1

G x G x G x

GTP G

g x e g x e g x e
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e e e
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 


 
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  − = + − +

− − −
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The last equation can be rewritten as 

 

 

( ) ( )

( ) ( )
( )

( ) ( ) ( ) ( )

11 1
, ,

2 2
0 0 0

1 ( ) ( ) 2 ( ) ( ) 2 ( ) ( )
( ) .

1 ! 1 1 ! 1 1 ! 1

kk k k k k

GTP G

k k k

g x G x g x G x g x G x
f x

k e k e k e

 
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    
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−

= = =
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Then, the GTP-G density can be expressed as  

( ) ( ), ,

1

0

( ) ,GTP G k k

k

f x t h x
 



− +
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where  1( ) ( ) ( )h x g x G x 
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Equation (mixture) reveals that the GTP-G density function is a mixture of Exp-G 

densities. Thus, some mathematical properties of the new family can be derived from 

those of the Exp-G class. 

 

The cdf of the GTP-G family can also be expressed as a mixture of Exp-G cdfs. By 

integrating (mixture), we obtain the same mixture representation  

( ) ( ), ,

1

0

( ) ,GTP G k k

k

F x t H x
 



− +

=

=


 

where  ( )1kH x+   is the cdf of the Exp-G family with power parameter  ( 1)k +  . 

3. Properties 

3.1 Entropies 

The Rényi entropy of a random variable  X   represents a measure of variation of the 

uncertainty. The Rényi entropy is defined by  

( ) ( )
1

log , 0 and 1.
1

I X f x dx


  




−
=  
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Using the pdf (6), we can write 
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Then, the Rényi entropy of a random variable  X   following the GTP-G family is given 

by  
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The q-entropy, say  ( )qH X  , is defined by  
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3.2 Order statistics 

Order statistics make their appearance in many areas of statistical theory and practice. Let  

X1 , . . . ,Xn   be a random sample from the GTP-G family. The pdf of the  i th order 

statistic, say  Xi:n  , is given by  

( )
( )

( )
( ) 1

:

0

1 ( ).
B , 1

n i
j j i

i n

j

n if x
f x F x

ji n i

−
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= −  
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Using (5), we can write  
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Using the power series expansion, the last equation can be expressed as  
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Then, the pdf of  
:i nX   follows as 

( )
( )
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0 0

1
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j
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Thus, the density function of the GTP-G order statistics is a mixture of Exp-G densities. 

Based on last equation, we can obtain some structural properties of  :i nX   from those of 

the Exp-G model. The  r th moment of  :i nX   is given by  

( )
( )

( )
( ) ( ): 1

0 0

1
,

B , 1

j
n i

r n

i n k k k

k j

n i
E X b s E Y

ji n i

 −

+

= =

−−  
= −  

− +  
  

where Y   has the Exp-G density with power parameter   

3.3 Characterizations 
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In this subsection we present characterizations of the GTP-G distribution in terms of a 

simple relationship between two truncated moments. We like to mention here the works 

of Glänzel (1987,1990), Glänzel and Hamedani (2001) and Hamedani (2010) in this 

direction. Our characterization results presented here will employ an interesting result 

due to Glänzel (1987) (Theorem 3.1 below). We believe that our characterizations of 

GTP-G distribution may be the only ones possible due to the nature of the distribution 

function of GTP-G. 

 

Theorem 3.1. Let ( , )P  be a given probability space and let  ,H a b=    be an interval 

for some a b   ( a = − , b =   might as well be allowed). Let :X H→   be a 

continuous random variable with the distribution function F  and let q  and h  be two real 

functions defined on H  such that 

( ) ( ) ( ) |   |  , ,q X X x h X X x x x H    =     E E  

is defined with some real function   . Assume that q, ( )1 ,h C H ( )2C H  and F  is 

twice continuously differentiable and strictly monotone function on the set .H Finally, 

assume that the equation h q =  has no real solution in the interior of H Then F  is 

uniquely determined by the functions ,q h  and ,  particularly 

( )
( )

( ) ( ) ( )
( )( )exp   ,

x

a

u
F x C s u du

u h u g u






= −

−  

where the function s  is a solution of the differential equation 
 

   

h

h q
s







−
 =   and C  is a 

constant, chosen to make 1
H
dF = . 

 

We like to mention that this kind of characterization based on the ratio of truncated 

moments is stable in the sense of weak convergence, in particular, let us assume that 

there is a sequence  nX  of random variables with distribution functions  nF  such that 

the functions qn  ,  nh  and ( ) Nn n   satisfy the conditions of Theorem 4.1 and let 

 nq g→ ,
 nh h→  for some continuously differentiable real functions  q  and .h  Let, 

finally, X  be a random variable with distribution .F  Under the condition that ( ) nq X   

and ( ) nh X  are uniformly integrable and the family  nF  is relatively compact, the 

sequence  nX  converges to X  in distribution if and only if  n  converges to   , where 

where the function s  is a solution of the differential equation  
   

h
h q

s 




−
 =   and C  is a 

constant, chosen to make 1
H
dF = .  

( )
( )

( )

 |  
.

 |  

E q X X x
x

E h X X x


  =
  

 

 

This stability theorem makes sure that the convergence of distribution functions is 

reflected by corresponding convergence of the functions ,q h  and   , respectively. It 
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guarantees, for instance, the 'convergence' of characterization of the Wald distribution to 

that of the Lévy-Smirnov distribution if  →  , as was pointed out in ( )2001 .  

 

A further consequence of the stability property of Theorem 3.1 is the application of this 

theorem to special tasks in statistical practice such as the estimation of the parameters of 

discrete distributions. For such purpose, the functions q , h  and, specially,   should be 

as simple as possible. Since the function triplet is not uniquely determined it is possible to 

choose   as a linear function. Therefore, it is worth analyzing some special cases which 

helps to find new characterizations reflecting the relationship between individual 

continuous univariate distributions and appropriate in other areas of statistics. 

 

Remark 3.1. In Theorem 3.1, the interval H  need not be closed since the condition is 

only on the interior of H  . 

 

Proposition 3.1. Let ( ): 0,X →   be a continuous random variable and let  

( )
( )

1
;

1
1

1

G x
e

h x
e

 


 

−

  − 
= + −  

−   

 

 and 

( ) ( ) ( ) ( );
0, .

G x
q x h x e forx

 
=    

 The pdf of X  is ( )6  if and only if the function   defined in Theorem 3.1 has the form 

( ) ( );1
,    0.

2

G x
x e e x

   = + 
 

 

 

Proof. Let X  have density ( )6 ,  then 

( )( ) ( )
( )

( );1
1   |  ,    0 ,

1

G x
F x h X X x e e x

e

 


  −  = −    −

E  

and 

( )( ) ( )
( )

( ) 2 ;21
1   |   ,   0 ,

2 1

G x
F x q X X x e e x

e

 


 −  = −  

−
E  

and finally 

( ) ( ) ( ) ( ) ( ) ;1
0  for  0 .

2

G x
x h x q x h x e e x

  − = −    

Conversely, if   is given as above, then 

( )
( ) ( )

( ) ( ) ( )

( ) ( )

( )

;

;

 ;
,    0 ,

 

G x

G x

x h x g x e
s x x

x h x q x e e

 

 

  




 = = 

− −
 

and hence 

( ) ( ) ;
ln ,    0.

G x
s x e e x

 = − −   

 

Now, in view of Theorem 3.1, X  has density (6). 
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Corollary 3.1. Let ( ): 0,X →   be a continuous random variable and let ( )h x  be as 

in Proposition 3.1. The pdf of X  is ( )6  if and only if there exist functions q  and   

defined in Theorem 3.1 satisfying the differential equation 

( ) ( )

( ) ( ) ( )

( ) ( )

( )

;

;

;
,     0.

G x

G x

x h x g x e
x

x h x q x e e

 

 

  




= 

− −
 

Remarks 3.2. ( )a  The general solution of the differential equation in Corollary 3.1 is 

( ) ( )  ( ) ( ) ( )( ) ( )
1 1; ;

;  ,
G x G x

x e e g x e h x q x dx D
     

− − = − − +
    

for 0x   , where D  is a constant. One set of appropriate functions is given in 

Proposition 3.1 with 1
2
.D =  

( )b  Clearly there are other triplets of functions ( ), ,h q   satisfying the conditions of 

Theorem 3.1. We presented one such triplet in Proposition 3.1. 

4. Maximum likelihood estimation 

Several approaches for parameter estimation were proposed in the literature but the 

maximum likelihood method is the most commonly employed. Here, we consider the 

estimation of the unknown parameters of the GTP-G family from complete samples only 

by maximum likelihood. Let  1, , nx xK  be a random sample from this family with 

parameters ,   and   . Let  =  ( , , )T T     be the 1p   parameter vector. To obtain 

the MLE of   , the log-likelihood function is given by 

( )
0 0 0

( ) log log 1 ( ; ) log ( ; ) log ,
n n n

i i i

i i i

L L n n e G x g x q 
= = =

=  = − − + + +     

Where 
( ; )

1

1
1 2 .

G xie
i e

q


  −

−
 = + − 



The components of the score vector, 

( ) ( ) ( ), , , ,
kk

T T
L L L L U U U  
   
   

 = = =U 
 , are 

( ) ( ; )1

1

1 2 1 / 1 ,i

n
G x

i

i

U q e e
 



−

=

 = − − − 
  

( ) ( )

( )

( )  

0

( ; )

0

2
( ; )

0

/ / 1 ( ; )

2 / 1 ( ; ) /

2 / 1 1 /

i

i

n

i

i

n
G x

i i

i

n
G x

i

i

U n n e G x

e G x e q

e e e q







 







=

=

=

 = − − +
 

   − −   

   + − −   













  

and 

 

( ) ( ) 
0 0

( ; )

0

( ; ) ( ; ) / ( ; )

2 / 1 1 ( ; ) / ,

k

i

n n

i i i

i i

n
G x

i i

i

U G x g x g x

e e G x q






= =

=

 = +

   − − −
   

 







  



 

where ( ; ) ( ; ) /i i kg x g x =      and ( ; ) ( ; ) /i i kG x G x =      .  
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5. Numerical results 

In this section, we will assess the performance of the MLEs using two simulation studies 

and two real data applications. 

5.1 Simulation study 

In order to assess the performance of the MLEs, a small simulation study is performed 

using the statistical software R  through the package (stats4), command mle. The number 

of Monte Carlo replications was  20,000  . For maximizing the log-likelihood function, 

we use the MaxBFGS subroutine with analytical derivatives. The evaluation of the 

estimates was performed based on the following quantities for each sample size: the 

empirical mean squared errors (MSEs) are calculated using the R package from the 

Monte Carlo replications. The MLEs are determined for each simulated data, say,  

1 1
ˆ ˆ ˆˆ( , , , )i i      for  1,2, ,20000i = L  and the biases and MSEs are computed by 

20000 20000
2

1 1

1 1ˆ ˆ( ) ( ) and ( ) ( ) ,
20000 20000

h i h i

i i

bias n h h MSE n h h
= =

= − = −   

for  , , ,h    =  . We consider the sample sizes at  100, 200n =  and consider 

different values for the parameters. The empirical results are given in Table 2. The 

figures in Table 2 indicate that the estimates are quite stable and, more importantly, are 

close to the true values for these sample sizes. Furthermore, as the sample size increases, 

the MSEs decreases as expected. 

 

For GTPW distribution we follow the same exact procedure as mentioned above, with 

 , ,h   =  . The results show that the maximum likelihood estimation method 

performs well. In general, the biases and standard deviations of the parameters are 

reasonably small. The biases and standard deviations decreases as the sample size 

increases. The results from this simulation study suggest that the maximum likelihood 

method can be used to estimate the parameters of the GTPW and GTPLi. 
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Table 2: Bias and MSE of the estimates under the maximum likelihood method (GTPLi). 
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5.2 Applications  

Now, we provide two applications to real data to illustrate the flexibility of the GTPLi 

and GTPW models presented in Section 2. The goodness-of-fit statistics for these models 

are compared with other competitive models and the MLEs of the model parameters are 

determined. 

 

 

 

Data set I: Relief times of twenty patients 

The first data set (Gross and Clark, 1975) on the relief times of twenty patients receiving 

an analgesic is: 1.1, 1.4, 1.3, 1.7, 1.9, 1.8, 1.6, 2.2, 1.7, 2.7, 4.1, 1.8, 1.5, 1.2, 1.4, 3, 1.7, 

2.3, 1.6, 2. This data set has been used by Afify et al. (2016) to fit the beta transmuted 

Lindley distribution. For these data, we compare the fits of the GTPLi distribution with 

the The Kumaraswamy Lindley (KwLi) (Cakmakyapan and Kadılar, 2014). beta Lindley 

(BLi) (Merovci and Sharma, 2014)), Lindley-Poisson (LiP) (Gui et al., 2014), power 

Lindley (PoLi) (Ghitany et al., 2013), TLi (Merovci, 2013) and Lindley (Li) models ( 

x 0   for all of them). 

• The KwLi density given by 

( ) ( )

( ) ( ) ( ) ( ) 
2

1
11 1 1

1 11
exp 1 exp 1 1 exp .

b
a aab x x xf x x x x

    
 

  
−

−+ + + + +
+ ++

        = − − − − − −        

 

• The BLi density given by 

( ) ( )

( ) ( ) ( ) ( ) 
2 111 1 1

1 1( , ) 1
exp 1 exp exp .

bax x x

B a b
f x x x x

    
 

  
−−+ + + + +

+ ++
      = − − − −        

• The LiP density given by 

( ) ( )

( )( )
( ) ( ) ( ) 

2 1 1

11 1
exp exp exp .

x x

e
f x x x



   


 

+ + +

++ −
   = − −     

• The PoLi density given by 

( ) ( )
2

1

1
(1 ) exp .f x x x x

   


−

+
= + −  

• The TLi density given by 

( ) ( ) ( )
2 1

1 1
(1 )exp 1 2 exp .xf x x x x   

 
   + +

+ +
 = + − − + −
 

 

The parameters of the above densities are all positive real numbers except for the TLi 

distribution for which 1.   

 

Data set II: The nicotine data  

The second data set works with nicotine measurements, made from several brands of 

cigarettes in 1998, collected by the Federal Trade Commission which is an independent 

agency of the US government. The free form data set can be found at 

http://pw1.netfom.com/rda vis2/smoke.html. This data set consists of 346 observations 

and it has been used by Afify et al. (2016) to fit the Marshall-Olkin additive Weibull 

distribution. We compare the fits of the GTPW distribution with other competitive 

models, namely: the beta transmuted Weibull (BTW) (Afify et al., 2016), transmuted 

exponentiated generalized Weibull (TEGW) (Yousof et al., 2015), Kumaraswamy 

Weibull (KwW) (Cordeiro et al., 2010), McDonald Weibull (McW) (Cordeiro et al., 
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2014), transmuted modified Weibull (TMW) (Khan and King, 2013), beta Weibull (BW) 

(Lee et al., 2007) and Weibull (W) distributions with corresponding densities (for  0x  ) 

• The BTW density given by 

( ) ( ) ( )  ( )( ) ( )( ) 
1

1

,
1 2 exp 1 exp 1 exp

a

B a b
f x x x x x

          
−

−      = − + − − − + −
     

( ) ( )( ) ( )( ) 
1

exp 1 1 exp 1 exp .
b

x x x
  

   
−

      − − − − + −
     

 

• The TEGW density given by 

( ) ( )  ( )( )
1

1 ( ) 1 exp 1 2 1 exp .
b b

a xf x ab x e a x a x


       
−

− −     = − − + − − −     
 

• The KwW density given by 

( ) ( ) ( )  ( )( )
1

1
1 1 exp 1 1 exp .

b
a a

x
f x ab x e x x

     

−
−

−−     = − − − − −     
 

• The McW density given by 

( )
( ) ( )  ( )( )

1
1

1

/ ,
( ) 1 exp 1 1 exp .

b
a c

xc

B a c b
f x x e x x

      

−
−

−−     = − − − − −     
 

• The TMW density given by 

( ) ( ) ( ) ( ) 1 exp 1 2 exp .f x x x x e x x         −    = + − + − + − +
   

 

• The BW density given by 

( ) ( ) ( ) ( ) 
1

1

,
exp 1 exp .

a

B a b
f x x b x x

     
−

−    = − − −
   

 

The parameters of the above densities are all positive real numbers except for the BT-W, 

TEGW and TMW distributions for which  1.   

 

In order to compare the fitted models, we consider some goodness-of-fit measures 

including the Akaike information criterion (AIC  ), consistent Akaike information 

criterion (CAIC ), Hannan-Quinn information criterion (HQIC ), Bayesian information 

criterion ( BIC  ) and  
^

2L−  , where  
^

L   is the maximized log-likelihood, 
^

2 2AIC L p= − +  , ( )
^

2 2 / 1CAIC L pn n p= − + − − , ( )
^

2 2 log logHQIC L p n = − +   and 

( )
^

2 logBIC L p n= − +  , p  is the number of parameters and n  is the sample size. 

Moreover, we use the Anderson-Darling ( )A  and the Cramér-von Mises (W  ) statistics 

in order to compare the fits of the two new models with other nested and non-nested 

models. The statistics are widely used to determine how closely a specific cdf fits the 

empirical distribution of a given data set. These statistics are given by  

( ) ( )12 1

9 3 1
1 2 1 log 1

4 4

n

i n jj
A n j z z

n n n



− +=

   = + + + − −      
  

and 
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2

1

1 2 1 1
1 ,

2 2 12

n

ij

j
W z

n n n



=

 −    
= + − +    
     

  

respectively, ( )i jz F y=  , where the yj  's values are the ordered observations. The 

smaller these statistics are, the better the fit. Upper tail percentiles of the asymptotic 

distributions of these goodness-of-fit statistics were tabulated in [Ni] 

 

Tables 3 and 5 list the values of 
^

2L−  , AIC  , CAIC  , HQIC  , BIC  , W   and A  whereas 

the MLEs and their corresponding standard errors (in parentheses) of the model 

parameters are given in Tables 4 and 6. These numerical results are obtained using the 

Mathcad program. In Table 3, we compare the fits of the GTPLi model with the KwLi, 

BLi, PoLi, LiP, TLi and Li models. We note that the GTPLi model has the lowest values 

for the  
^

2L−  , AIC  , CAIC  , HQIC  , BIC  , W

  and  A

  statistics (for the relief 

times data) among the fitted models. So, the GTPLi model could be chosen as the best 

model. In Table 5, we compare the fits of the GTPW model with the BTW, TEGW, 

KwW, McW, TMW, BW and W models. The figures in this table reveal that the GTPW 

model has the lowest values for  
^

2L−  , AIC  , CAIC  , HQIC  , BIC  , W    and  A   

statistics (for the nicotine data) among all fitted models. So, the GTPW model can be 

chosen as the best model. It is quite clear from the values in Tables 3 and 5 that the 

GTPLi and GTPW models provide the best fits to these data sets. So, we claim that these 

new distributions can be better models than other competitive models. 
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6. Conclusion 

In this work, we introduce a new class of continuous distributions called the generalized 

Poisson (GTP-G) family which extends the quadratic rank transmutation map. We 

provide some special models for the new family. Some of its mathematical properties 

including Rényi and  q  -entropies, order statistics and characterizations are derived. The 

estimations of the model parameters are performed by maximum likelihood method. The 

flexibility of the proposed family is illustrated by means of two applications to real data 

sets. The GTP-G family can be viewed as a mixture representation of the exponentiated 

G densities. The new family can also be viewed as a suitable model for fitting the 

symmetric, the right-skewed, and bimodal data. The generalized transmuted Poisson 

Lindley is much better than the Kumaraswamy Lindley, beta Lindley, Lindley-Poisson, 

power Lindley, Transmuted Lindley and Lindley models in modeling the relief times data 

as well as the generalized transmuted Poisson Weibull is much better than the beta 

transmuted Weibull, transmuted exponentiated generalized Weibull, Kumaraswamy 

Weibull, McDonald Weibull, transmuted modified Weibull, beta Weibull and Weibull 

models in modeling the nicotine data. 
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