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Abstract  

 

In this study we introduce a new extended class of continuous distributions named generalized Lindley family of 

distributions. Some properties of the new generator, including ordinary moments, quantile, generating and entropy 

functions, which hold for any baseline model, are presented. The method of maximum likelihood is used for 

estimating the model parameters. The flexibility of the new family of distributions is shown via an application on 

the wind speed data set. The results shows that the proposed family is better than well-known distributions including 

log-logistic, Burr, Dagum, Fréchet, Pearson, Dagum, Lindley, Weibull and exponential distributions. 
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1. Introduction  

Probability distributions are very useful in describing and predicting real world phenomena. . In the literature, different 

pdfs are used to model various data with different characteristics (Sahin et al. (2005), Dokur and Kurban (2015), 

Morgan et al. (2011), Tiwari et. al (2020) etc.). For the evaluation of wind energy potential, probability density 

functions (pdfs) are usually used to model wind speed distributions. The selection of the appropriate pdf reduces the 

estimation error and also allows to achieve characteristics. Over the past few years, many procedures are used to 

combine two or more distributions to have the most of characteristics of these distributions in the resulting distribution. 

Therefore, the new distribution becomes more flexible and gives a better fit to the practical data in many areas of 

study. Among those procedures, the definition of new generators or families of distributions by introducing additional 

parameter(s) to the baseline distribution is very popular. The well-known generators are as follows: the Marshall-

Olkin generated family (MO-G) by Marshall and Olkin (1997), beta-G by Eugene et al. (2002), gamma-G by Zografos 

et al. (2009), exponentiated T-X by Alzaghal et al. (2013), Kumaraswamy-G (Kw-G) by Cordeiro & de Castro (2011), 

transformed-transformer (T-X) by Alzaatreh et al. (2013), additive Weibull-G family by Hassan & Hemada (2016), 

Lindley-G family by Cakmakyapan & Ozel,(2016), odd Lindley-G family by Gomez-Silva et al. (2017), Weibull-

power Cauchy-G family by Tahir et al. (2017), Frechet Topp Leone-G family by Reyad et al. (2020) etc. 

 

The Lindley distribution is as a mixture of exponential and gamma distributions It was proposed by Lindley (1958) 

and was studied in detail by Ghitany et al. (2008, 2011) and Mazucheli & Achcar (2011). They showed that several 

properties of the Lindley distribution are more flexible than those of the exponential or Weibull distributions. These 
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distributions can be used for evaluating entrepreneurial opportunities, see Adel Rastkhiz et al. (2011) for more 

information on this. 

 

The probability density function (pdf) of the Lindley distribution with a scale parameter is given by 

 
2

-λxλ
l(x;λ) (1+ x)e , x > 0, λ > 0

1+ λ
 

 

(1) 

 

and the cumulative distribution function (cdf) is defined as follows: 

 

-λx1+ λ + λx
L(x;λ) = 1- e ,    x > 0,  λ > 0

1+ λ
 

 

(2) 

 

The Lindley distribution has not enough flexibility to analyze different types of lifetime data. Hence, the aim of this 

study is to obtain a new extended family of distributions from the Lindley distribution. The term generator shows that 

we have a different distribution F for each baseline distribution G. Let F(x;ξ) be a baseline cdf having a (rx1) parameter 

vector ξ of unknown parameters. Cakmakyapan & Ozel (2016) defined Lindley family of distributions. In this study, 

motivated by Cakmakyapan & Ozel (2016), the cdf of the generalized Lindley-G (GL-G in short) family of 

distributions is obtained as 

 

 a
λ

a a-log[1-F (x; )] 2
-λt

0

1+ λ + λlog 1- F (x; ) 1- F (x; )λ
G(x;λ,a, ) = (1+ t)e dt = 1- x > 0

1+ λ 1+ λ
, ,

      


ξ ξ ξ
ξ   

 

(3) 

 

where λ, a>0 are two shape parameters. The pdf corresponding to (3) is as follows: 

 
2

λ-1
a-1 a aλ a

g(x;λ,a, ) = f(x; )F (x; ) 1- F (x; ) 1- log(1- F (x; )) , x > 0, λ > 0, a > 0
λ +1

      ξ ξ ξ ξ ξ  
 

(4) 

 

Here, f(x;ξ) is the baseline pdf and a random variable X with the density function in (4) is denoted by X~GL-G(λ,a,ξ). 

Then, the hazard rate function (hrf) of X becomes 

 

( )

2 a-1 a

a a

λ af(x; )F (x; ) 1- log(1- F (x; ))
h(x;λ,a, ) = .

1+ λ + λlog 1- F (x; ) 1- F (x; )

  

     

ξ ξ ξ
ξ

ξ ξ
 

 

(5) 

 

The rest of the paper is organized as follows: In Section 2, we introduce some special models of the new family. Some 

statistical properties are given in Section 3, including quantile function, moments and generated functions. The entropy 

and reliability functions are presented in Section 4. The maximum likelihood estimation of the family is given in 

Section 5. In Section 6, application to real data sets is presented to prove empirically the flexibility of the GL-G family. 

The paper is concluded in Section 7. 

 

2. Special Models 

 

Now, we discuss two special model under the GL-G family. 

 

Generalized Lindley-Weibull (GL-W) distribution  

 

Let 

α
x

-
β

F(x; α, β) = 1- e

 
 
   and 

α
α-1 x

-
βα x

f(x; α, β) = e
β β

 
 
 

 
 
 

 be the cdf and the pdf of the Weibull distribution, respectively. 

Then, from Eq. (4), the pdf of the GL-W distribution is given by 
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( )

α α α α
λ-1

a-1 a a
x x x x2 - - - -
β β β βα-1

α

λ aα
g(x;λ,a,α,β)= x e 1-e 1- 1-e 1-log 1- 1-e ,

λ+1 β

       
       
       

         
                               

  

 

(6) 

 

for x > 0.  Here, α > 0   is a shape parameter and β > 0  is a scale parameter with 
T ξ = ( , )  . A random variable 

with pdf (6) is denoted by  X~GL −W(λ, a, α, β). For = a = 1 , it reduces to the Weibull distribution. For a = 1  , we 

obtain the Lindley-Weibull distribution. Further, if = 1 , we have the generalized Lindley-exponential (GL-E) 

distribution.  

 

  
Figure 1: Plots of the GL-W density and hazard functions for some parameter values. 

 

Figure 1 shows that the plots of the GL-W distribution with several values of parameters. As seen in Figure 1, the 

density function of the GL-W distribution can be right-skewed, symmetric and J-shaped. Furthermore, its hrf can be 

increasing, decreasing, upside-down bathtub or bathtub shaped. 

 

Generalized Lindley-Gamma (GL-Γ) Distribution  

 

Let 
( )γ k, x / θ

F(x;k,θ) =
Γ(k)

 be the cdf and 

x
-
θ

k-1

k

e
f(x;k,θ) = x

Γ(k)θ
 be the pdf of the gamma distribution where k > 0  

is a shape parameter and > 0  is a scale parameter. Here, 
k tΓ(k) = t e dt



− −


1

0

 is the gamma function, 

z

k t(k, z) = t e dt− − 
1

0

 is the incomplete gamma function and Tξ=(k,θ) . Then, the GL- Γ density function x > 0 is 

obtained from Eq. (4) as follows:    

( ) ( ) ( )
x λ-1

a-1 a a-
2 k-1 θ

k

γ k, x / θ γ k, x / θ γ k, x / θλ a x e
g(x;λ,a,k, ) = 1- 1- log 1- ,

λ +1 Γ(k) Γ(k) Γ(k)Γ(k)θ

         
          

             

 

 

(7) 

 

A random variable X with pdf (7) is denoted by X ~ GL - (λ,a,k ) , . For a 1 = =  , it gives the gamma distribution. 

For a 1= , we obtain the Lindley-gamma distribution. Further, if k = 1, we have the GL-E distribution and we obtain 

the Lindley-exponential distribution for a = 1 and k = 1. Figure 2 shows that the hrf of the GL-Γ distribution can be 

increasing, decreasing or bathtub-shaped. Note that more different shapes can be obtained for several values of the 

parameters. 
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Figure 2: Plots of the GL- Γ density and hazard functions for some parameter values. 

 

3. Main Properties 

 

Quantile Function 

 

Let X denote a GL-G random variable. The quantile function, 1G (u)− , 0 < u < 1 , for the T-X family of distributions 

is computed by using the formula of Alzaatreh et al. (2013) as 

( ) ( )-1 1/a
L u-1Q u = F 1- e , 

 
 

 

(8) 

 

where 1L (u)−  is the inverse of the Lindley distribution function and given as  

( )( ) ( )- +1

-1
1+ + W u-1 l+1 e

L (u) = -

 
 


 

 

(9) 

 

where W  is Lambert function in equation (9) can be used to simulate the GL-G random variable. Let U be a uniform 

variable. Using the inverse transformation method, we can also obtain the random variable X, easily. 

 

Useful Expansions  

 

The expansion of Gradshteyn and Ryzhik (2007) is used for a power series raised to any positive integer, n, as 

n

k k

k k

k=0 k=0

a x = c x
  

 
 
   

 

(10) 

 

where m   and n

0 0c = a  are easily obtained from the recurrence equation ( )
m

m k m-k

k=10

1
c = kn - m + k a c

ma
 . In this 

study, we also consider the following expansions: 

( ) ( )
q i i

i=0

q
1- z = -1 z , z > 1,

i

  
 
 

  
 

(11) 

  

( )
i

i=0

z
log 1- z = -z , z > 1,

i+1



  
 

(12) 
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( )

j+k

j,k¥
a-1 a+k-1

k=0 j=0

k
(-1) P

k+1- a j
- log 1- z = -(a-1) z , a > 0.

k a-1- j



 
 

   
    

 
   

 

(13) 

 

where  
k

-1

j,k j,k-m

m=1

P = k k- m(j+1) P   for k = 1,2,..  and 
j,0P = 1 .Cordeiro et al. (2013). 

The mathematical relation given below will be useful to obtain moments and Rényi entropy function of the GL-G 

family. 

 

Moments 

 

Now, we consider that ( )1Y Exp - G a(k +1)  and ( )Y Exp - G a(j+1)(k + j+ 2)2 . The nth moment of X can be 

obtained from (14) as 

( )
-1n -1 -1

n k 1 2

k=0 j=0

= E(X ) w (k +1) E(Y ) + j+1 (k + j+ 2) E(Y ) ,
      

  
( +)    

 'μ =  
 

(14) 

 

where 
1E(Y )  and E(Y )2  are moments of 

1Y  and Y2 , respectively. 

 

Nadarajah and Kotz (2006) provided the closed-form expressions for the moments of exponentiated distributions that 

can be used to obtain GL-G moments. The nth moment of X can also be written as  

2
-1

n k a(k+1)-1 a(k+2+ j)-1

j=0

a
= w I + (j+1) I ,

+1

   
  

    
 '

k=0

μ  
 

(15) 

where 

1

n k

k

0

I = Q (u) u du  and 
k

k

l -1
w = (-1)

k

 
 
 

. Here, nQ (u)  is the quantile function of the baseline distribution. 

The moments can be obtained using the integral based on quantile functions. This is usually simpler to compute than 

if the integral is based on a pdf. By this way the moments of the several GL-G family can be obtained from Eq. (14) 

and (15). 

 

Moment Generating Function 

 

In this subsection, we obtain the moment generating function (mgf)  M  E exp(t )) (tX=   of X. First, using the variables 

( )1Y Exp - G a(k +1)  and ( )Y Exp - G a(j+1)(k + j+ 2)2 , M(t)  is derived by the generating function of the Exp-

G distribution as follows: 

( )
2

-1tX -1 -1

k 1 2

k=0 j=0

M(t e = w (k +1) M(Y ) + j+1 (k + j+ 2) M(Y) = )
( +1)a

E
     

          
   

 

(16) 

 

where 1M(Y )  and M(Y )2  are mgfs of 1Y  and Y2 , respectively. 

 

An alternative formula for M(t)  can be derived as  

2
-1

k a(k+1)-1 a(k+2+ j)-1

k=0 j=0

a
= w S + (j+1)M(t S

+1
)

   
  

    
   

 

(17) 
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where 

1

n k

k

0

S = Q (u) u du  and 
k

k

l -1
w = (-1)

k

 
 
 

. Note that the mgfs of the GL-G family can be obtained directly from 

(16) and (17). 

 

4. Other Measures 

 

Rényi Entropy 

 

The entropy of a random variable X is a measure of variation about the uncertainty. Well-known entropy measure is 

the Rényi entropy. The Rényi entropy of a random variable with pdf is defined as  

( ) ( )R

0

1
log f x dx

1



  =
−    

 

(18) 

 

for 0   and 1   (Rényi (1961)). In this section, we simply write f(x; ) = f(x) . Then, we obtain the Rényi entropy 

of the GL-G family as follows: 

( ) ( )

( )
( ) ( ) ( ) ( )( )

( )

γ

R

0

2γ γ
γγλ-γ

γ aγ-γ a a

γ

0

2γ γ

i k i,kγ
i=0 k=0

1
Ι γ = log f x dx

1- γ

1 λ a
= log f x F x 1- F x 1- log 1- F x dx

1- γ λ +1

1 λ a γ
= log E D Ι ,

1- γ λ +1





 

     

 
 
  







 

 

(19) 

where 
i

iE ( 1)
i

 −  
= −  

 
, 

r+k

r,kk

k

j=0 r=0

k
(-1) P

γ k - γ r
D =

j k γ - r



 
 

    
  
  

 , and ( ) ( )a(i+2γ+k)-γ γ

i,k

0

Ι = F x f x dx.



  

Here, we have ( )  
k

-1

r.k j,k-m

m=1

P = k k - m(j+1) P  . 

 

Shannon Entropy 

 

Now, we obtain the Shannon entropy for the GL-G family. It is worth mentioning that the notion of the entropy can 

be used for goodness of fit test for the developed distribution. See Mahdizadeh and Zamanzade (2019), Mahdizadeh 

and Zamanzade (2017), Zamanzade and Mahdizadeh (2017),Zamanzade (2015), Zamanzade and Arghami (2012). 

The Shannon entropy for a random variable X is defined by ( )E -logg x   . It is the special case of Rényi entropy 

when  1 (Shannon (1951)). Using the expansions (12) and (13), we obtain 

( ) ( ) ( ) ( ) ( )

( )

a

a

-log g x = -2logλ - loga + log λ +1 - log f x - λ -1 log 1- F (x)

- alogF(x) - log 1- log 1- F (x) 
 

 

 

(20) 

and for the GL-G family direct calculation yields 

( ) ( ) ( ) ( )  

( )

a(i+1)

i=0

a

E F (x)
E -log g x = -2logλ - loga + log λ +1 - E log f x - λ -1 - aE log F(x)

i +1

-E log 1- log 1- F (x) .

   
      

  
  


 

 

(21) 
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Reliability 

 

In reliability, the stress-strength shows a component life which has a random strength 
1X  that is subjected to a random 

stress X2 . The component fails at the instant that the stress applied to it exceeds the strength, and the component will 

function satisfactorily whenever 1 2X > X  Therefore, 1 2R = P(X > X )   is a measure of component reliability.  

Now, we define the reliability function R when 1 1X ~ GL - G(λ ,a, )ξ  and X ~ GL -G(λ ,a, )2 2 ξ  are independent 

random variables. Let ig  denote the pdf of iX  and iG  denote the cdf of iX  for i = 1,2, then the reliability function 

for the GL-G family is obtained as 

( ) ( )

     

1 2

0

1 2i1

i=01

-1 -1 -1-1 2 2

j

k=0 j=02 2

R = g x G x dx

λ + λ -1λ a
= 1- (-1)

iλ +1

2λ +1 λ
a(i +1) + (k +1) a(i + k + 2) - c a(i + 3+ j)

λ +1 λ +1





 

 
 
 

   
  
   





 

 

 

(22) 

where 
m

-1

m m- j

j=1

3j- m
c = m c

j+1
  and m 1 . 

 

5. Maximum Likelihood Estimation 

 

Method of moments for estimation is straightforward and produces consistent estimators these estimators are often 

biased. The estimates offered by the method of moments are often outside of the parameter space which is uncommon 

with large samples but not so uncommon with small samples; it does not make sense to rely on them in such situations. 

So we choose to use maximum likelihood estimation method. 

 

Now, we obtain the MLEs of the parameters of the GL-G family. Let 1 2 nx , x ,..., x  be observed values from the GL-

G family with parameters (λ,a, )ξ . The total log-likelihood function of the parameters is obtained as 

 

( )

n n
a

i i

i=1 i=1

n n
a a

i i

i=1 i=1

log L = n 2log λ + log a - log(λ +1) + log f(x ; ) + (λ -1) log 1- F (x ; )

+ log F (x ; ) + log 1- log 1- F (x ; )

  

 
 

 

 

ξ ξ

ξ ξ

 

 

(23) 

The log L can be maximized by solving the nonlinear likelihood equations obtained by differentiating (23). The first 

derivatives of log L with respect to parameters (λ,a, )ξ  are given by 

n
a

i

i=1

                            

log L 2 1
= n - + log 1- F (x ;

                   

)

 

,
λ λ λ +1

                   

  
      

 ξ
 

 

(24) 

 

( )

an n
i i

ia
i=1 i=1i

n
i

a a
i=1

i i

F (x ; )log F(x ; )log L n
= - (λ -1) + log F(x ; )

a a 1- F (x ; )

log F(x ; )
+ ,

1- log 1- F (x ; ) 1- F (x ; )





     

 



ξ ξ
ξ

ξ

ξ

ξ ξ

 

 

(25) 

 



Pak.j.stat.oper.res.  Vol.17  No. 2 2021 pp 387-397  DOI: http://dx.doi.org/10.18187/pjsor.v17i2.2518 

 

 
Generalized Lindley Family with application on Wind Speed Data 394 

 

, 

( )

a-1 a-1n n n
i i i i i

a
i=1 i=1 i=1i ii

a-1n
i i

a a
i=1

i i

f(x ; ) aF (x ; ) F(x ; ) aF (x ; ) F(x ; )log L 1
= - (λ -1) +

f(x ; ) F(x ; )1- F (x ; )

aF (x ; ) F(x ; )
+

1- log 1- F (x ; ) 1- F (x ; )

  

   



     

  



ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξξ

ξ ξ

ξξ ξ

 

 

(26) 

The MLEs of (λ,a, )ξ , say ˆ ˆˆ(λ,a, )ξ , are the simultaneous solutions of the equations 
log L

= 0
λ




, 

log L
= 0

a




, 

log L
= 0



ξ
. Maximization of the equations can be obtained from nlm or optimize in R statistical package.  

 

6. Application 

 

Now, the flexibility of the GL-G models is demonstrated via applications on two real data sets. The estimation of the 

unknown parameters are obtained by the maximum likelihood method. Then, Akaike information criterion (AIC), 

Corrected Akaike information criterion (CAIC), Bayesian information criterion (BIC), Hannan-Quinn information 

criterion (HQIC) are provided. We also give the histograms of data sets and plot the fitted density functions to obtain 

a visual comparison of the adjustments of the models in Figures 3 and 4.  

 

The data sets represent the wind speeds (m/s) from several stations in Turkey between years 2012-2015 

(http://www.havaizleme.gov.tr/Default.ltr.aspx). The first data set includes 84 observations and belongs to Kırklareli 

(Vize) station in Turkey. The second data set includes 811 observation from Yalova station in Turkey.  

 

We demonstrated the flexibility of the GL-E and GL-W distributions in contrast with other models including fitted 

log-logistic, Burr, dagum, Lindley, Weibull and exponential distributions. Table 1 presents the values of -LogL and 

AIC, CAIC, BIC, HQIC for the fitted models. The results in Table 1 show that the GL-E model provides the best fit 

to the first data. Table 2 presents the MLEs and their standard errors of the parameters from the fitted models for the 

first data. Figure 3 provides more information by a usual comparison of the histograms for the data with the best three 

fitted pdfs. It shows that the GL-E distribution yields more adequate fit than the other distributions. 

 

Table 1: Information criterias for the first data. 

Distribution AIC CAIC BIC HQIC -Log(likelihood) 

G-LE 338.8138 339.1138 346.1062 341.7453 166.4069 

G-LW 340.4393 340.9456 350.1626 344.348 166.2197 

Log-Logistic 341.4075 341.5556 346.2691 343.3618 168.7037 

Burr 343.1571 343.4571 350.4495 346.0886 168.5785 

Dagum 343.2533 343.5533 350.5458 346.1848 168.6267 

Weibull 347.2001 347.3483 352.0617 349.1544 171.6001 

Lindley 396.5762 396.6250 399.0070 397.5533 197.2881 

Exponential 428.3656 428.4144 430.7965 429.3428 213.1828 

 

Table 2: MLEs for the first data. 

Distribution Estimated Parameters 

GL-E 0.33738, 83.45717, 0.48879 

GL-W 0.23342, 30.29890, 1.28209, 0.72957 

Log-Logistic 4.15890, 4.28155 

Burr 3.80423, 1.32733 ,4.77772 

Dagum 3.88827, 1.23275, 3.95189 

Weibull 2.54382, 5.25567 

Lindley 0.37148 

Exponential 4.65476 
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Figure 3: Estimated models for the first data set. 

 

As the second application, we fit the Fréchet, Pearson 5, Dagum, Gamma, Lindley, Weibull, and the proposed GL-Γ 

distributions. The results in Table 3 show that the GL-Γ model has the lowest values for the AIC, BIC, CAIC, HQIC 

values among all fitted models, and it could be chosen as the best model for explaining the second data. The MLEs 

and their standard errors of the parameters from the fitted models for the second data are presented in Table 4. A 

density plot in Figure 4 also compares the fitted densities of the best three models with the empirical histogram of the 

second data. Figure 4 shows that the fitted density for the GL-Γ distribution is closer to the empirical histogram than 

the fits of the other distributions. 

 

Table 3: Information criterias for the second data. 

Distribution AIC CAIC BIC HQIC -Log likelihood 

GL-  1308.517 1308.567 1327.310 1315.732 650.2587 

Fréchet 1311.309 1311.338 1325.404 1316.720 652.6544 

Pearson 5 1379.398 1379.427 1393.492 1384.809 686.6158 

Gamma 1682.466 1682.480 1691.862 1686.073 838.7796 

Weibull 1706.828 1706.842 1716.224 1710.435 851.4138 

Lindley 2551.142 2551.146 2555.840 2552.945 1274.571 

Dagum 1309.597 1309.647 1328.390 1316.812 650.7986 

 

Table 4: MLEs for the second data. 

Distribution Estimated Parameters 

GL-  0.57676, 325.0000, 0.99726, 0.24100 

Fréchlet 4.06169, 1.70736, 0.0000000001 

Pearson 5 3.08617, 0.80312, 3.28057 

Gamma 4.71988, 0.43108 

Weibull 2.85093, 2.26683 

Lindley 0.76859 

Dagum 57.98648,  0.04114 -1.18864  4.78999 
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Figure 4. Estimated models for the second data set. 

 

 

7. Concluding Remarks 

 

In this paper, a new family of distributions called the “Generalized Lindley-G” which can generate all classical 

continuous distributions is proposed. We study some properties of the new generator including moments, generating, 

entropy and quantile functions, and reliability. We obtain maximum likelihood estimations of the model parameters. 

Two real dataset examples from the field of natural sciences were studied to demonstrate the applicability of the 

proposed model in real life phenomena. As a future work we will consider bivariate and multivariate extension of the 

proposed new distributions. Also, we will apply the models to fit various data of different areas. 
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