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Abstract  

 

The problem considered in the present paper is that of smooth (nonparametric) estimation of mixing proportions 

in a mixture population of two (known) distributions represented by F(x) = pF_1(x) + (1-p)F_2(x), -∞<x<+∞,  
0<p<1. The two classes of ‘smoothed’ and ‘unsmoothed’ estimates studied in the paper are based on an iid 

sample of n observations from the mixture population, using the minimum weighted square distance (MWSD) 

methodology due to Wolfowitz (1953). Comparison of estimators is done based on their relative mean square 

errors (MSE’s). The superiority of smoothed estimators over their corresponding unsmoothed counterparts is 

established theoretically as well as by conducting a small Monte-Carlo study that compares their resulting MSE’s. 

Large sample properties such as a.s. rates of their convergence and asymptotic normality etc. are also established. 

The results proved are new in the literature. 
 

Key Words: mixture of distributions, mixing proportions, smoothed MWSD estimation, mean square error, 

optimal band width 
 

1. Introduction 

Let {𝑋1,𝑋2,…,𝑋𝑛} be independent observations from a mixture population represented by the mixture distribution 

function (d.f.) 

 

F(x) = ∑ 𝑝𝜈𝐹𝜈
𝑚
𝜈=1 (x), -∞<x<∞,                    (1.1) 

 

a finite linear mixture of m d.f.s 𝐹𝜈, 𝜈=1,2,…,m with mixing proportions 𝑝𝜈’s satisfying 0<𝑝𝜈<1 and ∑ 𝑝𝜈
𝑚
𝜈=1  =1. In 

any mixture analysis, the main objective is to estimate as effectively and accurately as possible, the mixing 

proportions 𝑝𝜈 , 𝜈=1,2,…,m, along with possibly other parameters which may also be of interest or may simply be in 

the underlying model as nuisance parameters. This depends on the extent to which we have knowledge and are 

willing to make assumptions regarding the nature of component distributions. In situations where one can 

legitimately assume the component distributions to belong to a parametric family of densities or discrete 

distributions that depend on a finite number of real parameters, Maximum Likelihood (MLE) or Minimum Distance 

Estimation (MDE) methodologies (including that of the Minimum Hellinger Distance (MHD)) have been utilized in 

statistical literature to derive highly efficient estimates of the mixing proportions and other parameters of interest, 

(see Day(1969), Wolfe (1970), Hosmer (1973), Hall and Titterington (1984), Woodward et.al.(1984), Titterington, 

Smith and Makov (1985) respectively, Choi and Bulgren (1968), Choi (1969), McDonald (1971), Clarke and 

Heathcote (1994), Woodward, Whitney and Eslinger (1995) etc.). 
 

In the nonparametric situation also, with little information about the component distributions beyond that 

they possess densities, Wu and Karunamuni (2009) employing Rosenblat-Parzen type density estimates coupled 

with the MHD estimation technique have derived asymptotically fully efficient estimate of mixing proportions (see 

also Wu and Karunamuni (2009) and Tang and Karunamuni (2013)). 
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 However, when dealing with (continuous) mixture populations where one cannot legitimately or formally 

assume that the component distributions do possess densities or when the data recordings are available only in 

discrete or grouped forms, the validity of the preceding techniques becomes highly questionable. In such situations, 

it seems much safer to revert to the suggestion of Hall (1981) to base ones Minimum Distance Estimation 

procedures based on empirical distribution functions rather than the empirical density estimators. 
 

Mixtures of distributions widely used in both biological and physical sciences. Many typical problems in 

which such mixtures occur have been well described in a series of research papers. Few among them are, 

i. In Oceanography, the interest of study is to measure characteristics in natural population of species (fish). 
So that the samples of species (fish) are taken to measure the characteristic of each species (fish) in the 

sample. However we can measure many characteristics such as weight, length etc. of fish which vary with 

age of species(fish). These characteristics have different distribution for each age group so that the 

population has a mixture of distributions. 

ii. In failure time analysis, it is desired to measure failure time of units in a population.  For this purpose, 

samples of units are taken and failure time measured for each unit in the sample. However, failures are 

occurring due to different causes. The failure times have distinct distributions due to different causes so that 

the overall population has a mixture of distributions. 

 

For more details of such examples, refer Choi and Bulgren(1968), Harris(1958), Blischke(1963), Fu(1968), 

Macdonald and Pitcher(1979), Odell and Basu (1976) and Bruni et al(1983) etc. 
There are several methods of estimating mixing proportions discussed in the literature. Choi and 

Bulgren(1968) estimated the mixing measures of combination of known distributions by using Wolfowitz minimum 

distance method, which minimizes 

  

         ∫( �̃�𝑛(x)-F(x))2d�̃�𝑛(x),                    (1.2) 

 

based on the usual unsmoothed standard empirical distribution function �̃�𝑛(x) = 𝑛−1  ∑ 𝐼𝑛
𝑖=1 (𝑋𝑖≤x) of a random 

sample 𝑋𝑖, 1≤i≤n. They investigated the asymptotic properties of their estimators such as strong consistency and 

asymptotic normality etc. Van Houwelingen (1974) pointed that the variance of Choi and Bulgren estimator is hard 

to compute and small sample properties of the estimator are difficult to evaluate. As pointed out in Hall (1981), 

methods based on nonparametric density estimators involve some significant drawbacks. 

• specification of window width in kernel based estimators and their behavior which is very sensitive to the 

choice of window width parameter and also that 

• their mean square errors converge at a slower rate than order 𝑛−1 . 

To avoid these draw backs, Hall (1981) proposed the nonparametric (MWSD) estimators of mixing 

proportions in finite mixtures based on the usual empirical distribution function only. But did not make any attempt 

to derive small as well as large sample properties of these proposed estimators. In the present paper, we discuss 

estimators based on both the usual empirical distribution functions (e.d.f.) F̃n(x) and also the kernel based smoothed 

e.d.f. �̂�n(x) defined, respectively, by 

  F̃n(x) = 𝑛−1 ∑ 𝐼𝑛
𝑖=1 (Xi ≤ x)  and  �̂�n(x)= 𝑛−1 ∑ 𝐾𝑛

𝑖=1 (
x− Xi

an
),                           (1.3) 

{an} being the smoothing bandwidth sequence satisfying 0< 𝑎𝑛→0, n𝑎𝑛→∞, as n→∞, and K the distribution 

function corresponding to a known suitable kernel density k. 

 

2. Smoothed Hall’s Minimum Weighted Squared Distance Estimator of Mixing Proportions 

In this section, we shall define and study the ‘smoothed’ version of Hall’s (1981) Minimum Weighted 

squared Distance (MWSD) estimators based on smoothed e.d.f’s defined below in (2.2). 

The problem of estimation of mixing proportion p for the m = 2 case defined in (1.1) is studied in the 

present paper and the case m>2 would be considered seperately. Now, if F(x) = p𝐹1(x) + (1 - p) 𝐹2(x),-∞<x<+∞, 

clearly we have 

  p = 
𝐹(𝑋)− 𝐹2(𝑋)

𝐹1(𝑋)− 𝐹2(𝑋)
, -∞<x<∞,                        (2.1) 

so that if the d.f.s 𝐹1 and 𝐹2 were known, for each value of x one can have an estimator of p by substituting the 

smoothed (or unsmoothed) e.d.f. in place of F in the equation (2.1).  Some suitable averaging seems to be in order to 
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come up with an overall appropriate estimator. This is provided by Hall’s minimization of weighted squared 

distance between the smoothed e.d.f. �̂�𝑛 (or e.d.f �̃�𝑛) and the mixture d.f. [F(x)=p𝐹1(x)+(1-p)𝐹2(x)], i.e., the squared 

distance ∫[ F̂n(x)-(p𝐹1(x)+(1-p)𝐹2(x))]2 dW(x) w.r. to a suitable averaging d.f. W(x),  -∞<x<∞. 

We propose the smoothed MWSD estimator defined as follows: 

 

Smoothed MWSD estimator �̂�𝒏: Smoothed MWSD estimator �̂�𝑛  of p based on the kernel  empirical d.f. �̂�n(x) as 

proposed is obtained by choosing p such that 

∆̂(p) = ∫( F̂n(x) – F(x))2dW(x) 

        = ∫[ F̂n(x) – 𝐹2(x) - p(𝐹1(x)- 𝐹2(x))]2dW(x)                              (2.2) 

is minimum, when Fj(x); j = 1,2 are known and W(x) is a suitable known weight function-discrete or continuous.  

Solving ∆̂(p) as 
𝜕∆̂(p)

𝜕𝑝
 = 0 for p and letting D =∫𝑑12

2 (x)dW(x), 𝑑12(x) = 𝐹1(x)- 𝐹2(x), we obtain the smoothed MWSD 

estimator �̂�𝑛  as, 

D�̂�𝑛  = ∫(F̂𝑛(x) - 𝐹2(x))d12(x)dW(x),                (2.3) 

Note that, Hall’s (1981) unsmoothed version denoted by �̃�𝑛  is obtained by replacing F̂𝑛(x) in (2.3) by the usual e.d.f. 

F̃𝑛(x), so that 

   D�̃�𝑛  = ∫(F̃𝑛(x) - 𝐹2(x))d12(x)dW(x).                     (2.4) 

The object of the present investigation is to show that Hall’s (1981) MWDE procedure can be improved by basing it 

on the smoothed e.d.f.s in place of the usual e.d.f.s.  This is demonstrated below, generally speaking, for both cases 

when the averaging distribution W is discrete or continuous, but decidedly when W is discrete. 

So far none of the researchers have attempted to compute the variance of such estimators. In the present 

work, the variances, exact MSEs and large sample properties such as strong consistency and asymptotic normality 

are established and also the superiority of smoothed estimator over the unsmoothed version in the sense of a smaller 

MSE. Our results are completely new in the literature. 

 

Representations to MWSD estimators �̂�𝒏 and �̃�𝒏 

We first establish the representation to �̂�𝑛  in order to prove its asymptotic properties. Recall from (2.3), 

 D�̂�𝑛  = ∫[F̂𝑛(x) - 𝐹2(x)]𝑑12(x)dW(x), 

where 𝑑12(x) = 𝐹1(x)- 𝐹2(x) and from (2.1) for m=2 

 D(�̂�𝑛  – p) = ∫[ F̂n(x) -F(x)]𝑑12(x)dW(x) 

              = ∫[ F̂n(x) – E F̂n(x) + E F̂n(x) - F(x)]𝑑12(x)dW(x) 

              =∫ λ̂n(x)𝑑12(x)dW(x)+∫[EF̂n(x)-F(x)]𝑑12(x)dW(x) 

               =: λ̂𝑛
∗  + 𝐶𝑛 .                              (2.5) 

Similarly, it is easy to show 

 D (�̃�𝑛  – p) = λ̃𝑛
∗  ,                                     (2.6) 

where λ̂𝑛
∗ =∫ λ̂n(x)𝑑12(x)dW(x), λ̂n(x)=F̂n(x)–EF̂n(x) and 𝐶𝑛=∫[EF̂n(x)-F(x)]𝑑12(x)dW(x) 

We shall use equation (2.5) to evaluate the MSE of the estimator �̂�𝑛  in both cases when the selected W(x) is a 

discrete or a continuous (averaging) distribution. 

 

Lemma 2.1: Assume the following conditions on F and the kernel function k: 

i. F(x) possesses at least three continuous derivatives; 

ii. The kernel K satisfies 𝜇𝑙(K)=∫ 𝑡𝑙dK(t)=0, 𝑙=1,3,  

𝜇2𝑙(K) =∫ 𝑡2𝑙dK(t)<∞, 𝑙=1,2, 𝜓𝑗(K) = 2∫ 𝑡𝑗K(t)dK(t)<∞, 𝑙=1,2; 

iii. {𝑎𝑛} satisfies 0<𝑎𝑛⟶0, n𝑎𝑛⟶∞ and  nan
3⟶0, as n⟶∞;  

then  

a. when W is continuous, Bias �̂�𝑛  = 𝐷−1 an
2  𝜉𝑛4𝑐 + O(an

4), 

where 𝜉𝑛4𝑐 =  
1

2
 𝜇2 (K) ∫ 𝐹

∞

−∞

(2)
(x)𝑑12(x)dW(x); 

b. when W is discrete(see(2.11) below), Bias �̂�𝑛=𝐷−1an
2𝜉𝑛4𝑑+ O(an

4), 

where 𝜉𝑛4𝑑 = 
1

2
 𝜇2(K)∑ 𝐹(2)

𝑖 (𝑥𝑖)𝑑12(𝑥𝑖)p(𝑥𝑖). 
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Proof: Recall from (2.5), 

Bias p̂𝑛 = E p̂𝑛 – p = 𝐷−1𝐶𝑛 . 

Noting that 𝜇𝑙(K) =∫ 𝑡𝑙dK(t) = 0 for 𝑙=1,3,     

E K( 
𝑥 − 𝑋𝑖 

𝑎𝑛
) = ∫ 𝐾

∞

−∞
(
𝑥 − 𝑢 

𝑎𝑛
)dF(u) = ∫ 𝐾

−∞

+∞
(t)dF(x-ant) 

        = ∫ [𝐹
∞

−∞
(x)-𝑎𝑛t F(1)(x)+

an
2t2

2
 F(2)(x)- 

1

6
 an

3 t3F(3)(x)+ 
1

24
 an

4t4F(4)(x)+O(an
5)]dK(t)                    

       = F(x)+
an
2

2
𝜇2(K)∫ 𝐹

∞

−∞

(2)
(x)𝑑12(x)dW(x)+O(an

4),                                        (2.7) 

so that from (2.5) and (2.7), we have 

Bias �̂�𝑛  =: 𝐷−1 an
2  𝜉𝑛4𝑐 + O(an

4),                                      (2.8) 

where 𝜉𝑛4𝑐 is given in part (a) above. Hence the part (a) of Lemma follows. Similarly when the selected W(x) is a 

discrete d.f., then (2.8) becomes 

  Bias �̂�𝑛  = 𝐷−1 an
2  𝜉𝑛4𝑑 + O(an

4), 

where 𝜉𝑛4𝑑 is given in part (b) above. Hence part (b) of the Lemma is proved.  

We now establish large sample MSEs of �̂�𝑛 , �̃�𝑛  and show the superiority of smoothed estimator �̂�𝑛  over the 

unsmoothed version �̃�𝑛  in the sense of a lower MSE. 

 

Variances of MWSD estimators:  We first obtain the large smaple expressions for the variances of both MSWD 

estimators �̃�𝑛  and �̂�𝑛  defined in (2.4) and (2.3), respectively, in the following Lemma 2.2 and Corollary 2.3. 

Lemma 2.2: Under the conditions (i)-(iii) of Lemma 2.1 on F, the kernel function K and the bandwidth sequence 

{an},  

a) when the weight W is a discrete d.f., we have 

𝜎𝑛𝑑
2 =Var �̂�𝑛=:𝐷−2[ 

𝜉𝑛0𝑑

𝑛
- 

𝑎𝑛

𝑛
 𝜉𝑛1𝑑 + 

an
2

𝑛
  𝜉𝑛2𝑑 + O(

an
3

𝑛
)] 

where 𝜉𝑛0𝑑, 𝜉𝑛1𝑑, 𝜉𝑛2𝑑 are defined below in (2.19);  

b) when the weight W is a continuous d.f., we have 

𝜎𝑛𝑐
2 =Var �̂�𝑛=:𝐷−2[ 

𝜉𝑛0𝑐

𝑛
 - 

an
2

𝑛
  𝜉𝑛2𝑐 + O(

an
3

𝑛
)] 

where 𝜉𝑛0𝑐, 𝜉𝑛2𝑐 are defined below in (2.35). 

 

Proof: From Lemma 2.1 and (2.5) 

 n𝐷2Varp̂𝑛= n𝐷2Var�̂�𝑛
∗  = n𝐷2Var{∫[ F̂n(x)–EF̂n(x)] 𝑑12(x)dW(x)} 

        = 
1

n
 E [∑ ∫(K( 

𝑥 − 𝑋𝑖 

𝑎𝑛
) –  E K( 

𝑥 − 𝑋𝑖 

𝑎𝑛
))𝑛

𝑖=1 𝑑12(x)dW(x)]2  .                     (2.9) 

Let  

E [∫{K( 
𝑥 − 𝑋1 

𝑎𝑛
) –  E K( 

𝑥 − 𝑋1  

𝑎𝑛
)}𝑑12(x)dW(x)]2 =: 𝐿1 - 𝐿2                              (2.9a) 

To evaluate the quantities 𝐿1, 𝐿2, as n→∞, note that in view of  (2.7), the last equation (2.9a) immediately yields 

 𝐿2 = [∫𝐸[ K( 
𝑥 − 𝑋1  

𝑎𝑛
)]𝑑12(x)dW(x)]2      

      = [∫{F(x) + 
an
2

2
 𝜇2(K)F(2)(x) + O(an

4)}𝑑12(x)dW(x)]2 

               = [∫𝐹(x)𝑑12(x)dW(x)+
an
2

2
𝜇2(K)∫F(2)(x)𝑑12(x)dW(x)+O(an

4)}]2 

     = [∫𝐹(x)𝑑12(x)dW(x)]2 + an
2𝜇2(K){∫𝐹(x)𝑑12(x)dW(x)}{∫ F(2)(x)𝑑12(x)dW(x)}+ O(an

4).        (2.10) 

For the evaluation of 𝐿1, we have to deal with two cases when W is discrete or of continuous type separately: 

 

Let W stand for a discrete d.f. assigning positive probability p(𝑥𝑖) to a countable set of reals {𝑥𝑖:𝑥𝑖<𝑥𝑖+1, 

with i∈C, a countable set of integers with only a finite number of 𝑥𝑖’s belonging to each compact interval. (For 

example, consider the Double Exponential distribution with density f(x) = 
1

2
𝑒−|𝑥|, -∞<x<∞ and sequence of discrete 

point sets {𝑥𝑛𝑘
∗ : 𝑥𝑛𝑘

∗  = (
𝑘∓0.5

𝑛1/5 ), k=…-3,-2,-1,0,1,2,3…} ⊂ Real line}).                 (2.11) 

Then the expressions 𝐿2 from (2.10) above, can be written as  

          𝐿2 = [∑ 𝐹𝑖 (𝑥𝑖)𝑑12(𝑥𝑖)p(𝑥𝑖)]
2 +an

2  𝜇2(K)[∑ 𝐹𝑖 (𝑥𝑖)𝑑12(𝑥𝑖)p(𝑥𝑖)][∑ 𝐹(2)
𝑖 (𝑥𝑖)𝑑12(𝑥𝑖)p(𝑥𝑖)] + O(an

4)    

 =: 𝜉𝑛𝑜𝑑
(1)

 + an
2𝜉𝑛2𝑑

(1)
 + O(an

4), (say)                                  (2.12) 
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and the expression 𝐿1 from (2.9a) as 

 𝐿1 = ∬𝐸 K( 
𝑥 − 𝑋1 

𝑎𝑛
) K( 

𝑦 − 𝑋1 

𝑎𝑛
)𝑑12(x) 𝑑12(y)dW(x)dW(y)            

    = ∑ ∑ 𝐸𝑖𝑗 {K( 
𝑥𝑗 − 𝑋1  

𝑎𝑛
) K( 

𝑥𝑖 − 𝑋1 

𝑎𝑛
)}𝑑12(𝑥𝑗)p(𝑥𝑗)𝑑12(𝑥𝑖)p(𝑥𝑖) 

  = ∑ 𝐸𝑗  [K2 (
𝑥𝑗 − 𝑋1  

𝑎𝑛
) d12

2 (𝑥𝑗)p2(𝑥𝑗)+2∑ ∑ 𝐸𝑖>𝑗𝑗 {K(
𝑥𝑗 − 𝑋1 

𝑎𝑛
)K(

𝑥𝑗 − 𝑋1  

𝑎𝑛
+

𝑥𝑖 − 𝑥𝑗 

𝑎𝑛
)}𝑑12(𝑥𝑗)p(𝑥𝑗)𝑑12(𝑥𝑖)p(𝑥𝑖) 

     =: 𝐿11 + 𝐿12, (say).                                         (2.13) 

Now in 𝐿11, for large n, 

 E [K2 (
𝑥𝑗 − 𝑋1  

𝑎𝑛
)] = ∫𝐾2(t) dF(𝑥𝑗  - 𝑎𝑛t) 

              = ∫ [𝐹
∞

−∞
(𝑥𝑗) - 𝑎𝑛t F(1)(𝑥𝑗) + 

an
2t2

2
 F(2)(𝑥𝑗) + O(an

3)]dK2(t) 

             = F(𝑥𝑗)- 𝑎𝑛𝜓1(K)F(1)(𝑥𝑗)+ 
an
2

2
 𝜓2(K)F(2)(𝑥𝑗)+ O(an

3),                       (2.14) 

with 𝜓𝑙(K) = 2∫ 𝑡𝑙 K(t)dK(t), 𝑙 = 1,2 and in 𝐿12 for j<i ⟺ 𝑥𝑗  < 𝑥𝑖 and sufficiently large n, so that (𝑥𝑖 - 𝑥𝑗) >2𝑎𝑛, 

 E {K( 
𝑥𝑗 − 𝑋1  

𝑎𝑛
)K( 

𝑥𝑖 − 𝑋1  

𝑎𝑛
)} = ∫𝐾(t)K( 

𝑥𝑖 − 𝑥𝑗 

𝑎𝑛
+ 𝑡)dF(𝑥𝑗  - 𝑎𝑛t) 

     = ∫𝐾(t) dF(𝑥𝑗  - 𝑎𝑛t) 

     = F(𝑥𝑗) + 
an
2

2
 𝜇2(K)F(2)(𝑥𝑗) + O(an

4),                           (2.15) 

the last but one equality in (2.15) above following since for (𝑥𝑖 - 𝑥𝑗) >2𝑎𝑛, K(
𝑥𝑖 − 𝑥𝑗 

𝑎𝑛
+t )≡1 identically. From (2.10), 

(2.14) and (2.15), it therefore follows that 

 𝐿11= ∑ 𝐹𝑗 (𝑥𝑗)d12
2 (𝑥𝑗)p2(𝑥𝑗) - 𝑎𝑛𝜓1(K)∑ F(1)

𝑗 (𝑥𝑗) d12
2 (𝑥𝑗)p2(𝑥𝑗) + 

an
2

2
 𝜓2(K)∑ F(2)

𝑗 (𝑥𝑗) d12
2 (𝑥𝑗)p2(𝑥𝑗)  

+ O(an
3) 

       =: 𝜉𝑛𝑜𝑑
(2)

 - 𝑎𝑛 𝜉𝑛1𝑑 + an
2𝜉𝑛2𝑑

(2)
 + O(an

3) (say),                             (2.16) 

and 

             𝐿12 = 2∑ ∑ 𝐹𝑖>𝑗𝑗 (𝑥𝑗)𝑑12(𝑥𝑖)𝑑12(𝑥𝑗)p(𝑥𝑖)p(𝑥𝑗)+an
2𝜇2(K)∑ ∑ F(2)

𝑖>𝑗𝑗 (𝑥𝑗)𝑑12(𝑥𝑖)𝑑12(𝑥𝑗)p(𝑥𝑖)p(𝑥𝑗)+O(an
4) 

     =: 𝜉𝑛𝑜𝑑
(3)

 + an
2𝜉𝑛2𝑑

(3)
 + O(an

4) (say).                                      (2.17) 

Substituting the expressions for 𝐿2 and 𝐿1=𝐿11+𝐿12, from (2.12) and (2.13), (2.16)-(2.17), respectively, in (2.9), we 

obtain that, as n→∞, 

           n𝐷2Var �̂�𝑛  = [∑ 𝐹𝑗 (𝑥𝑗)d12
2 (𝑥𝑗)p2(𝑥𝑗) +2∑ ∑ 𝐹𝑖>𝑗𝑗 (𝑥𝑗)𝑑12(𝑥𝑖)𝑑12(𝑥𝑗)p(𝑥𝑖)p(𝑥𝑗)  

                                -[∑ 𝐹𝑗 (𝑥𝑗)𝑑12(𝑥𝑗)p(𝑥𝑗)]2 - 𝑎𝑛𝜓1(K)∑ F(1)
𝑗 (𝑥𝑗)d12

2 (𝑥𝑗)p2(𝑥𝑗)  

+ 
an
2

2
 [𝜓2(K)∑ F(2)

𝑗 (𝑥𝑗)d12
2 (𝑥𝑗)p2(𝑥𝑗) 

     -2𝜇2(K)[∑ 𝐹𝑗 (𝑥𝑗)𝑑12(𝑥𝑗)p(𝑥𝑗)][∑ 𝐹(1)
𝑖 (𝑥𝑖)𝑑12(𝑥𝑖)p(𝑥𝑖)] 

+2𝜇2(K)∑ ∑ F(2)
𝑖>𝑗𝑗 (𝑥𝑗)𝑑12(𝑥𝑖)𝑑12(𝑥𝑗)p(𝑥𝑖)p(𝑥𝑗)] 

              = [∑ 𝐹𝑗 (𝑥𝑗)(1-F(𝑥𝑗))d12
2 (𝑥𝑗)p2(𝑥𝑗) + 2∑ ∑ 𝐹𝑖>𝑗𝑗 (𝑥𝑗)(1-F(𝑥𝑖))𝑑12(𝑥𝑖)𝑑12(𝑥𝑗)p(𝑥𝑖)p(𝑥𝑗)] 

   - 𝑎𝑛𝜓1(K)∑ F(1)
𝑗 (𝑥𝑗)d12

2 (𝑥𝑗)p2(𝑥𝑗)+ 
an
2

2
[𝜓2(K)∑ F(2)

𝑗 (𝑥𝑗)d12
2 (𝑥𝑗)p2(𝑥𝑗) 

- 2 𝜇2(K)[∑ 𝐹𝑗 (𝑥𝑗)𝐹(1)(𝑥𝑗)d12
2 (𝑥𝑗)p2(𝑥𝑗)] 

+2𝜇2(K)∑ ∑ {F(2)
𝑖>𝑗𝑗 (𝑥𝑗)(1-F(𝑥𝑖))- F

(2)(𝑥𝑖)F(𝑥𝑗)} 𝑑12(𝑥𝑖)𝑑12(𝑥𝑗)p(𝑥𝑖)p(𝑥𝑗)] + O(an
3), 

        = 𝜉𝑛0𝑑- 𝑎𝑛𝜉𝑛1𝑑 + an
2𝜉𝑛2𝑑 + O(an

3) ;                (2.18) 

or 𝜎𝑛𝑑
2 =Var �̂�𝑛=:𝐷−2[ 

𝜉𝑛0𝑑

𝑛
- 

𝑎𝑛

𝑛
 𝜉𝑛1𝑑 + 

an
2

𝑛
  𝜉𝑛2𝑑 + O(

an
3

𝑛
)],                                      (2.19) 

where, from (2.12) - (2.19), 

 𝜉𝑛0𝑑= 𝜉𝑛𝑜𝑑
(1)

 + 𝜉𝑛𝑜𝑑
(2)

 = [∑ 𝐹𝑗 (𝑥𝑗)(1-F(𝑥𝑗))d12
2 (𝑥𝑗)p2(𝑥𝑗) +2∑ ∑ 𝐹𝑖>𝑗𝑗 (𝑥𝑗)(1-F(𝑥𝑖))𝑑12(𝑥𝑖)𝑑12(𝑥𝑗)p(𝑥𝑖)p(𝑥𝑗)], 

𝜉𝑛1𝑑 = 𝜓1(K)∑ F(1)
𝑗 (𝑥𝑗)d12

2 (𝑥𝑗)p2(𝑥𝑗) and 

𝜉𝑛2𝑑 = 𝜉𝑛2𝑑
(1)

 + 𝜉𝑛2𝑑
(2)

 + 𝜉𝑛2𝑑
(3)

 

        = 
1

2
[𝜓2(K)∑ F(2)

𝑗 (𝑥𝑗)d12
2 (𝑥𝑗)p2(𝑥𝑗) - 2 𝜇2(K)[∑ 𝐹𝑗 (𝑥𝑗)𝐹(1)(𝑥𝑗)d12

2 (𝑥𝑗)p2(𝑥𝑗)] 

+2𝜇2(K)∑ ∑ {F(2)
𝑖>𝑗𝑗 (𝑥𝑗)(1-F(𝑥𝑖))- F

(2)(𝑥𝑖)F(𝑥𝑗)}𝑑12(𝑥𝑖)𝑑12(𝑥𝑗)p(𝑥𝑖)p(𝑥𝑗)].                    (2.20) 

Hence the part (a) of Lemma follows. 
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Let W be continuous: In the definition of the weighted (Wolfowitz) square distance if W possesses a 

density or is simply a continuous d.f., the detailed evaluations for the MSE (�̂�𝑛) show (see Theorem 2.4(b) below) 

that the situation is not as clear cut as in the case when W is discrete. Since in this continuous case, W assigns no 

weight to the terms involving sets [x=y] in integral evaluations (unlike the evaluations done for equations (2.12)-

(2.19) in the discrete case), the MSE (�̂�𝑛) evaluations, in the continuous d.f. W case, contain no negative term of the 

order 𝑎𝑛. Even in such a case, among the two terms of the order 𝑎𝑛
2  that we obtain, one is clearly negative and the 

other neither positive nor negative.  So for large n, one may expect in most situations on the average, some reduction 

in the MSE (�̂�𝑛) brought in by ‘smoothing’. 

Now we do the calculations for the continuous case: From (2.10), we already have 

 𝐿2 = [∫F(x)𝑑12(x)dW(x)]2 + an
2  𝜇2(K)[F(x)𝑑12(x)dW(x)][∫𝐹(2)(y)𝑑12(y)dW(y)] +O(an

4),             (2.21) 

To calculate 𝐿1, note from (2.13) that in this case, 

 𝐿1 = 2∬ E{K(
𝑦 − 𝑋1 

𝑎𝑛
)

𝑦<𝑥
K(

𝑥 − 𝑋1  

𝑎𝑛
)𝑑12(x)𝑑12(y)dW(x)dW(y),                         (2.22) 

where for y<x 

 E{K(
𝑦 − 𝑋1  

𝑎𝑛
)K(

𝑥 − 𝑋1  

𝑎𝑛
)} = ∫ K

∞

−∞
(
𝑦 − 𝑢 

𝑎𝑛
)K( 

𝑥 − 𝑢 

𝑎𝑛
)dF(x) 

     = - ∫ K
∞

−∞
(t) K(

𝑥 − 𝑦 

𝑎𝑛
 + t)dF(y - 𝑎𝑛t) 

      =∫ [𝐹
∞

−∞
(y)-𝑎𝑛tF(1)(y)+

1

2
𝑎𝑛

2𝑡2F(2)(y)+O(an
3)]d[K(

𝑥 − 𝑦 

𝑎𝑛
+t)K(t)];                         (2.23) 

substituting (2.23) in (2.22), we obtain 

 𝐿1 = 𝐽1 - 𝐽2 + 𝐽3 + O(an
3),                                      (2.24) 

where, in view of ∫ d
∞

−∞
[K(

x− y

an
+ t)K(t)] = [K(

x− y

an
+ t)K(t)]−∞

∞  = 1 for x > y, 

 J1 = 2∬ F
y<𝑥

(y)𝑑12(x)𝑑12(y)dW(x)dW(y) =: 𝜉𝑛0𝑐 (say).                            (2.25) 

Further, for evaluating 𝐽2, 𝐽3 and the later order terms note that the limits for the variable t, -∞<t<∞, are -1≤t≤1 

effectively. This is because for 
x− y

an
 > 0, when t>1, K(

x− y

an
+ t)K(t) ≡1 identically so that d[K(

x− y

an
+ t)K(t)]=0 for 

t>1; again for t<-1, [K(
x− y

an
+ t)K(t)]=0, so that d[K(

x− y

an
+ t)K(t)]=0 also for t<-1. Hence the effective limits for the 

variable t are given by   -1≤t≤1. Accordingly,  

  J2=2an ∬ F(1)
y<𝑥

(y)∫ 𝑡
1

−1
d[K(t)K(

x− y

an
+t)]𝑑12(x)𝑑12(y)dW(x)dW(y) 

    =2an ∫F(1)(y)[∫ {
𝑦<𝑥≤𝑦+2an

∫ 𝑡
1

−1
d[K(

x− y

an
+t)K(t)]}𝑑12(x)dW(x)]𝑑12(y)dW(y)  

  +2an ∫ F(1)(y)[∫ {
𝑦+2an<𝑥

∫ 𝑡
1

−1
d[K(

x− y

an
+t)K(t)]}𝑑12(x)dW(x)]𝑑12(y)dW(y) 

               = J21 + J22,                                                                     (2.26) 

with J22 = 0; this is so since for evaluating J22, the range of integration for x, (viz., y+2an<x<∞) is such that (
x− y

an
)+t 

> 2 + t > 1 (since t ≥ -1), so that K(
x− y

an
+ t) ≡1 identically in this range. This leads to ∫ 𝑡

1

−1
d[K(

x− y

an
+t)K(t) = 

∫ 𝑡
1

−1
dK(t) = 0, which renders J22 = 0. To evaluate J21 , set 

x− y

an
 = u, so that the limits for u in the evaluation of J21 are 

0≤u≤2. Thus,  

 J21 = 2an ∫F(1)(y)[∫ {
2

0
td[K(t+u)K(t)]𝑑12(y+𝑎𝑛u)dW(y+𝑎𝑛u)]𝑑12(y)dW(y) 

             = 2𝑎𝑛
2 ∫ F(1)(y) ∫ t

1

−1
 d[K(t)∫ 𝐾

2

0
(u+t)du]𝑑12

2(y)𝑊 ′(y)dW(y)+O(an
3) 

             =: an
2𝜉𝑛2𝑐

(1)
 + O(an

3). (say)                            (2.27) 

To evaluate (2.27), note that for each t, -1<t<1, 

 ∫ 𝐾
2

0
(u+t)du = [u K(u+t)du]0

2 - ∫ K(1)2

0
(u+t)du 

         = 2 - ∫ (
1

t
v-t)K(1)(v)dv = 2 + E(t) + t(1-K(t)),                          (2.28) 

where E(t) = ∫ vK(1)𝑡

−1
(v)dv (so that E(1)=0) and therefore, 

            ∫ t
1

−1
 d{K(t)∫ K

2

0
(u+t)du} = ∫ t

1

−1
 (∫ K

2

0
(u+t)du)dK(t) + ∫ t

1

−1
 K(t)d(∫ K

2

0
(u+t)du) 

            =∫ t
1

−1
 [2+E(t) + t(1-K(t))]dK(t) + ∫ t

1

−1
 K(t)[tk(t)+(1-K(t))-tk(t)]dt 

                          = ∫ t
1

−1
 E(t)dK(t) + ∫ t2

1

−1
dK(t) -∫ t2

1

−1
 K(t)dK(t) + ∫ t

1

−1
K(t)(1-K(t))dt 

           =∫ t
1

−1
E(t)dK(t) + μ2(K) -∫ t2

1

−1
K(t)dK(t) +∫ t

1

−1
K(t)(1-K(t))dt.                        (2.29) 
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Since ∫ t
1

−1
E(t)dK(t) =∫ E

1

−1
(t)d(t) = 

1

2
E2(t)]−1

1  = 0 and ∫ t
1

−1
K(t)(1-K(t))dt = ∫ t2

1

−1
K(t) dK(t) - 

1

2
 μ2(K), it follows from 

(2.29) that ∫ td{K(t)∫ 𝐾
2

0
(u+t)du} = 

1

2
 μ2(K), which along with (2.26) implies that 

 J2 = 𝑎𝑛
2  μ2(K) ∫ F(1)∞

−∞
(y)𝑑12

2(y)𝑊 ′(y)dW(y)       

    =: an
2𝜉𝑛2𝑐

(1)
 + O(an

3). (say)                                         (2.30) 

Further, arguing as for J2, we evaluate J3 by noting that we can also write J2 as 

       J3 = 𝑎𝑛
2 ∫F(2)(y)[∫ [

y<𝑥<𝑦+2an
∫ t2

1

−1
d{K(

x−y

an
+t)K(t)}]𝑑12(x)dW(x)]𝑑12(y)dW(y)  

+ 𝑎𝑛
2 ∫ F(2)(y)[∫ [

y+2an<𝑥
∫ t2

1

−1
d{K(

x−y

an
+t)K(t)}]𝑑12(x)dW(x)]𝑑12(y)dW(y) 

                =: J31 + J32,  (say)                                   (2.31) 

where following the same reasoning as for J22 and J21 respectively, we obtain 

J32 = 𝑎𝑛
2 ∫ F(2)(y)[∫ (

y+2an<𝑥
∫ t2

1

−1
dK(t))𝑑12(x)dW(x)]𝑑12(y)dW(y) 

     = 𝑎𝑛
2μ2(K)∬ F(2)

y<𝑥
(y)𝑑12(x)𝑑12(y)dW(x)dW(y)+O(𝑎𝑛

3)    

     =: 𝑎𝑛
2  𝜉𝑛2𝑐

(2)
 + O(an

3)                                           (2.32) 

and  

J31 = O(𝑎𝑛
3).                                          (2.33) 

Thus, we obtain from (2.31)-(2.33) that 

J3 = 𝑎𝑛
2  μ2(K)∬ F(2)

y<𝑥
(y)𝑑12(x)𝑑12(y)dW(x)dW(y)+O(𝑎𝑛

3) 

   =: 𝑎𝑛
2  𝜉𝑛2𝑐

(2)
+ O(𝑎𝑛

3),                                         (2.34) 

as n→∞. Combining (2.9)-(2.9a) with (2.21), (2.22), (2.29), (2.30), and (2.34), we obtain  

 nD2Var p̂n = 𝐿1 - 𝐿2 

            = 2 ∬ F
y<𝑥

(y)(1-F(x))𝑑12(x)𝑑12(y)dW(x)dW(y) - 𝑎𝑛
2μ2(K)[ ∫ F(1)∞

−∞
(y)𝑑12

2
(y)W′(y)dW(y) 

          -∬ [F(2)
y<𝑥

(y)(1-F(x)) -F(2)(x)F(y)]𝑑12(x)𝑑12(y)dW(x)dW(y)] + O(𝑎𝑛
3) 

    = 𝜉𝑛0𝑐 - an
2   𝜉𝑛2𝑐 + O(an

3)                  (2.35) 

or 𝜎𝑛𝑐
2 =Var �̂�𝑛=:𝐷−2[ 

𝜉𝑛0𝑐

𝑛
 - 

an
2

𝑛
  𝜉𝑛2𝑐 + O(

an
3

𝑛
)],                              (2.36) 

 where, from (2.25) – (2.36), 

 𝜉𝑛0𝑐= 𝜉𝑛𝑜𝑐
(1)

 + 𝜉𝑛𝑜𝑐
(2)

=2∬ 𝐹
𝑦<𝑥

(y)(1-𝐹(x))𝑑12(x)𝑑12(y)dW(x)dW(y) and  

𝜉𝑛2𝑐 = 𝜉𝑛2𝑐
(1)

 - 𝜉𝑛2𝑐
(2)

 = μ2(K)[∫ F(1)∞

−∞
(y)𝑑12

2
(y)W′(y)dW(y)  

   -∬ [F(2)
y<𝑥

(y)(1-F(x))-F(2)(x)F(y)]𝑑12(x)𝑑12(y)dW(x)dW(y)].                       (2.37) 

Hence the proof of part (b) is complete.  

 

Corollary 2.3: Under the condition (i) of Lemma 2.1, 

a) when weight W is a discrete d.f., we have 

Var p̃n = 𝐷−2 
𝜉𝑛0𝑑

𝑛
; 

b) when weight W is a continuous d.f. we have, 

Var p̃n = 𝐷−2 
𝜉𝑛0𝑐

𝑛
. 

Proof: The proof follows exactly on the similar line of argument as for the proof of Lemma 2.2.  

 

Calculations of Large Sample MSEs of �̂�𝒏 and �̃�𝒏: We now obtain the expressions for the Mean Square Errors of 

the MWSD estimators �̃�𝑛  and �̂�𝑛  defined in (2.4) and (2.3) in the following theorems when component distribution 

functions Fj(x), j=1,2 are known. 

Theorem 2.4: Under the conditions of Lemma 2.2, 

a) when the weight W is a discrete d.f., we have, 

MSE �̂�𝑛  = 𝐷−2[ 
𝜉𝑛0𝑑

𝑛
 - 

𝑎𝑛

𝑛
 𝜉𝑛1𝑑+ 

an
2

𝑛
  𝜉𝑛2𝑑 +an

4𝜉𝑛4𝑑
2  ] + O(

an
3

𝑛
), 

where 𝜉𝑛𝑜𝑑, 𝜉𝑛1𝑑, 𝜉𝑛2𝑑, 𝜉𝑛4𝑑 are defined in Lemmas 2.1 and 2.2. 
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b) when the weight W is a continuous d.f., we have 

MSE �̂�𝑛  = 𝐷−2[
𝜉𝑛𝑜𝑐

𝑛
 - 

an
2

𝑛
𝜉𝑛2𝑐+an

4𝜉𝑛4𝑐] + O(
an
3

𝑛
), 

where 𝜉𝑛𝑜𝑐, 𝜉𝑛2𝑐, 𝜉𝑛4𝑐 are defined in Lemmas 2.1 and 2.2. 

Proof: (a) From Lemmas 2.1 and 2.2, 

MSE �̂�𝑛  = Var �̂�𝑛  + Bias2 �̂�𝑛  

              = 𝐷−2[ 
𝜉𝑛0𝑑

𝑛
 - 

𝑎𝑛

𝑛
 𝜉𝑛1𝑑+

an
2

𝑛
𝜉𝑛2𝑑+O(

an
3

𝑛
)]+𝐷−2an

4𝜉𝑛4𝑑
2 +O(an

4) 

        = 𝐷−2[ 
𝜉𝑛0𝑑

𝑛
 - 

𝑎𝑛

𝑛
 𝜉𝑛1𝑑+ 

an
2

𝑛
  𝜉𝑛2𝑑 +an

4𝜉𝑛4𝑑
2  ] + O(

an
3

𝑛
).  

Hence part (a) Lemma follows. Similarly, for part (b) also 

MSE �̂�𝑛  = Var �̂�𝑛  + Bias2 �̂�𝑛  

  = 𝐷−2[ 
𝜉𝑛0𝑐

𝑛
 - 

an
2

𝑛
 𝜉𝑛2𝑐 + O(

an
3

𝑛
)] + 𝐷−2 an

4  𝜉𝑛4𝑐  

= 𝐷−2[
𝜉𝑛𝑜𝑐

𝑛
 - 

an
2

𝑛
𝜉𝑛2𝑐+an

4𝜉𝑛4𝑐] + O(
an
3

𝑛
). 

Hence part (b) of the Lemma follows.    

 

Corollary 2.5: Under the conditions of Lemma 2.1 and Lemma 2.2, 

MSE �̃�𝑛  = Var �̃�𝑛  

Proof: The proof follows exactly on the same line of argument as for the proof of Theorem 2.4: 

When W is a discrete, MSE �̃�𝑛  = Var �̃�𝑛  =  𝐷−2 
𝜉𝑛0𝑑

𝑛
, 

and when W is continuous, MSE �̃�𝑛  = Var �̃�𝑛  =  𝐷−2 
𝜉𝑛0𝑐

𝑛
,     

where 𝜉𝑛0𝑑 and  𝜉𝑛0𝑐 are defined in (2.20) and (2.37).  

 

Mean square comparisons of �̂�𝒏 and �̃�𝒏: 

We now establish the superiority of smoothed MWSD estimator �̂�𝑛  over its corresponding  unsmoothed version �̃�𝑛  

in the sense of having lower MSE. Suppose the smoothness assumptions (i) made in Lemma 2.1 concerning the 

mixture distribution defined in (1.1) and the conditions (ii) and (iii) imposed therein on the density kernel function k 

and the bandwidth {𝑎𝑛} are also all satisfied. Then, corresponding to any suitable ‘discrete’ averaging distribution 

W, the ‘smoothed’ and ‘unsmoothed’ (Wolfowitz) minimum weighted square distance estimators �̂�𝑛  and �̃�𝑛 , 

respectively, given by (2.3) and (2.4), satisfy the following inequality by Theorem 2.4, namely, 

 MSE �̂�𝑛  < MSE �̃�𝑛  

for sufficiently large n. We now compare the estimators �̃�𝑛  and �̂�𝑛  in terms of their MSE. The percentage gain in 

precision of �̂�𝑛  over �̃�𝑛  is 
𝑀𝑆𝐸 𝑝𝑛− 𝑀𝑆𝐸 𝑝𝑛

𝑀𝑆𝐸 𝑝𝑛
 X 100 

Remark 2.6: The result of the Theorem 2.4 would continue to hold even when the averaging discrete distribution W 

= {p(𝑥𝑗): j∈C} depends on the sample size n, i.e., for example, when W=𝑊𝑛={p(𝑥𝑛𝑗):j∈C}, provided the parameter 

𝜈𝑛=min
𝑗

|𝑥𝑛(𝑗+1) − 𝑥𝑛𝑗| →0, as n→∞, at a rate slower than that of the bandwidth 𝑎𝑛→0; that is when 𝑎𝑛 = o(𝜈𝑛) or 

equivalently when (
𝑎𝑛

𝜈𝑛
⁄ )→0, as n→∞. The distribution 𝑊𝑛 then may converge to a continuous limiting 

distribution W. 

 

3. Strong Consistency of �̂�𝒏 and �̃�𝒏: We now establish the a.s. convergence of �̂�𝑛  and �̃�𝑛  to p as n→∞ in the 

following Theorem: 

Theorem 3.1: Under the conditions of Lemma 2.1, WP1 

�̂�𝑛  – p = O(
𝑙𝑜𝑔 𝑛

𝑛
)1/2  a.s., as n→∞. 

Proof: From (2.5), 

(�̂�𝑛  – p) D = �̂�𝑛
∗  + 𝐶𝑛, 

where 𝐶𝑛 is defined in (2.5) and 

�̂�𝑛
∗  = n-1 ∑ �̂�𝑖

𝑛
𝑖=1 ,  �̂�𝑖 = ∫( K( 

𝑥 − 𝑋𝑖 

𝑎𝑛
) – EK( 

𝑥 − 𝑋𝑖 

𝑎𝑛
)) 𝑑12(x)dW(x),              (3.1) 
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with  

 E �̂�𝑖 = 0, |�̂�𝑖| ≤ 2 a.s. and 

 E �̂�𝑖
2 = E [∫{𝐾 (

𝑥 − 𝑋𝑖 

𝑎𝑛
) – E K(

𝑥 − 𝑋𝑖 

𝑎𝑛
)}𝑑12(x)dW(x)]2. 

From (2.9) and (2.19), if W(x) is a discrete d.f., 

 
1

𝑛
 ∑ 𝐸 �̂�𝑖

2𝑛
𝑖=1  = 𝐷−2[𝜉𝑛0𝑑-  𝑎𝑛𝜉𝑛1𝑑+ an

2 𝜉𝑛2𝑑+O(
an
3

𝑛
)] → 𝐷−2 𝜉𝑛0𝑑 

        = 𝜎𝑛𝑑
2  as n →∞. 

Now, applying Bernstein inequality to the mean of i.i.d. sequence {�̂�𝑖}, 

 Pn = P (
1

𝑛
 ∑ �̂�𝑖

𝑛
𝑖=1  > t) ≤ exp ( - 

𝑡2

2𝑛
 

1

𝑛
 ∑ 𝐸 𝐴𝑖

2𝑛
𝑖=1 + 

4

3
  
𝑡

𝑛

 ) = exp( - 
𝑡2

2𝑛
 

𝜎𝑛𝑑
2 + 

4

3
 
𝑡

𝑛

 );              (3.2) 

so that setting t = ( 
4𝜎𝑛𝑑

2 log 𝑛 

𝑛
)
1

2, the RHS of inequality (3.2) becomes 

     = exp [ 
−2 log𝑛 

1+ 
2

3𝜎𝑛𝑑
 ( 

4 log 𝑛 

𝑛
)
1
2 )

 ] < 𝑛−2,                  (3.3) 

with  ∑ 𝑃𝑛
∞
𝑛≥1  ≤ ∑ 𝑛−2∞

𝑛≥1 < ∞.  By Borel – Cantelli lemma, we can conclude from (3.2) – (3.3) that, 

 
1

n
 ∑ �̂�𝑖

𝑛
𝑖=1   𝑎. 𝑠.⃗⃗ ⃗⃗ ⃗⃗  ⃗ 0, as n→∞ i.e. �̂�𝑛  – p 𝑎. 𝑠.⃗⃗ ⃗⃗ ⃗⃗  ⃗ O(

𝑙𝑜𝑔 𝑛

𝑛
)1/2, as n→∞. 

In a similar way, strong consistency holds when W is a continuous d.f. with 𝜎𝑛𝑑
2  replaced by 𝜎𝑛𝑐

2  where 𝜎𝑛𝑐
2 = 

𝐷−2𝜉𝑛0𝑐 as defined in (2.36).   

 

Corollary 3.2: Under the conditions of Lemma 2.1(i) on F, WP1 

�̃�𝑛  – p = O(
𝑙𝑜𝑔 𝑛

𝑛
)1/2, as n→∞. 

Proof: This follows exactly on the same line of argument as for the proof of the Theorem 3.1. 

 

Asymptotic Normality of �̂�𝒏 and �̃�𝒏: 

Theorem 3.3: Under the conditions of Lemma 2.1, 

a. when W is a discrete d.f. 

√𝑛 (�̂�𝑛  – p)      𝐿     ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ N(0, σ𝑑
2 ), 

where 𝜎𝑑
2 = lim𝑛→∞𝑛 𝜎𝑛𝑑

2 , 𝜎𝑛𝑑
2  is as defined in (2.19); 

b. when W is a continuous d.f. 

√𝑛 (�̂�𝑛  – p)      𝐿     ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ N(0, σ𝑐
2), 

where σ𝑐
2 = lim𝑛→∞𝑛 𝜎𝑛𝑐

2 , 𝜎𝑛𝑐
2  is as is defined in (2.36). 

Proof: From (2.5), 

√𝑛 (�̂�𝑛  – p) = √𝑛 𝐷−1 �̂�𝑛
∗  + √𝑛𝐷−1𝐶𝑛,                 (3.4) 

with, in view of (2.7), 

 √𝑛𝐷−1𝐶𝑛 = √𝑛𝐷−1[
an
2

2
 𝜇2(K)∫ 𝐹

∞

−∞

(2)
(x)𝑑12(x)dW(x)+O(an

4)] 

and 

√𝑛𝐷−1�̂�𝑛
∗  = √𝑛𝐷−1 ∫[ �̂�n(x) - E�̂�n(x)]𝑑12(x)dW(x) 

    = √𝑛𝐷−1 n-1 ∑ �̂�𝑖
𝑛
𝑖=1  = 𝐷−1 n-1/2 ∑ �̂�𝑖

𝑛
𝑖=1 ,                (3.5) 

with ∑ �̂�𝑖
𝑛
𝑖=1  as the sum of i.i.d. r.v.’s. From Lemma 2.2(a) – (b), in view of (2.9) and (3.4) – (3.5), we have the 

expressions nVar(�̂�n) = 𝐷−2 nVar(�̂�𝑛
∗ ) given by (nσ𝑛𝑑

2 ) or (nσ𝑛𝑐
2 ), respectively, for the two cases when W is discrete 

or continuous d.f.’s. 

When W is a discrete d.f., 

σ𝑛𝑑
2  = 𝐷−2[ 

𝜉𝑛0𝑑

𝑛
 - 

𝑎𝑛

𝑛
𝜉𝑛1𝑑 +  

an
2

𝑛
𝜉𝑛2𝑑 + O(

an
3

𝑛
)], 

where 𝜉𝑛0𝑑, 𝜉𝑛1𝑑 and 𝜉𝑛2𝑑 are defined in (2.20); 

when the weight W is a continuous d.f. we have, 

σ𝑛𝑐
2  = 𝐷−2[ 

𝜉𝑛0𝑐

𝑛
 -  

an
2

𝑛
𝜉𝑛2𝑐 + O(

an
3

𝑛
)]. 

Now applying Lindeberg-Levy CLT to the sum of i.i.d. sequence {�̂�𝑖} in (3.5); it at once follows that 
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 √𝑛 (�̂�𝑛  – p)      𝐿     ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ N(0, 𝜎𝑑
2), as 𝑛 → ∞,                  (3.6) 

where 𝜎𝑑
2 = lim𝑛→∞ 𝑛𝜎𝑛𝑑

2  when W is discrete. 

Similarly, the Asymptotic Normality like (3.6) holds when W is continuous with 𝜎𝑐
2 = lim𝑛→∞ 𝑛𝜎𝑛𝑐

2  . The proof is 

complete. 

 

Corollary 3.4: Under the conditions of Lemma 2.1(i) on F, 

a. when W is a discrete d.f. 

√𝑛 (�̃�𝑛  – p)      𝐿     ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ N(0, σ𝑑
2 ), 

where 𝜎𝑑
2 = lim𝑛→∞𝑛 𝜎𝑛𝑑

2 ; 

b. when W is a continuous d.f. 

√𝑛 (�̃�𝑛  – p)      𝐿     ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ N(0, σ𝑐
2), 

where 𝜎𝑐
2 = lim𝑛→∞𝑛 𝜎𝑛𝑐

2 . 

 

Proof: The proof follows in the same manner as that of Theorem 3.3. 
 

4. Optimal band width 𝒂𝒐𝒑𝒕,𝒏 

The selection of optimal bandwidth ‘𝑎𝑛’ in the MWSD estimator p̂𝑛 is done in such a way that its MSE is minimum 

w.r.to 𝑎𝑛. From Theorem 2.4, when W is a discrete d.f, 

MSE p̂𝑛 = 𝐷−2[
𝜉𝑛0𝑑

𝑛
 - 

𝑎𝑛

𝑛
𝜉𝑛1𝑑 + an

4𝜉𝑛4𝑐] + O(
an
3

𝑛
) =: 𝑀𝑛𝑑; 

the 𝑎𝑜𝑝𝑡,𝑛 is obtained by solving 
𝑑𝑀𝑛𝑑

𝑑𝑎𝑛
 = 0, i.e. - 

𝜉𝑛1𝑑

𝑛
+4an

3𝜉𝑛4𝑑=0, which yields 

𝑎𝑜𝑝𝑡,𝑛  = 
𝜉𝑛1𝑑

4𝜉𝑛4𝑑
 𝑛−1/3. 

When W is a continuous d.f 

MSE p̂𝑛= 𝐷−2[
𝜉𝑛0𝑐

𝑛
 - 

an
2

𝑛
𝜉𝑛2𝑐 + an

4𝜉𝑛4𝑐] + O(
an
2

𝑛
) =: 𝑀𝑛𝑐; 

the 𝑎𝑜𝑝𝑡,𝑛 is obtained by solving 
𝑑𝑀𝑛𝑐

𝑑𝑎𝑛
=0, - 

2𝑎𝑛

𝑛
𝜉𝑛2𝑐+4an

3𝜉𝑛4𝑐= 0, which yields 

𝑎𝑜𝑝𝑡,𝑛  = 𝑎𝑛 = 
2𝜉𝑛2𝑐

4𝜉𝑛4𝑐
 𝑛−1/2. 

5. Monte Carlo Simulation study 

A simulation study is carried out to estimate mixing proportion p by p̂𝑛 and p̃𝑛 when the two component 

distributions are known in both Normal and Exponential populations. 
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Table 5.1: Simulation results of p̂𝑛 and p̃𝑛 for different sets N of sample size n with p = 0.3, 0.5, 0.7. 

p N 

𝑭𝟏(x)=N(1,𝟎. 𝟓𝟐), 𝑭𝟐(x)= N(2,𝟑𝟐) 

Efficiency 

𝑭𝟏(x)=Exp(2), 𝑭𝟐(x)=Exp(3) 

p̃𝑛 p̂𝑛 
𝑴𝑺�̂� 

p̃𝑛 p̂𝑛 
𝑴𝑺�̂� 

Efficiency 
p̃𝑛 p̂𝑛 p̃𝑛 p̂𝑛 

0.3 

n=12 

10 0.093 0.423 0.016 0.001 90.19 0.159 0.929 0.009 0.004 57.88 

25 0.06 0.461 0.008 0.002 68.76 0.133 0.933 0.009 0.003 66.30 

50 0.049 0.454 0.005 0.004 27.49 0.128 0.934 0.008 0.003 64.74 

75 0.048 0.446 0.004 0.004 4.11 0.120 0.931 0.008 0.003 59.89 

100 0.043 0.446 0.003 0.003 3.84 0.114 0.931 0.007 0.003 58.56 

0.5 

n=12 

10 0.186 0.173 0.009 0.007 16.53 0.35 0.59 0.034 0.059 -78.06 

25 0.139 0.125 0.011 0.008 27.54 0.45 0.66 0.039 0.052 -35.58 

50 0.159 0.142 0.014 0.010 26.49 0.42 0.62 0.05 0.049 0.51 

75 0.160 0.139 0.012 0.009 23.49 0.43 0.63 0.054 0.048 10.29 

100 0.170 0.148 0.012 0.009 25.10 0.44 0.65 0.049 0.046 4.82 

0.7 

n=12 

10 0.45 0.48 0.007 0.005 30.93 0.076 0.903 0.003 0.005 -51.96 

25 0.47 0.48 0.008 0.004 56.22 0.081 0.909 0.005 0.004 2.76 

50 0.42 0.45 0.011 0.004 65.91 0.074 0.922 0.004 0.004 3.99 

75 0.40 0.44 0.011 0.004 61.86 0.075 0.924 0.004 0.004 15.12 

100 0.39 0.44 0.010 0.004 64.19 0.076 0.931 0.005 0.003 28.51 

 

Comments: The simulation results show 𝑀𝑆�̂� for smoothed estimator p̂𝑛 is less than that of unsmoothed estimator 

p̃𝑛 uniformly for all samples. So the smoothed estimator appears a better estimator in terms of MSE.  The average 

gain in observed efficiency due to smoothing is lying between 3% to 90% for different N sets, each of size n. 
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