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Abstract 
This paper focuses on the Bayesian prediction of kth ordered future observations modelled by a two-

component mixture of general class of distributions. Samples under consideration are subject to random 

censoring. A closed form of Bayesian predictive density is obtained under a two-sample scheme. 

Applications to Weibull and Burr XII components are presented and comparisons with previous results are 

made. A numerical example is presented for special cases of the exponential and Lomax components to 

obtain interval prediction of first and last order statistics.A simulation study has been conducted to assess 

the effect of sample size, hyper parameters, and level of censoring on prediction interval and point 

prediction of a future observation coming from the two-component exponential model. 

Keywords:Two-sample Bayesian prediction; Random censoring; mixture survival 

models. 

 

1. Introduction  

Finite mixtures of distributions have been extensively used to model heterogeneous 

phenomena in various applications. Astronomy, Engineering, Psychiatry, Biology, 

Medicine, and Social Sciences are examples of fields in which mixture models are 

applied. Survival mixture models have been also used to describe population 

heterogeneity in reliability and life testing applications. For detailed explanation and 

more review of applications of finite mixture, see for example Everitt and Hand (1981), 

Titterington et al (1985), McLachlan and Peel (2000), Schlattmann(2009), and Schnatter 

(2006). Studying prediction of future observations is important for decision making. 

Prediction is applied in many fields such as medicine, Engineering, and in Business. It is 

also used in Economics. The problem of prediction can also be found in other areas such 

as safety analysis of nuclear reactors and of Aerospace systems. For more details on the 

history of statistical predictionanalysis and applications, see for example Aitchison and 

Dunsmore (1975). In many practical problems it is seldom to have a complete sample for 

a number of reasons such as limited budget or time. Censored samples mean that only 

some of the units fail before the end of the experiment and are called censored units. 

There are three different types of censoring; left censoring, right censoring and interval 
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censoring. Right censoring is most commonly used in life testing. These types of samples 

occur when we test n units and only r units fail during the test. Right censoring implies 

that if the censored data where to continue operating the failure would occur at some time 

after the data point observed. There are several situations where right censoring may 

occur. Three of them are: type I censoring, type II censoring, and random censoring. 

The problem of Bayesian interval predictions of future observations based on 

homogeneous populations have been studied by several researchers under several types 

of right censoring. AbdEllah (2003) and Pradhan and Kundu (2011) studied the problem 

of prediction when the sample is complete. Wang (2008), Wang and Veraverbeke (2009), 

Dunsmore (1974) investigated the case of random censoring. Several authors undertaken 

the problem assuming type II censoring. Among others are Dunsmore (1974), Evans and 

Nigm (1980a), Evans and Nigm (1980b),Tziafetas (1987), Nigm (1988), Nigm (1989), 

Calabria and Pulcini (1994), Howlader and Hossaing (1995), Jaheen and Matrafi (2002), 

Nigmet al. (2003), Pal and Chattopadhyay (2007), Ateya (2011),AL-Hussaini and 

Hussain (2011), Singh et al. (2013a). The problem of prediction of homogeneous 

populations under double type II censoring was studied by Ferandez (2000), Raqab and 

Madi (2002), Ferntindez (2004), Yanlinget al. (2005), Ferozeet al. (2014). While 

Balakrishnan and Shafay (2012), Singh et al. (2013b), Asgharzadehet al. (2013), Sadek 

(2016) assumed hyprid censoring. Finally the problem of prediction under progressively 

type II censoring was studied by Mousa and Jaheen (2002),Wu et al. (2006), Solimanet 

al. (2011), Mohie El-Din and Shafay (2013), Jung and Chung (2013), Mohie El-Din et al. 

(2017). 

Bayesian interval predictions of future observations based on heterogeneous populations 

have also been studied by several researchers. AL-Hussaini(1999a), Al-Hussaini et al 

(2001), Jaheen (2003), Al-Jarallah and AL-Hussaini (2007), Ahmad et al (2012), Feroze 

and Aslam (2013), Rahman and Aslam (2014), and Haq and Al-Omari (2016) assumed 

samples under study exposed to type I censoring.  Bayesian prediction of heterogeneous 

populations under type II censoring was investigated by Mahmoud et al (2014) and 

Rahman and Aslam (2015). Prediction of order statistics when samples are subject to type 

II censoring based on the two-component generalized exponential model. Finally, Feroze 

and Aslam (2016) considered the problem under type II double censoring. 

Other authors studied the Bayesian prediction of future observations modelled by a 

mixture of general class of distributions. AL-Hussaini(1999b) obtained the one-sample 

and two-sample Bayesian predictive density of future ordered statistic of general model 

under the homogeneous population under type II censoring. The same model proposed 

was then used afterwards in AL-Hussaini(2001) to obtain the Bayesian two-sample 

predictive density of median of future observations and Al-Hussaini (2003) to obtain the 

two-sample Bayesian predictive density of future ordered observation from two-mixture 

models under type I censoring. Abdel-Aty (2012) obtained one-sample Bayesian 

prediction of the number of components which will fail in a future time interval when the 

population density was modeled by a finite k-component general survival model 

assuming type I censoring.  

The general model adopted in this paper resembles that used by Abd El-Baset and Al-

Zaydi (2015). The finite mixture of k components has density function the takes the form, 

                                                 𝑓(𝑡) = ∑ 𝑝𝑖𝑓𝑖(𝑡)𝑘
𝑖=1 ,                                                 (0.1) 

where𝑝𝑖is a non-negative real number (known as the ith mixing proportion) such that 

∑ 𝑝𝑖
𝑘
𝑖=1 =1 and 𝑓𝑖(𝑡) is known as theithmixing component, 𝑖 = 1, … . . , 𝑘.  
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Let the density of the ith component has the form,  

              𝑓𝑖(𝑡) = 𝑓𝑖(𝑡; 𝛼𝑖) = 𝜆𝑖
′ (𝑡)/𝛼𝑖 𝑒𝑥𝑝( − 𝜆𝑖(𝑡)/𝛼𝑖), 𝑡 > 0, 𝛼𝑖 > 0,               (0.2) 

where𝜆𝑖(𝑡)is monotonically increasing,𝜆𝑖(𝑡) → 0 𝑎𝑠 𝑡 → 0and𝜆𝑖(𝑡) → ∞𝑎𝑠 𝑡 →
∞and𝛼𝑖 ∈ 𝛺. 

The corresponding survival function of the ith component is, 

                       𝑅𝑖(𝑡) = 𝑅𝑖(𝑡; 𝛼𝑖) = 𝑒𝑥𝑝( − 𝜆𝑖(𝑡)/𝛼𝑖), 𝑡 > 0, 𝛼𝑖 > 0                     (0.3) 

Where 

                                   𝑅𝑖(𝑡; 𝛼𝑖) = 1 − 𝐹𝑖(𝑡; 𝛼𝑖)                                             (0.4) 

Under suitable choices of 𝛼𝑖and𝜆𝑖(𝑡), k-component of Weibull, exponential, Rayleigh, 

Burr XII, Lomax, Gompertz, and power function distributions are special cases of the k-

component general model proposed. 

Suppose the population under study is known to have two types of failure leading to two 

subpopulations each with density𝑓𝑖(𝑡)then the model suitable for modeling such a 

population is two-component mixture. The model under study is two-component mixture 

general model whose density and survival functions take respectively the form, 

    𝑓(𝑡) = 𝑝𝑓1(𝑡) + 𝑞𝑓2(𝑡)                 (0.5) 

                          𝑅(𝑡) = 𝑝𝑅1(𝑡) + 𝑞𝑅2(𝑡),              (0.6) 

where q=1-p 

The interest of this paper is to obtain a closed form for the Bayesian predictive density of 

the kth ordered future observation from the proposed two-component general class of 

distributions under random censoring.Random censoring is one in which each individual 

is assumed to have a lifetime T and a censoring time C, with T and C independent 

continuous random variables, with reliability functions R(t) and G(t),respectively. All 

lifetimes and censoring times are assumed to be mutually independent, and it is assumed 

that G(t) does not depend on any of the parameters of R(t). Random censoring occurs 

frequently in practice especially in clinical and medical trials. 

( ) ,  i i it min T C= , 𝛿𝑖 = {
1, 𝑇𝑖 ≤ 𝐶
0, 𝑇𝑖 > 𝐶

 

 

The joint distribution of the two variables 𝑡𝑖and 𝛿𝑖 can be written as, 

              𝑓(𝑡𝑖, 𝛿𝑖) = [𝐺(𝑡𝑖)𝑓(𝑡𝑖)]𝛿𝑖[𝑔(𝑡𝑖)𝑅(𝑡𝑖)]1−𝛿𝑖,                                                     (0.7) 

where g(t) is the pdf of the random variable C. If we are concerned only with the 

parameters of failure time rather than the parameters of censoring distribution then G(t) 

and g(t) can be dropped from the likelihood function since they are considered as 

constants. (See Lawless (2003)). 

The likelihood in the homogeneous population is: 

𝐿(𝑡|𝜃) = ∏ 𝑓(𝑡𝑖)
𝛿𝑖[𝑅(𝑡𝑖)]1−𝛿𝑖

𝑛

𝑖=1

 

𝐿(𝑡|𝜃) = [∏ 𝑓(𝑡𝑖)][∏ 𝑅(𝑡𝑖)

𝑛−𝑟

𝑖=1

]

𝑟

𝑖=1

, 

 

The likelihood in the heterogeneous population is 

              𝐿(𝛼, 𝑝|𝑡) = ∏ 𝑝𝑓1(𝑡1𝑗)
𝑟1
𝑗=1 ∏ 𝑞𝑓2(𝑡2𝑗)

𝑟2
𝑗=1 ∏ 𝑅(𝑡𝑖)

𝑛−𝑟
𝑖=1 ,                          (0.8) 

where 

1 211 12 1 21 22 2( , ,..., , , ,..., ),r rt t t t t t t=
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𝛼 = (𝛼1, 𝛼2)is the vector of parameters, and ri, i=1,2 denotes the number of observed 

items from the ith component, r=r1+r2 and n-r denotes the number of censored items (See 

for example Contreras-Cristán (2007)). 

 

2. Bayesian Prediction under two-component mixture of general model 

2.1 Bayesian predictive density function  

The likelihood function under random censoring for the general distribution, takes the 

form, 

𝐿(𝛼, 𝑝|𝑡) ∝
𝑝𝑟1𝑞𝑟2

𝛼1
𝑟1𝛼2

𝑟2
∏ 𝜆1

′ (𝑡1𝑗)

𝑟1

𝑗

∏ 𝜆2
′ (𝑡2𝑗)

𝑟2

𝑗

𝑒𝑥𝑝[ −
∑ 𝜆1(𝑡1𝑗)

𝑟1
𝑗=1

𝛼1

−
∑ 𝜆2(𝑡2𝑗)

𝑟2
𝑗=1

𝛼2
× ∏ 𝑝 𝑒𝑥𝑝(

−𝜆1(𝑡𝑖)

𝛼1

𝑛−𝑟

𝑖=1

)[1 +
𝑞

𝑝
𝑒𝑥𝑝(

𝜆1(𝑡𝑖)

𝛼1
−

𝜆2(𝑡𝑖)

𝛼2
)] 

,  (0.9) 

wheret, α, ri, and n-r are as defined in (0.8) 

Using mathematical induction we have proved in Appendix Athat 

∏(1 + 𝑘

𝑛

𝑖=1

𝑒𝑥𝑝( 𝑥𝑖)) = ∑ ∑ ∑ . . . ∑ ∑ 𝑒𝑥𝑝( ∑ 𝑥𝑗𝑙

𝑛

𝑙=1

𝑗𝑛−1−1

𝑗𝑛=0

𝑗𝑛−2−1

𝑗𝑛−1=0

𝑗2−1

𝑗3=0

𝑗1−1

𝑗2=0

𝑛

𝑗1=0

)(𝑘)∑ 𝐼𝑗𝑙
𝑛
𝑙=1 , 𝐼𝑗𝑙

= {
0, 𝑗𝑙 = 0
1, 𝑗𝑙 ≥ 1

} , (𝑗𝑙 ≤ 0 ⇒ 𝑥𝑗𝑙
= 0) 

(0.10) 

where                                                                                                                                        

Let 𝑥𝑖 = (
𝜆1(𝑡𝑖)

𝛼1
−

𝜆2(𝑡𝑖)

𝛼2
), 𝑘 = 𝑞/𝑝, 𝑛 = 𝑛 − 𝑟 

The likelihood can be written as, 

𝐿(𝛼, 𝑝|𝑡) ∝ ∏ 𝜆1
′ (𝑡1𝑗)

𝑟1

𝑗

∏ 𝜆2
′ (𝑡2𝑗)

𝑟2

𝑗

𝑝𝑛−𝑑𝑞𝑑/𝛼1
𝑟1𝛼2

𝑟2  

× 𝑒𝑥𝑝( − [∑ 𝜆1(𝑡1𝑗)

𝑟1

𝑗=1

+ ∑ 𝜆1(𝑡𝑖)

𝑛−𝑟

𝑖=1

− ∑ 𝜆1(𝑡𝑗𝑙
)

𝑛−𝑟

𝑙=1

]/𝛼1 − [∑ 𝜆2(𝑡𝑗𝑙
)

𝑛−𝑟

𝑙=1

+ ∑ 𝜆2(𝑡2𝑗)

𝑟2

𝑗=1

]/𝛼2), 

  (0.11) 

where 

𝑑 = 𝑟2 + ∑ 𝐼𝑗𝑙

𝑛−𝑟

𝑙=1

, ∑ = ∑ ∑ . . ∑ ∑

𝑗𝑛−𝑟−1−1

𝑗𝑛−𝑟=0

𝑗𝑛−𝑟−2−1

𝑗𝑛−𝑟−1=0

𝑗1−1

𝑗2=0

𝑛−𝑟

𝑗1=0

 

The model parameters;𝑝, 𝛼1, 𝛼2are assumed to be random variables having the following 

prior assumptions, 

The prior distribution of 𝛼𝑖 is assumed to follow an inverse gamma distribution given by, 

                        𝛱𝑖(𝛼𝑖) ∝ 1/𝛼𝑖
𝑏𝑖+1

𝑒𝑥𝑝( − 𝑎𝑖/𝛼𝑖), 𝛼𝑖 > 0, 𝑎𝑖 > 0, 𝑏𝑖 > 0                     

(0.12) 

The prior distribution of the mixing proportion p is 𝐵𝑒𝑡𝑎(𝛿1, 𝛿2) 

Then assuming that 𝛼1, 𝛼2, 𝑝 are independent, the joint prior distribution of 𝛼1, 𝛼2, 𝑝is 

given by, 
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                                           𝛱(𝛼, 𝑝) ∝
𝑝𝛿1−1𝑞𝛿2−1

𝛼1
𝑏1+1

𝛼2
𝑏2+1 𝑒𝑥𝑝( − [

𝑎1

𝛼1
+

𝑎2

𝛼2
])                             

(0.13) 

Using Equations (0.11)and(0.13), the posterior density of two-component general model 

under the assumed prior knowledge is, 

                    𝑔(𝛼, 𝑝|𝑡) = 1/𝑄 ∑
𝑝𝑛−𝑑+𝛿1−1𝑞𝑑+𝛿2−1

𝛼1
𝑟1+𝑏1+1

𝛼2
𝑟2+𝑏2+1 𝑒𝑥𝑝( −

ℎ1

𝛼1
−

ℎ2

𝛼2
),          (0.14) 

where 

ℎ1 = 𝑎1 + ∑ 𝜆1(𝑡1𝑗)
𝑟1
𝑗=1 + ∑ 𝜆1(𝑡𝑖)

𝑛−𝑟
𝑖=1 − ∑ 𝜆1(𝑡𝑗𝑙

)𝑛−𝑟
𝑙=1 , ℎ2 = 𝑎2 + ∑ 𝜆2(𝑡𝑗𝑙

)𝑛−𝑟
𝑙=1 +

∑ 𝜆2(𝑡2𝑗)
𝑟2
𝑗=1                                                                                                          (0.15) 

and 

𝑄 = ∑ 𝐵𝑒𝑡𝑎(𝑛 − 𝑑 + 𝛿1, 𝑑 + 𝛿2)
𝛤(𝑟1+𝑏1)

(ℎ1)𝑟1+𝑏1

𝛤(𝑟2+𝑏2)

(ℎ2)𝑟2+𝑏2
                                             (0.16) 

The two-sample predictive density of the kth observation is, 

𝑝(𝑦𝑘|𝑡) = ∫ ∫ ∫ 𝑓𝑌𝑘
(𝑦𝑘|𝛼, 𝑝)𝑔(𝛼, 𝑝|𝑡)𝑑𝛼2𝑑𝛼1𝑑𝑝

𝛼2𝛼1𝑝
, 𝑘 = 1,2, . . . , 𝑚                (0.17) 

where𝑓𝑌𝑘
(𝑦𝑘|𝑝, 𝛼)is the pdf of 𝑌𝑘defined as 

𝑓𝑌𝑘
(𝑦𝑘|𝛼, 𝑝) = 𝑘 (

𝑚
𝑘

) 𝑓(𝑦𝑘)(1 − 𝑅(𝑦𝑘))𝑘−1𝑅(𝑦𝑘)𝑚−𝑘, 𝑦𝑘 ≥ 0, 𝛼𝑖 > 0,            (0.18) 

By using binomial expansion of the term (1 − 𝑅(𝑦𝑘)) given in Equation(0.18), the 

predictive density of 𝑌𝑘can be written as, 

𝑝(𝑦𝑘|𝑡) = (
𝑚
𝑘

) /

𝑄 ∫ ∫ ∫ ∑ ∑ [(
𝑘 − 1

𝑠1
) (−1)𝑠1𝑓(𝑦𝑘)𝑘−1

𝑠1=0 𝑅(𝑦𝑘)𝑚+𝑠1−𝑘𝑔(𝛼, 𝑝|𝑡)]𝑑𝛼2𝑑𝛼1𝑑𝑝
𝜃2𝜃1𝑝

(0.19) 

By substituting for𝑓(𝑦𝑘), 𝑅(𝑦𝑘)and𝑔(𝛼, 𝑝|𝑡), the predictive density𝑝(𝑦𝑘|𝑡) is obtained 

as, 

𝑝(𝑦𝑘|𝑡) = 𝑘 (
𝑚
𝑘

) /𝑄 ∫ ∫ ∫ ∑ ∑ [(
𝑘 − 1

𝑠1
) (−1)𝑠1 𝑒𝑥𝑝( −

ℎ1

𝛼1
−

ℎ2

𝛼2
)(𝐹1 +𝑘−1

𝑠1=0𝛼2𝛼1𝑝

𝐹2)]𝑑𝛼2𝑑𝛼1𝑑𝑝,                                                                                                 (0.20) 

where 

𝐹1 =
𝜆1
′ (𝑦𝑘)𝑝𝑛−𝑑+𝛿1𝑞𝑑+𝛿2−1 𝑒𝑥𝑝( − 𝜆1(𝑦𝑘)/𝛼1)

𝛼1
𝑟1+𝑏1+2

𝛼2
𝑟2+𝑏2+1

[𝑝 𝑒𝑥𝑝( − 𝜆1(𝑦𝑘)/𝛼1) + 𝑞 𝑒 𝑥𝑝(

− 𝜆2(𝑦𝑘)/𝛼2)]𝑚−𝑘+𝑠1  

𝐹2 =
𝜆2
′ (𝑦𝑘)𝑝𝑛−𝑑+𝛿1𝑞𝑑+𝛿2 𝑒𝑥𝑝(−𝜆2(𝑦𝑘)/𝛼2)

𝛼1
𝑟1+𝑏1+1

𝛼2
𝑟2+𝑏2+2 [𝑝 𝑒 𝑥𝑝( − 𝜆1(𝑦𝑘)/𝛼1) + 𝑞 𝑒 𝑥𝑝( − 𝜆2(𝑦𝑘)/

𝛼2)]𝑚−𝑘+𝑠1                                                                                                                (0.21) 

Again using binomial expansion of(𝑝 𝑒𝑥𝑝( − 𝜆1(𝑦𝑘)/𝛼1) + 𝑞 𝑒 𝑥𝑝( − 𝜆2(𝑦𝑘)/𝛼2)), the 

predictive density is 

𝑝(𝑦𝑘|𝑡) =
1

𝑄
∫ ∫ ∫ ∑∗ ∑ 𝜁(𝐹1

∗ + 𝐹2
∗) 𝑒𝑥𝑝( −

ℎ1

𝛼1
−

ℎ2

𝛼2
)𝑑𝛼2𝑑𝛼1𝑑𝑝

∞

0

∞

0

1

0
,                   (0.22) 

where 

𝐹1
∗ =

𝜆1
′ (𝑦𝑘) 𝑒𝑥𝑝( − 𝜆1(𝑦𝑘)/𝛼1)

𝛼1
𝑟1+𝑏1+2

𝛼2
𝑟2+𝑏2+1

𝑝𝑛−𝑑+𝑠2+𝛿1𝑞𝑑+𝐸+𝛿2−1 𝑒𝑥𝑝( − (𝑠2

+ 1)𝜆1(𝑦𝑘)/𝛼1) 𝑒 𝑥𝑝( − 𝐸𝜆2(𝑦𝑘)/𝛼2) 
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𝐹2
∗ =

𝜆2
′ (𝑦𝑘) 𝑒𝑥𝑝(−𝜆2(𝑦𝑘)/𝛼2)

𝛼1
𝑟1+𝑏1+1

𝛼2
𝑟2+𝑏2+2 𝑝𝑛−𝑑+𝑠2+𝛿1−1𝑞𝑑+𝐸+𝛿2 𝑒𝑥𝑝( − 𝑠2𝜆1(𝑦𝑘)/𝛼1) 𝑒𝑥𝑝( − (𝐸 +

1)𝜆2(𝑦𝑘)/𝛼2                                                                                                             (0.23) 

and 

𝜁 = 𝑘 (
𝑚
𝑘

) (
𝑘 − 1

𝑠1
) (

𝑚 − 𝑘 + 𝑠1

𝑠2
) (−1)𝑠1 , 𝐸 = 𝑚 − 𝑘 + 𝑠1 − 𝑠2, ∑∗ = ∑ ∑𝑚−𝑘+𝑠1

𝑠2=0
𝑘−1
𝑠1=0             

(0.24) 

Finally the predictive density of 𝑦𝑘 in (0.17)is, 

                                              𝑝(𝑦𝑘|𝑡) =
1

𝑄′
∑∗ ∑ 𝜁(𝐹1

∗∗ + 𝐹2
∗∗),                                    (0.25) 

Where 

   𝐹1
∗∗ =

𝜆1
′ (𝑦𝑘)𝐵𝑒𝑡𝑎(𝑛−𝑑+𝑠2+𝛿1+1,𝑑+𝐸+𝛿2)(𝑏1+𝑟1)

[ℎ1+(𝑠2+1)𝜆1(𝑦𝑘)]𝑏1+𝑟1+1[ℎ2+𝐸𝜆2(𝑦𝑘)]𝑏2+𝑟2
, 

                                   𝐹2
∗∗ =

𝜆2
′ (𝑦𝑘)𝐵𝑒𝑡𝑎(𝑛−𝑑+𝑠2+𝛿1,𝑑+𝐸+𝛿2+1)(𝑏2+𝑟2)

[ℎ1+𝑠2𝜆1(𝑦𝑘)]𝑏1+𝑟1[ℎ2+(𝐸+1)𝜆2(𝑦𝑘)]𝑏2+𝑟2+1                          (0.26) 

and 

                                                     𝑄′ = ∑
𝐵𝑒𝑡𝑎(𝑛−𝑑+1,𝑑+1)

(ℎ1)𝑟1+𝑏1(ℎ2)𝑟2+𝑏2
                                          (0.27) 

The predictive interval (a,b): 

The lower prediction limit for the future k ordered observation Yk is given as 

                                                ∫ 𝑝(𝑦𝑘|𝑡)𝑑𝑦𝑘 =
1−𝛾

2

𝑎

0
                                                   (0.28) 

The upper prediction limit for the future k ordered observation Yk is given as 

                                               ∫ 𝑝(𝑦𝑘|𝑡)𝑑𝑦𝑘 =
1−𝛾

2

∞

𝑏
                                                    (0.29) 

Given specified values of k, (0.28) and (0.29) can be solved numerically for a and b to get 

the predictive interval (a,b) for the future k ordered observation Yk. 

 

2.2 Invariance property of the predictive density of the general model 

In this section, it will be shown that the predictive density𝑝(𝑦𝑘|𝑡) is invariant under one-

to one transformation of the parameter𝛼𝑖. Specifically, if the pdf of the ithcomponent is 

indexed by a parameter𝜃𝑖 = 𝑔(𝛼𝑖),i=1,2, where 𝜃𝑖 > 0 and g(.) is a one-to-one 

transformation of 𝛼𝑖, then the predictive density based on this reparametrized form 

𝑔(𝛼𝑖)will also be given by Equation(0.25). 

Proof: 

It’s known that the posterior density is, 

                                𝑔(𝛼, 𝑝|𝑡) =
𝐿(𝛼, 𝑝|𝑡)𝛱(𝛼,𝑝)

∫ ∫ ∫ 𝐿(𝛼, 𝑝|𝑡)𝛱(𝛼,𝑝)𝑑𝛼2𝑑𝛼1𝑑𝑝
∞

𝛼2=0
∞

𝛼1=0
1

𝑝=0

                         

(2.22) 

 

Recall that 𝑝, 𝛼1, 𝛼2are independent hence𝛱(𝑝, 𝛼) = 𝛱1(𝛼1)𝛱2(𝛼2)𝛱3(𝑝), 

where𝛱𝑖(𝛼𝑖), i=1,2 denotes the prior distribution of 𝛼𝑖and 𝛱3(𝑝)denotes the prior 

distribution of p. 

Using the transformation𝜃𝑖 = 𝑔(𝛼𝑖), i=1,2 gives𝑑𝜃𝑖 = 𝑔′(𝛼𝑖)𝑑𝛼𝑖 

Now let the prior distribution of 𝜃𝑖be denoted by𝛱∗(𝜃𝑖). 

𝛱∗(𝜃𝑖)can be obtained by the technique of transformation of variables as follows, 

𝛱∗(𝜃𝑖) = 𝛱(𝛼𝑖)|𝑑𝛼𝑖/𝑑𝜃𝑖| 
            = Π(𝛼𝑖)|1/𝑔′(𝛼𝑖)|    (0.30) 

Using the previous equation, the posterior distribution 𝑔(𝛼, 𝑝|𝑡)is, 
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                           𝑔(𝛼, 𝑝|𝑡) =
𝐿(𝑡|𝜃1,𝜃2,𝑝)𝛱∗(𝜃1,𝜃2,𝑝)

𝑑𝜃1
𝑑𝛼1

𝑑𝜃2
𝑑𝛼2

∫ ∫ ∫ 𝐿(𝑡|𝜃1,𝜃2,𝑝)𝛱∗(𝜃1,𝜃2,𝑝)𝑑𝜃1𝑑𝜃2𝑑𝑝
∞

𝜃2=0
∞

𝜃1=0
1

𝑝=0

                 (0.31) 

Hence 𝑔(𝑝, 𝛼|𝑡)can be written as, 

                                              𝑔(𝛼, 𝑝|𝑡) = 𝑔∗(𝜃1, 𝜃2, 𝑝|𝑡)
𝑑𝜃1

𝑑𝛼1

𝑑𝜃2

𝑑𝛼2
,                                     (0.32) 

where𝑔∗(𝑝, 𝜃1, 𝜃2|𝑡)is the joint posterior density of p,𝜃 

Substituting by (0.31) in𝑝(𝑦|𝑡), it follows that the predictive density is, 

                𝑝(𝑦𝑘|𝑡) = ∫ ∫ ∫ 𝑓(𝑦𝑘|𝜃1, 𝜃2, 𝑝)𝑔∗(𝜃1, 𝜃2, 𝑝|𝑡)𝑑𝜃1𝑑𝜃2𝑑𝑝
𝜃2𝜃1𝑝

                     (0.33) 

The invariance property of Equation (0.25)follows in a similar manner. 

Hence, by using the one-to-one transformation between𝛼𝑖and𝜃𝑖 the results deduced for 

the general model in the previous sections can be applied to many survival models 

according to the transformation 𝜃𝑖 = 𝑔(𝛼𝑖), as will be shown in the upcoming section.  

 

3. Applications 

 

3. 1 Two-component Weibull model 

The pdf of ith component Weibull is                  

𝑓𝑖(𝑡) = 𝑐𝑖𝑡
𝑐𝑖−1/𝜃𝑖

𝑐𝑖 𝑒𝑥𝑝( − 𝑡𝑐𝑖/𝜃𝑖
𝑐𝑖)𝑖 = 1,2𝜃𝑖 > 0, 𝑐𝑖 > 0, 𝑡 > 0 

Thus Weibull distribution is one component of general model (0.2)when𝜆𝑖(𝑡) = 𝑡
𝑐𝑖 , 𝑖 =

1,2, 𝛼 = 𝜃𝑐𝑖As a result, the joint prior distribution has the form, 

                𝛱(𝜃, 𝑝) ∝
𝑝𝛿1−1𝑞𝛿2−1

𝜃1
𝑐1𝑏1+1

𝜃2
𝑐2𝑏2+1 𝑒𝑥𝑝 − (

𝑎1

𝜃1
𝑐1 +

𝑎2

𝜃2
𝑐2), 𝜃𝑖 > 0, 𝑎𝑖 > 0, 𝑏𝑖 > 0            (0.34) 

where the shape parameters c1 and c2 are assumed known. 

The predictive distribution can be obtained by replacing 𝜆𝑖(𝑦𝑘)with 𝑦𝑘
𝑐𝑖 in(0.25) as 

follows 

                                             𝑝(𝑦𝑘|𝑡) =
1

𝑄′
∑∗ ∑ 𝜁(𝐹1

∗∗ + 𝐹2
∗∗),                                      

(0.35) 

where 

𝐹1
∗∗ =

𝑐1𝑦𝑘
𝑐1−1

𝐵𝑒𝑡𝑎(𝑛−𝑑+𝑠2+𝛿1+1,𝑑+𝐸+𝛿2)(𝑏1+𝑟1)

(ℎ1+(𝑠2+1)𝑦𝑘
𝑐1)𝑏1+𝑟1+1(ℎ2+𝐸𝑦𝑘

𝑐2)𝑏2+𝑟2
,                                                  

                                   𝐹2
∗∗ =

𝑐2𝑦𝑘
𝑐2−1

𝐵𝑒𝑡𝑎(𝑛−𝑑+𝑠2+𝛿1,𝑑+𝐸+𝛿2+1)(𝑏2+𝑟2)

(ℎ1+𝑠2𝑦
𝑘
𝑐1)𝑏1+𝑟1(ℎ2+(𝐸+1)𝑦

𝑘
𝑐2)𝑏2+𝑟2+1

,                            

(0.36) 

       ℎ1 = 𝑎1 + ∑ 𝑡1𝑗
𝑐1𝑟1

𝑗=1 + ∑ 𝑡𝑖
𝑐1𝑛−𝑟

𝑖=1 − ∑ 𝑡𝑗𝑙

𝑐1𝑛−𝑟
𝑙=1 , ℎ2 = 𝑎2 + ∑ 𝑡2𝑗

𝑐2𝑟2
𝑗=1 + ∑ 𝑡𝑗𝑙

𝑐2𝑛−𝑟
𝑙=1 ,      

(0.37) 

𝑄′is as defined in equation(0.27), ∑∗and   are as defined in equation (0.24) 

If c1=c2=1, the Weibull component reduces to the exponential.  Using the general model, 

Exponential component is obtained by applying the substitution𝜆𝑖(𝑡) = 𝑡𝑖, 𝑖 = 1,2, 𝛼 = 𝜃 

3. 2 Two-component Burr type XII model  

The pdf of ith component Burr XII is                  

                  𝑓𝑖(𝑡) =
𝜃𝑖𝑐𝑖(

𝑡

𝑞𝑖
)𝑐𝑖−1

𝑞𝑖(1+(
𝑡

𝑞𝑖
)𝑐𝑖)

𝑒𝑥𝑝[ − 𝜃𝑖 𝑙𝑛( 1 + (
𝑡

𝑞𝑖
)𝑐𝑖)], 𝑡 ≥ 0, 𝜃𝑖 > 0, 𝑐 𝑖  𝑖 (0.38) 

Thus Burr XII model is one component of general model (0.2)where𝜆𝑖(𝑡) = 𝑙𝑛( 1 +
(𝑡/𝑞𝑖)𝑐𝑖), 𝑖 = 1,2, and𝛼𝑖 = 1/𝜃𝑖. The scale parameter (q1 and q2) and the first shape 
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parameters (c1 and c2) are assumed to be known. Using equation(0.30), it can be shown 

that𝜃𝑖follows the gamma prior distribution, then the joint prior distribution p, 𝜃1 and 𝜃2 is 

          𝛱(𝜃, 𝑝) ∝ 𝑝𝛿1−1𝑞𝛿2−1 ∗ 𝜃1
𝑏1−1

𝜃2
𝑏2−1

𝑒𝑥𝑝( − [𝜃1𝑎1 + 𝜃2𝑎2])                (0.39) 

The predictive distribution can be obtained by putting replacing𝜆𝑖(𝑦𝑘) with𝑙𝑛( 1 +

(
𝑦𝑘

𝑞𝑖
)𝑐𝑖) in (0.25) as follows, 

                                  𝑝(𝑦𝑘|𝑡) =
1

𝑄′
∑∗ ∑ 𝜁(𝐹1

∗∗ + 𝐹2
∗∗),                                         

(0.40) 

where 

𝐹1
∗∗

=
𝑐1(

𝑦𝑘

𝑞1)𝑐1−1𝐵𝑒𝑡𝑎(𝑛−𝑑+𝑠2+𝛿1+1,𝑑+𝐸+𝛿2)(𝑏1+𝑟1)
)

𝑞1(1 + (𝑦𝑘/𝑞1)𝑐1)(ℎ1 + (𝑠2 + 1) 𝑙𝑛( 1 + (𝑦𝑘/𝑞1)𝑐1))𝑏1+𝑟1+1(ℎ2 + 𝐸 𝑙𝑛( 1 + (𝑦𝑘/𝑞2)𝑐2))𝑏2+𝑟2
 

𝐹2
∗∗

=
𝑐2(𝑦𝑘/𝑞2)𝑐2−1𝐵𝑒𝑡𝑎(𝑛 − 𝑑 + 𝑠2 + 𝛿1, 𝑑 + 𝐸 + 𝛿2 + 1)(𝑏2 + 𝑟2)

𝑞2(1 + (𝑦𝑘/𝑞2)𝑐2)(ℎ1 + 𝑠2 𝑙𝑛( 1 + (𝑦𝑘/𝑞1)𝑐1))𝑏1+𝑟1(ℎ2 + (𝐸 + 1) 𝑙𝑛( 1 + (𝑦𝑘/𝑞2)𝑐2))𝑏2+𝑟2+1
 

,                                                                                                                                       
(0.41) 

ℎ1 = 𝑎1 + ∑ 𝑙𝑛( 1 + (
𝑡1𝑗

𝑞1)𝑐1
)

𝑟1

𝑗=1

+ ∑ 𝑙𝑛( 1 + (
𝑡𝑖

𝑞1)𝑐1
)

𝑛−𝑟

𝑖=1

− ∑ 𝑙𝑛( 1 + (
𝑡𝑗𝑙

𝑞1)𝑐1
)

𝑛−𝑟

𝑙=1

, 

ℎ2 = 𝑎2 + ∑ 𝑙𝑛( 1 + (𝑡2𝑗/𝑞2)𝑐2)

𝑟2

𝑗=1

+ ∑ 𝑙𝑛( 1 + (𝑡𝑗𝑙
/𝑞2)𝑐2),

𝑛−𝑟

𝑙=1

 

                                                                                                                                        

(0.42) 

 

𝑄′is as defined in equation(0.27), ∑∗and   are as defined in equation (0.24) 

If c1=c2=1, the Burr XII component reduces to the Lomax.  Using the general model, 

Lomax component is obtained by applying the substitution𝜆𝑖(𝑡) = 𝑙𝑛( 1 + 𝑡/𝑞𝑖), 𝑖 =
1,2,𝛼𝑖 = 1/𝜃𝑖. 

As mentioned previously, Al-Hussaini (2003) obtained the predictive density of the 

future kth ordered observation from a general model in type I censoring. He considered 

applications to the two-component Weibull and the two-component Burr XII models. It is 

proved that the results under random censoring reduce to those of type I censoring 

obtained by Al-Hussaini (2003) when each of the censoring times ti, is equal to a pre-

assigned value T (proofs are available under request). 

 

4. Numerical examples 

 

In this section, two numerical examples are given to obtain the prediction bounds of first 

and last order statistics based on the two-component exponential and two-component 

Lomax when the samples are subject to random censoring. 

The following steps for generating a random sample from two-component model under 

random censoring are common in implemented samples, 
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I- The parameters of the two-component exponential model are generated from the prior 

distribution. The mixing proportion p is generated from Beta (δ1, δ2) distribution. 

Parameters of components are generated independently with assigned values for the 

hyper parameters of the assumed prior density.  

 

II- Lifetimes Ti, i=1,2,..,n are obtained from the two-component model as follows, 

generate Ui, i=1,..,n from uniform (0,1). If ui<p, where p has been generated in step 1 

then an observation is generated from the first component, otherwise the observation is 

generated from the second component. The two components having same distribution 

with different parameters. Hence, (n) lifetimes will be obtained in this step, n1 coming 

from the first component and n2 coming from the second component (n1+n2=n). 

 

III- Censoring time Ci(i=1,2,..,n) is generated from the same distribution (censoring 

distribution). Each lifetime ti is compared with a censoring time ci. If ti≤ci the item is 

considered observed otherwise it’s considered censored hence r observed items will be 

obtained in this step r1 coming from the first component and r2 coming from the second 

component (r1+r2=r) whereas n-r items will be censored. 

For interval prediction𝛼 = 0.05.  

 

4. 1 Two-component exponential  

A sample of size 25 from a two-component exponential model under random censoring is 

generated. Censoring distribution is exponential (𝜃 = (𝜃1 + 𝜃2)/2). Both 𝜃1and 𝜃2 are 

generated from inverse gamma distribution with hyper parameters (a1=a2=10&b1=b2=40). 

The mixing proportion p is generated from Beta(2,4).The parameters of the mixture 

distribution are, p= 0.6135914, 𝜃1=0.2292116, and 𝜃2 =0.2466698. 20 items were 

observed; 15 from the first component and 5 from the other while 5 observations were 

censored. Using the generated sample and a future sample of size 25 the prediction 

interval of the first order observation is (0.0002737145, 0.04072356) and the 

25thprediction interval is (0.5271723, 2.010128). 

 

4.2 Two-component Lomax 

A sample of size 20 from a two-component Lomax model under random censoring is 

generated. 

Censoring distribution is Lomax(𝑞 = (𝑞1 + 𝑞2)/2 ,𝜃 = 1/(𝜃1 + 𝜃2)). Both 𝜃1and 𝜃2 are 

generated from a gamma distribution with hyper parameters (a1=a2=10&b1=b2=40). The 

parameters of the mixture distribution are, p=0.7794147, the assigned scale parameters 

(q1=0.8;q2=0.9), and shape parameters are 𝜃1=4.934642, and 𝜃2 = 5.741062.15 items 

were observed; from the first component 12 items and 3 are observed from the second 

component while 5 are censored. Using the generated sample and a future sample of size 

25 the prediction interval of the first order observation is (0.0001980174, 0.0323118) and 

the 25thprediction interval is (0.4909876, 1.394808). 

 

5. Simulation study 

 

For the 1000 simulated samples, the following were computed, the number of censored 

items on average (AC), The average number of samples where the predicted item lies in 

the prediction interval (Coverage), The average width (AW) of the prediction interval.   
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𝐴𝐶 =
1

𝑁
∑ 𝑛 − 𝑟𝑖 , 𝑖 = 1: 𝑁 

𝐴𝑤 =
1

𝑁
∑(𝑏𝑖 − 𝑎𝑖) , 𝑖 = 1: 𝑁, 

whereb is upper bound of the prediction interval, a is lower bound of the prediction 

interval. 

To control the average number of items censored (AC) the parameter of censoring 

distribution is changed. The rate of the exponential distribution has an inverse relation 

with the magnitude of the generated random variables since mean=1/rate. Thus, if light 

censoring is desired, the rate of censoring distribution is chosen to be so small so that Ci 

are greater than Ti and hence n-r is small. If heavy censoring is desired, the rate of that 

censoring distribution is chosen to so large so that Ci are lower that Ti and hence n-r is 

large. 

Simulation study of predicting first and last observations 

1000 random censored samples of size 20 are simulated from the two-component 

exponential distribution to predict first and last ordered observation from a future sample 

of size 25. The censoring distribution is assumed to be exponential, the mixing proportion 

is assumed to come from beta(2,4) and scale parameters are assumed to follow inverse 

gamma prior (shape(b)=40, scale(a)=10). With 95% level of significance and 1.81 

average number of censored items, results were as follows, 

 

 coverage Average width of interval 

y1 0.952 0.03871259 

y25 0.958 1.417279 

 

Now, we will explore the effects of changing hyper parameters, sample size, and AC on 

Interval prediction through analyzing the effect on coverage, AW. The simulation process 

was repeated changing sample size, censoring distribution parameters, and hyper 

parameters in order to assess the effect of each on the prediction. 

 

Table1: Effect of changing hyper parameters on coverage, AW for n = 10 and AC ≈2  

b1= b2, a1=a2 Coverage 

 AW 

(10,10) 0.96 

4.90158 

(10,40) 0.96 

19.75284 

(40,10) 0.96 

0.98929 

(10,70) 0.958 

33.67141 

(70,10) 0.962, 

0.54693 

 

-As the shape parameter (b) increases while fixing the scale parameter (a) the AW of the 

prediction interval decreases.  
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-As the scale parameter increases while fixing the shape parameter the width of the 

prediction interval increases. 

-These two results are consistent with the results obtained by Sloan and Sinha (1991) 

under Type I censoring. 

-As the shape increase and the scale decrease the AW decreases which agrees with the 

first two results. 

In all cases, it is observed that the coverage probability is almost stable with respect to 

variations in the parameters. 

 

 

Table2: Effect of changing sample size (n) on coverage, AW for AC ≈ 2  

b1= b2, a1=a2 n=10 n=20 n=30 

Coverage, AW Coverage, AW Coverage, AW 

10,40 0.96, 19.75284 0.96, 18.91143 0.96, 18.52278 

40,10 0.96, 0.9892897 0.962 0.9872877 0.964,0.9811134 

 

As the sample size increases the AW of the prediction interval decreases and the 

estimated coverage probability is slightly affected. 

 

Table3: Effect of changing AC on coverage, AW for n = 10  

b1= b2, a1=a2 AC≈2 AC≈5 AC≈8 

Coverage 

 AW  

Coverage 

AW 

Coverage 

 AW 

10,40 0.96 

 19.75284 

0.954 

 24.22422 

0.954 

 29.55265 

40,10 0.96 

 0.9892897 

0.958 

 1.03671 

0.958 

1.092093 

The average width of the prediction interval increases sharply as the average number of 

censored items increases while the estimated coverage probability is slightly affected. 

 
6. Conclusions  

1- A closed form of the Bayesian predictive density of the two-component mixture of 

general model was derived.  

2- Applications to finite mixtures of two-component Weibull and two-component Burr 

XII have been obtained. The Bayesian predictive density 𝑝(𝑦𝑘|𝑡) can be obtained for any 

other components.  

3- Two-component exponentialand two-component Lomax were used as examples to 

obtain predictive bounds for first and last order statistics. Other order statistics can be 

obtained the same way using same Bayesian predictive density 𝑝(𝑦𝑘|𝑡) 

4-A simulation study has been conducted to assess the effect of sample size, hyper 

parameters, and level of censoring on prediction interval and point prediction of a future 

observation coming from the two-component exponential model. 

Based on this simulation study the following conclusions are valid  

a- The effect of hyper parameter selection 

Increasing the shape parameter and decreasing the scale parameter improves the results of 

both the point and interval prediction as it decreases both the width of the prediction 

interval and estimated risk of the point prediction. 
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b- The effect of sample size 

Increasing the sample size decreases the average width and increases the coverage 

probability of the interval prediction while it decreases the estimated risk of the point 

predictor which is an expected result. 

c- The effect of censoring level 

As the number of censored items decreases, samples become closer to the complete case 

which improves both point and interval prediction. The prediction interval becomes 

narrower, the coverage probability of prediction interval increases and the estimated risk 

of the point predictor decreases. 

 

Appendix  

A.1 Proof that∑ 𝑒𝑥𝑝( ∑ 𝑥𝑗𝑙

𝑛
𝑙=1 )(𝑘)∑ 𝐼𝑗𝑙

𝑛
𝑙=1 = ∏ (1 + 𝑘𝑛

𝑖=1 𝑒𝑥𝑝( 𝑥𝑖)), 

Using mathematical induction to prove that, 

∑ ∑ ∑ . . . . . . . . ∑ ∑ 𝑒𝑥𝑝( ∑ 𝑥𝑗𝑙

𝑛

𝑙=1

𝑗𝑛−1−1

𝑗𝑛=0

𝑗𝑛−2−1

𝑗𝑛−1=0

𝑗2−1

𝑗3=0

𝑗1−1

𝑗2=0

𝑛

𝑗1=0

)(𝑘)∑ 𝐼𝑗𝑙
𝑛
𝑙=1 , 𝐼𝑗𝑙

= {
0, 𝑗𝑙 = 0
1, 𝑗𝑙 ≥ 1

} , (𝑗𝑙 ≤ 0 ⇒ 𝑥𝑗𝑙

= 0) = ∏(1 + 𝑘

𝑛

𝑖=1

𝑒𝑥𝑝( 𝑥𝑖))(𝐴. 1) 

For n=1,  

𝐿. 𝐻. 𝑆 = ∑ 𝑒𝑥𝑗1 𝑘𝐼𝑗11
𝑗1=0 = 𝑒𝑥0𝑘0 + 𝑒𝑥1𝑘1 = 1 + 𝑘𝑒𝑥1 = 𝑅. 𝐻. 𝑆   (A.2) 

For n=2,  

𝐿. 𝐻. 𝑆 = ∑ ∑ 𝑒𝑥𝑗1+𝑥𝑗2 𝑘𝐼𝑗1+𝐼𝑗2

𝑗1−1

𝑗2=0

2

𝑗1=0

= 𝑒𝑥0𝑘0 + 𝑒𝑥1𝑘1 + 𝑒𝑥1+𝑥2𝑘2 + 𝑒𝑥2𝑘1

= 1 + 𝑘𝑒𝑥1 + 𝑘𝑒𝑥2 + 𝑘2𝑒𝑥1+𝑥2 
𝑅. 𝐻. 𝑆 = (1 + 𝑘𝑒𝑥1)(1 + 𝑘𝑒𝑥2) = 1 + 𝑘𝑒𝑥1 + 𝑘𝑒𝑥2 + 𝑘2𝑒𝑥1+𝑥2 

∴ 𝐿. 𝐻. 𝑆 = 𝑅. 𝐻. 𝑆( .43) 

Let the relation be true for n=s-1, it’s required to prove that it is true for n=s 

𝑛 = 𝑠 − 1, 

∑ ∑ ∑ … … . . ∑ ∑ 𝑒𝑥𝑝( ∑ 𝑥𝑗𝑙

𝑠−1
𝑙=1

𝑗𝑠−2−1
𝑗𝑠−1=0

𝑗𝑠−3−1
𝑗𝑠−2=0

𝑗2−1
𝑗3=0

𝑗1−1
𝑗2=0

𝑠−1
𝑗1=0 )(𝑘)∑ 𝐼𝑗𝑙

𝑠−1
𝑙=1 , 𝐼𝑗𝑙

= {
0, 𝑗𝑙 = 0
1, 𝑗𝑙 ≥ 1

} , (𝑗𝑙 ≤ 0 ⇒ 𝑥𝑗𝑙
= 0) = ∏ (1 + 𝑘𝑠−1

𝑖=1

𝑒 𝑥𝑖)      (A.4) 

Before moving to step (4) note that the L.H.S in equation 

Error! Reference source not found. can be expressed in another form that will ease the 

proof .The L.H.S in equation Error! Reference source not found.can be expanded as 

follows, 

∑ ∑ ∑ . . . . . . . . ∑ ∑ 𝑒𝑥𝑝( ∑ 𝑥𝑗𝑙

𝑛

𝑙=1

𝑗𝑛−1−1

𝑗𝑛=0

𝑗𝑛−2−1

𝑗𝑛−1=0

𝑗2−1

𝑗3=0

𝑗1−1

𝑗2=0

𝑛

𝑗1=0

)(𝑘)∑ 𝐼𝑗𝑙
𝑛
𝑙=1 , 𝐼𝑗𝑙

= {
0, 𝑗𝑙 = 0
1, 𝑗𝑙 ≥ 1

} , (𝑗𝑙 ≤ 0 ⇒ 𝑥𝑗𝑙

= 0) 
= 1 + 𝑘 𝑒𝑥𝑝( 𝑥1) + 𝑘 𝑒𝑥𝑝( 𝑥2) + 𝑘2 𝑒𝑥𝑝( 𝑥2 + 𝑥1) + 𝑘 𝑒𝑥𝑝( 𝑥3) + 𝑘2 𝑒𝑥𝑝( 𝑥3 + 𝑥1)

+ 𝑘3 𝑒𝑥𝑝( 𝑥3 + 𝑥2 + 𝑥1) + 𝑘 𝑒𝑥𝑝( 𝑥4) + 𝑘2 𝑒𝑥𝑝( 𝑥4 + 𝑥1) 
+𝑘2 𝑒𝑥𝑝( 𝑥4 + 𝑥2) + 𝑘2 𝑒𝑥𝑝( 𝑥4 + 𝑥3) + 𝑘3 𝑒𝑥𝑝( 𝑥4 + 𝑥3 + 𝑥2) + 𝑘3 𝑒𝑥𝑝( 𝑥4 + 𝑥3

+ 𝑥1) + 𝑘3 𝑒𝑥𝑝( 𝑥4 + 𝑥2 + 𝑥1)+. . . . . . . . . . . +𝑘 𝑒𝑥𝑝( 𝑥𝑛) 
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+𝑘2 𝑒𝑥𝑝( 𝑥𝑛 + 𝑥1) + 𝑘2 𝑒𝑥𝑝( 𝑥𝑛 + 𝑥2) + 𝑘2 𝑒𝑥𝑝( 𝑥𝑛 + 𝑥3)+. . . . . . . +𝑘2 𝑒𝑥𝑝( 𝑥𝑛 +
𝑥𝑛−1) + 𝑘3 𝑒𝑥𝑝( 𝑥𝑛 + 𝑥𝑛−1 + 𝑥𝑛−2)+. . . . . +𝑘3 𝑒𝑥𝑝( 𝑥𝑛 + 𝑥2 +

𝑥1) +𝑘4 𝑒𝑥𝑝( 𝑥𝑛 + 𝑥𝑛−1 + 𝑥𝑛−2 + 𝑥𝑛−3) + ⋯ . +𝑘4 𝑒𝑥𝑝( 𝑥𝑛 + 𝑥3 + 𝑥2 + 𝑥1)
+. . . . . . . . . +

𝑘 𝑛 𝑒𝑥𝑝( 𝑥𝑛 +

𝑥𝑛−1 + 𝑥𝑛−2+. . . . . +𝑥2 + 𝑥1)( .44) 

Rearranging the terms in the above expression gives, 

∑ ∑ ∑ . . . . . . . . ∑ ∑ 𝑒𝑥𝑝( ∑ 𝑥𝑗𝑙

𝑛

𝑙=1

𝑗𝑛−1−1

𝑗𝑛=0

𝑗𝑛−2−1

𝑗𝑛−1=0

𝑗2−1

𝑗3=0

𝑗1−1

𝑗2=0

𝑛

𝑗1=0

)(𝑘)∑ 𝐼𝑗𝑙
𝑛
𝑙=1 , 𝐼𝑗𝑙

= {
0, 𝑗𝑙 = 0
1, 𝑗𝑙 ≥ 1

} , (𝑗 ≤ 0 ⇒ 𝑥𝑗

= 0) 
= 1 + 𝑘[𝑒𝑥𝑝( 𝑥1) + 𝑘 𝑒𝑥𝑝( 𝑥2) + 𝑘 𝑒𝑥𝑝( 𝑥3) + 𝑘 𝑒𝑥𝑝( 𝑥4)+. . . . 𝑘 𝑒𝑥𝑝( 𝑥𝑛)]

+ 𝑘2[𝑒𝑥𝑝( 𝑥1 + 𝑥2) + 𝑒𝑥𝑝( 𝑥1 + 𝑥3) + 𝑒𝑥𝑝( 𝑥1 + 𝑥4)+. . . + 𝑒𝑥𝑝( 𝑥1

+ 𝑥𝑛) 
+ 𝑒𝑥𝑝( 𝑥2 + 𝑥3) + 𝑒𝑥𝑝( 𝑥2 + 𝑥4)+. . . + 𝑒𝑥𝑝( 𝑥2 + 𝑥𝑛) + 𝑒𝑥𝑝( 𝑥3 + 𝑥4)+. . . . . . 𝑒𝑥𝑝( 𝑥3

+ 𝑥𝑛)+. . . . . + 𝑒𝑥𝑝( 𝑥𝑛 + 𝑥𝑛−1)] + 𝑘3[𝑒𝑥𝑝( 𝑥1 + 𝑥2 + 𝑥3) 
+ 𝑒𝑥𝑝( 𝑥1 + 𝑥2 + 𝑥4)+. . . . . + 𝑒𝑥𝑝( 𝑥1 + 𝑥2 + 𝑥𝑛)+. . . . . . + 𝑒𝑥𝑝( 𝑥1 + 𝑥3 +
𝑥4)+. . . . + 𝑒𝑥𝑝( 𝑥1 + 𝑥3 + 𝑥𝑛−1)+. . . . +(𝑥𝑛 + 𝑥𝑛−1 +
𝑥𝑛−2)] +. . . . . . . . . + 𝑘 𝑛 𝑒𝑥𝑝( 𝑥𝑛 + 𝑥𝑛−1 + 𝑥𝑛−2+. . . . . +𝑥2 + 𝑥1)( .45) 

That can be summarized as follows, 

∑ ∑ ∑ . . . . . . . . ∑ ∑ 𝑒𝑥𝑝( ∑ 𝑥𝑗𝑙

𝑛

𝑙=1

𝑗𝑛−1−1

𝑗𝑛=0

𝑗𝑛−2−1

𝑗𝑛−1=0

𝑗2−1

𝑗3=0

𝑗1−1

𝑗2=0

𝑛

𝑗1=0

)(𝑘)∑ 𝐼𝑗𝑙
𝑛
𝑙=1 , 𝐼𝑗𝑙

= {
0, 𝑗𝑙 = 0
1, 𝑗𝑙 ≥ 1

} , (𝑗 ≤ 0 ⇒ 𝑥𝑗

= 0) 

= 1 + 𝑘 ∑ 𝑒𝑥𝑝( 𝑥𝑗1
)

𝑛

𝑗1=1

+ 𝑘2 ∑ ∑ 𝑒𝑥𝑝( 𝑥𝑗1
+ 𝑥𝑗2

)

𝑗1−1

𝑗2=1

𝑛

𝑗1=2

+ 𝑘3 ∑ ∑ ∑ 𝑒𝑥𝑝( 𝑥𝑗1
+ 𝑥𝑗2

+ 𝑥𝑗3
)

𝑗2−1

𝑗3=1

𝑗1−1

𝑗2=2

𝑛

𝑗1=3

 

+. . +𝑘𝑛−1 ∑ ∑ ∑ . . ∑ 𝑒𝑥𝑝( ∑ 𝑥𝑗𝑙

𝑛−1
𝑙=1 )

𝑗𝑛−2−1
𝑗𝑛−1=1

𝑗2−1
𝑗3=𝑛−3

𝑗1−1
𝑗2=𝑛−2

𝑛
𝑗1=𝑛−1 +

𝑘𝑛 ∑ ∑ ∑ . . . . . ∑ ∑ 𝑒𝑥𝑝( ∑ 𝑥𝑗𝑙

𝑛
𝑙=1 )1

𝑗𝑛=1
2
𝑗𝑛−1=2

𝑛−2
𝑗3=𝑛−2

𝑛−1
𝑗2=𝑛−1

𝑛
𝑗1=𝑛 ( .46) 

 

4- Given that the relation is true for n=s-1 (step 3) proof that the relation is true for n=s 

𝑅. 𝐻. 𝑆 = ∏(1 + 𝑘

𝑠

𝑖=1

𝑒𝑥𝑖) = ∏(1 + 𝑘

𝑠−1

𝑖=1

𝑒𝑥𝑖)(1 + 𝑘𝑒𝑥𝑠) 

= (1 + 𝑘𝑒𝑠)[∑ ∑ ∑ . . . . . . . . ∑ ∑ 𝑒𝑥𝑝( ∑ 𝑥𝑗𝑙

𝑠−1
𝑙=1

𝑗𝑠−2−1
𝑗𝑠−1=0

𝑗𝑠−3−1
𝑗𝑠−2=0

𝑗2−1
𝑗3=0

𝑗1−1
𝑗2=0

𝑠−1
𝑗1=0 )(𝑘)

∑ 𝐼𝑗𝑙
𝑠−1
𝑙=1 ], 𝐼𝑗𝑙

=

{
0, 𝑗𝑙 = 0
1, 𝑗𝑙 ≥ 1

} , (𝑗 ≤ 0 ⇒ 𝑥𝑗 = 0)( .47) 

 

By expanding the term 

( ∑ ∑ ∑ . . . . . . . . ∑ ∑ 𝑒𝑥𝑝( ∑ 𝑥𝑗𝑙

𝑠−1

𝑙=1

𝑗𝑠−2−1

𝑗𝑠−1=0

𝑗𝑠−3−1

𝑗𝑠−2=0

𝑗2−1

𝑗3=0

𝑗1−1

𝑗2=0

𝑠−1

𝑗1=0

)(𝑘)∑ 𝐼𝑗𝑙
𝑠−1
𝑙=1 ), the R.H.S. is, 
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𝑅. 𝐻. 𝑆. = (1 + 𝑘𝑒𝑠)[1 + 𝑘 ∑ 𝑒𝑥𝑝( 𝑥𝑗1
)

𝑠−1

𝑗1=1

+ 𝑘2 ∑ ∑ 𝑒𝑥𝑝( 𝑥𝑗1
+ 𝑥𝑗2

)

𝑗1−1

𝑗2=1

𝑠−1

𝑗1=2

+ 𝑘3 ∑ ∑ ∑ 𝑒𝑥𝑝( 𝑥𝑗1
+ 𝑥𝑗2

+ 𝑥𝑗3
)

𝑗2−1

𝑗3=1

𝑗1−1

𝑗2=2

𝑠−1

𝑗1=3

 

+. . . +𝑘𝑠−2 ∑ ∑ ∑ . . . . . ∑ 𝑒𝑥𝑝( ∑ 𝑥𝑗𝑙

𝑠−2
𝑙=1 )

𝑗𝑠−2−1
𝑗𝑠−2=1

𝑗2−1
𝑗3=𝑠−4

𝑗1−1
𝑗2=𝑠−3

𝑠−1
𝑗1=𝑠−2 +

𝑘𝑠−1 ∑ ∑ ∑ . . . . . ∑ ∑ 𝑒𝑥𝑝( ∑ 𝑥𝑗𝑙

𝑠−1
𝑙=1 )1

𝑗𝑠−1=1
2
𝑗𝑠−2=2

𝑠−3
𝑗3=𝑠−3

𝑠−2
𝑗2=𝑠−2

𝑠−1
𝑗1=𝑠−1 ]( .48) 

Then, applying the multiplication the R.H.S is,  

𝑅. 𝐻. 𝑆 = [1 + 𝑘 ∑ 𝑒𝑥𝑝( 𝑥𝑗1
)

𝑠−1

𝑗1=1

+ 𝑘2 ∑ ∑ 𝑒𝑥𝑝( 𝑥𝑗1
+ 𝑥𝑗2

)

𝑗1−1

𝑗2=1

𝑠−1

𝑗1=2

+ 𝑘3 ∑ ∑ ∑ 𝑒𝑥𝑝( 𝑥𝑗1
+ 𝑥𝑗2

+ 𝑥𝑗3
)

𝑗2−1

𝑗3=1

𝑗1−1

𝑗2=2

𝑠−1

𝑗1=3

 

+. . . +𝑘𝑠−2 ∑ ∑ ∑ . . . . . ∑ 𝑒𝑥𝑝( ∑ 𝑥𝑗𝑙

𝑠−2

𝑙=1

)

𝑗𝑠−2−1

𝑗𝑠−2=1

𝑗2−1

𝑗3=𝑠−4

𝑗1−1

𝑗2=𝑠−3

𝑠−1

𝑗1=𝑠−2

+ 𝑘𝑠−1 𝑒𝑥𝑝( 𝑥1

+ 𝑥2+. . . . +𝑥𝑠−1)] 
+ 

[𝑘𝑒𝑠 + 𝑘2 ∑ 𝑒𝑥𝑝( 𝑥𝑗1
+ 𝑥𝑠)

𝑠−1

𝑗1=1

+ 𝑘3 ∑ ∑ 𝑒𝑥𝑝( 𝑥𝑗1
+ 𝑥𝑗2

+ 𝑥𝑠)+. . . . . .

𝑗1−1

𝑗2=1

𝑠−1

𝑗1=2

+ 𝑘𝑠−1 ∑ ∑ ∑ . . . . . ∑ 𝑒𝑥𝑝( ∑ 𝑥𝑗𝑙

𝑠−1

𝑙=1

+ 𝑥𝑠)

𝑗𝑠−2−1

𝑗𝑠−2=1

𝑗2−1

𝑗3=𝑠−4

𝑗1−1

𝑗2=𝑠−3

𝑠−1

𝑗1=𝑠−2

 

+𝑘𝑠 𝑒𝑥𝑝( 𝑥1 + 𝑥2+. . . . +𝑥𝑠−1 + 𝑥𝑠)]( .49) 

Rearranging the terms, the R.H.S can finally be shown as, 

𝑅. 𝐻. 𝑆 = 1 + 𝑘 ∑ 𝑒𝑥𝑝( 𝑥𝑗1
)

𝑠

𝑗1=1

+ 𝑘2 ∑ ∑ 𝑒𝑥𝑝( 𝑥𝑗1
+ 𝑥𝑗2

)

𝑗1−1

𝑗2=1

𝑠

𝑗1=2

+ 𝑘3 ∑ ∑ ∑ 𝑒𝑥𝑝( 𝑥𝑗1
+ 𝑥𝑗2

+ 𝑥𝑗3
)

𝑗2−1

𝑗3=1

𝑗1−1

𝑗2=2

𝑠

𝑗1=3

 

+. . . . . . . . . . . . . . +𝑘𝑠−1 ∑ ∑ ∑ . . . . . ∑ 𝑒𝑥𝑝( ∑ 𝑥𝑗𝑙

𝑠−1
𝑙=1 )

𝑗𝑠−2−1
𝑗𝑠−1=1

𝑗2−1
𝑗3=𝑠−3

𝑗1−1
𝑗2=𝑠−2

𝑠
𝑗1=𝑠−1 +

𝑘𝑠 𝑒𝑥𝑝( 𝑥1 + 𝑥2+. . . . +𝑥𝑠−1 + 𝑥𝑠) ( .50) 

From equation ( .46) thus R.H.S.=L.H.S. 

Since the relation is true for n=1, n=2, and for n=s, then it’s true for any n. 

 

A.2 Computational algorithm of simulation 

The statistical package “R” is used to simulate samples exposed to random censoring 

from each of the mentioned two-component mixture models. Some functions are built in 

R base and some others need a package inside R to be installed, listed below are the 

packages installed and use of each of them,  
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- A package called “pscl” is used to generate random variables from gamma or inverse 

gamma distributions 

- A package called “nleqslv” is used to solve equations numerically for a root. 

- A package called “R2Cuba” is used to solve integration numerically. A function called 

“cuhre” in this package is used. "cuhre” is a method of integration that uses an iterative 

technique to apply a subdivision strategy where regions are bisected as long as accuracy 

is not reached yet. 

The following steps for generating a random sample from two-component model under 

random censoring are common in all implemented samples, 

I- The parameters of the two-component exponential model are generated from the prior 

distribution  . The mixing proportion p is generated from beta(2,4) distribution. Parameters 

of components are generated independently with assigned values for the hyper 

parameters of the assumed prior density.  

II- Lifetimes Ti, i=1,2,..,n are obtained from the two-component model as follows, 

generate Ui, i=1,..,n from uniform (0,1). If ui<p, where p has been generated in step 1 

then an observation is generated from the first component, otherwise the observation is 

generated from the second component. The two components having same distribution 

with different parameters. Hence, (n) lifetimes will be obtained in this step, n1 coming 

from the first component and n2 coming from the second component (n1+n2=n). 

III- Censoring time Ci(i=1,2,..,n) is generated from the same distribution (censoring 

distribution). Each lifetime ti is compared with a censoring time ci. If ti≤ci the item is 

considered observed otherwise it’s considered censored hence r observed items will be 

obtained in this step r1 coming from the first component and r2 coming from the second 

component (r1+r2=r) whereas n-r items will be censored. 
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