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Abstract 

We propose a new extended G family of distributions. Some of its structural properties are derived and 

some useful characterization results are presented. The maximum likelihood method is used to estimate the 

model parameters by means of graphical and numerical Monte Carlo simulation study. The flexibility of 

the new family illustrated by means of two real data sets. Moreover, we introduce a new log-location 

regression model based on the proposed family. The martingale and modified deviance residuals are 

defined to detect outliers and evaluate the model assumptions. The potentiality of the new regression model 

is illustrated by means of a real data set.  

Keywords: Characterization; Simulation; Regression Modeling.  

1.   Introduction 

In the statistical literature, there are many G families which have been introduced based 

on the bounded models such as the beta-G family of distributions by Eugene (2002), the 

Kumaraswamy G family of distributions by Cordeiro and de Castro (2011) and the Topp-

Leone generated family of distributions by Rezaei et al. (2017) among others. Motivated 

by Cordeiro and de Castro (2011) and Rezaei et al. (2017), we defne the new Extended 

(NE) G family of distributions.  Let 𝑇 be a random variable (r.v.) with the following 

cumulative distribution function (cdf) 

𝐻(𝑡; 𝛼, 𝛽) = 2𝛼
−1
𝑡 [1 + 𝑡𝛼]−𝛼

−1
[1 + (1 − 𝑡)𝛽]

−𝛽−1

;  0 ≤ 𝑡 ≤ 1.             (1) 

Where 𝛼 and 𝛽 are positive parameters. Let ℎ(𝑡; 𝛼, 𝛽) be the corresponding probability 

density function (pdf)  
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Then new cdf is given by  

𝐹(𝑥) = 𝐹𝑁𝐸𝐺(𝑥; 𝛼, 𝛽, 𝜉) = ∫
𝐺(𝑥;𝜂)

0

ℎ(𝑡; 𝛼, 𝛽)𝑑𝑡 

 =
2𝛼
−1
𝐺(𝑥;𝜂)

[1+𝐺(𝑥;𝜂)
𝛼
]
𝛼−1

[1+𝐺(𝑥;𝜂)
𝛽
]

𝛽−1
, 𝑥 ∈ ℝ.                                               (2) 

 

The pdf of the new family corresponding to (2) is given by  

𝑓(𝑥) = 𝑓𝑁𝐸𝐺(𝑥; 𝛼, 𝛽, 𝜉) =
2𝛼
−1
𝑔(𝑥;𝜂){1+𝐺(𝑥;𝜂)

𝛽−1
[1+𝐺(𝑥;𝜂)

𝛼+1
]}

[1+𝐺(𝑥;𝜂)
𝛼
]
𝛼−1+1

[1+𝐺(𝑥;𝜂)
𝛽
]

𝛽−1+1
, 𝑥 ∈ ℝ,         (3) 

Where 𝑔 (𝑥; 𝜂) is the pdf corresponding to𝐺 (𝑥; 𝜂). 

 

Hereafter, a r.v. 𝑋 with pdf (3) will be denoted by 𝑋 ~ NE-G (𝛼, 𝛽, 𝜉). Further, we may 

write 𝑔 (𝑥; 𝜂) as 𝑔(𝑥) and 𝐺 (𝑥; 𝜂) as 𝐺(𝑥) sometimes. The corresponding reverse 

hazard function is 

𝑟𝐹(𝑥) = 𝑟𝐹(𝑥; 𝛼, 𝛽, 𝜉) =
𝑔 (𝑥; 𝜂) {1 + 𝐺 (𝑥; 𝜂)

𝛽−1

[1 + 𝐺 (𝑥; 𝜂)
𝛼+1

]}

𝐺(𝑥) [1 + 𝐺 (𝑥; 𝜂)
𝛼

] [1 + 𝐺 (𝑥; 𝜂)
𝛽

]

,    𝑥 ∈ ℝ. 

 

The differential equation in terms of the reverse hazard function is 

𝑟𝐹
′(𝑥) −

𝑔′ (𝑥; 𝜂)

𝑔 (𝑥; 𝜂)
𝑟𝐹(𝑥) = 𝑔 (𝑥; 𝜂)

𝑑

𝑑𝑥
{
1 + 𝐺 (𝑥; 𝜂)

𝛽−1

[1 + 𝐺 (𝑥; 𝜂)
𝛼+1

]

𝐺(𝑥) [1 + 𝐺 (𝑥; 𝜂)
𝛼

] [1 + 𝐺 (𝑥; 𝜂)
𝛽

]

} , 𝑥 ∈ ℝ, 

with boundary condition  

lim
𝑥→∞

𝑟𝐹(𝑥) = lim
𝑥→∞

𝑔 (𝑥; 𝜂). 

For 𝛼 = 𝛽 , we have  

𝐹(𝑥; 𝛼) =
2𝛼

−1
𝐺 (𝑥; 𝜂)

{[1 + 𝐺 (𝑥; 𝜂)
𝛼

] [1 + 𝐺 (𝑥; 𝜂)
𝛼

]}
𝛼−1

,    𝑥 ∈ ℝ. 

There is a special characterization for this submodel.  For 𝛼 = 𝛽 = 1 , we have 

𝐹(𝑥) =
2𝐺 (𝑥; 𝜂)

[1 + 𝐺 (𝑥; 𝜂)] [2 − 𝐺 (𝑥; 𝜂)]
,    𝑥 ∈ ℝ. 

 

We are motivated to introduce the new family since it exhibits the increasing, decreasing, 

upside-down as well as the bathtub hazard rates as illustrated in Figure 2. It is shown in 

Section 2 that the new family can be viewed as a mixture representation of the 

exponentiated G densities. The new family can also be viewed as a suitable model for 

fitting the right-skewed, the symmetric and bimodal data (see Section 9). The NE-

Weibull and NE-normal models outperform several of the well-known lifetime Weibull 

and -normal distributions with respect to the 1st and the 2nd real data applications 
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respectively. The new log-location regression model based on the NE Weibull 

distribution provides better fits than the log-Weibull regression model in modelingthe 

HIV survival data. 

2.   Useful expansions 

First, we consider two power series 

(1 + 𝑧)−𝑎 = ∑∞
𝑖=0 (−1 + 𝑧)

𝑖2−𝑎−𝑖 (
−𝑎
𝑖
)                                                        (4) 

and  

(1 − 𝑧)𝑏−1 = ∑
𝑗=0

∞ (−1)𝑗 Γ(𝑏)

𝑗! Γ(𝑏−𝑗)
 𝑧𝑗 , |𝑧| < 1 𝑎𝑛𝑑 𝑏 > 0𝑖𝑠𝑎𝑟𝑒𝑎𝑙𝑛𝑜𝑛 − 𝑖𝑛𝑡𝑒𝑔𝑒𝑟.   (5) 

The cdf in (2) can be written as 

𝐹𝑛𝑒𝑤(𝑥) = 2
𝛼−1𝐺 (𝑥; 𝜂) [1 + 𝐺 (𝑥; 𝜂)

𝛼

]
−𝛼−1

⏟            
𝐴

[1 + 𝐺 (𝑥; 𝜂)
𝛽

]
−𝛽−1

.              (6) 

By Expanding the quantity 𝐴 in power series (4), the NE-G cdf in (6) can be expressed as 

𝐹𝑛𝑒𝑤(𝑥) = 𝐺 (𝑥; 𝜂)∑

∞

𝑖=0

[−1 + 𝐺 (𝑥; 𝜂)
𝛼

]
𝑖

⏟          
𝐵

2−𝑖 (−𝛼
−1

𝑖
) [1 + 𝐺 (𝑥; 𝜂)

𝛽

]
−𝛽−1

. 

Second, using the binomial expansion to expand 𝐵, the last equation can be expressed as 

𝐹𝑛𝑒𝑤(𝑥) =∑

∞

𝑖=0

∑

𝑖

𝑗=0

2−𝑖 (−𝛼
−1

𝑖
) (
𝑖
𝑗
) 𝐺 (𝑥; 𝜂)

1+(𝑖−𝑗)𝛼

[1 + 𝐺 (𝑥; 𝜂)
𝛽

]
−𝛽−1

⏟            
𝐶

. 

Third, expanding the quantity 𝐶 in power series (4), the last equation can be written as 

𝐹𝑛𝑒𝑤(𝑥) = ∑

∞

𝑖,𝑙=0

∑

𝑖

𝑗=0

2−𝛽
−1−𝑖−𝑙 (−𝛼

−1

𝑖
) (
𝑖
𝑗
) 𝐺 (𝑥; 𝜂)

1+(𝑖−𝑗)𝛼

 

× [−1 + 𝐺 (𝑥; 𝜂)
𝛽

]
𝑙

⏟            
𝐷

(−𝛽
−1

𝑙
). 

Fourthly, using the binomial expansion to expand quantity 𝐷, the above equation will be 

𝐹𝑛𝑒𝑤(𝑥) = ∑

∞

𝑖,𝑙=0

∑

𝑖

𝑗=0

∑

𝑙

ℎ=0

2−𝛽
−1−𝑖−𝑙 (−𝛼

−1

𝑖
) (−𝛽

−1

𝑙
) (
𝑖
𝑗
) (
𝑙
ℎ
) 

× 𝐺 (𝑥; 𝜂)
1+(𝑖−𝑗)𝛼

𝐺 (𝑥; 𝜂)
(𝑙−ℎ)𝛽

⏟        
𝐸

. 

Fifthly, applying (5) for 𝐸, we have 

𝐹𝑛𝑒𝑤(𝑥) ∑

∞

𝑖,𝑙,𝑘=0

∑

𝑖

𝑗=0

∑

𝑙

ℎ=0

(−1)𝑘2−𝛽
−1−𝑖−𝑙𝐺 (𝑥; 𝜂)

1+(𝑖−𝑗)𝛼+𝑘

(−𝛼
−1

𝑖
) (
−𝛽−1

𝑙
) (
𝑖
𝑗
) (
𝑙
ℎ
) (
[𝑙 − ℎ]𝛽
𝑘

). 

Finally 

𝐹𝑛𝑒𝑤(𝑥) = ∑
∞
𝑖,𝑘=0 ∑

𝑖
𝑗=0 𝜈𝑖,𝑘,𝑗Π1+(𝑖−𝑗)𝛼+𝑘(𝑥),                                                 (7) 
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where 

𝜈𝑖,𝑘,𝑗 =∑

∞

𝑙=0

∑

𝑙

ℎ=0

(−1)𝑘2−𝛽
−1−𝑖−𝑙 (−𝛼

−1

𝑖
) (−𝛽

−1

𝑙
) (
𝑖
𝑗
) (
𝑙
ℎ
) (
[𝑙 − ℎ]𝛽
𝑘

), 

and Π𝛿(𝑥) = 𝐺 (𝑥; 𝜂)
𝛿

 is the cdf of Exp-G with power parameter 𝛿. The corresponding 

pdf can be written as 

𝑓𝑛𝑒𝑤(𝑥) = ∑
∞
𝑖,𝑘=0 ∑

𝑖
𝑗=0 𝜈𝑖,𝑘,𝑗𝜋1+(𝑖−𝑗)𝛼+𝑘(𝑥),                                                (8) 

where 𝜋𝛿(𝑥) = 𝛿𝑔(𝑥, 𝜂) 𝐺(𝑥, 𝜂)
𝛿−1 is the pdf of the Exp-G distribution with power 

parameter 𝛿. Equation (7) and (8) reveal that pdf of NE-G is a linear combination of Exp-

G densities. Thereby, some properties of the proposed family such as moments and 

generating function can be determined from those of Exp-G distribution. 

3.   Two Special Members of the Family 

The NE-G family generates alternative extended distributions. Now, we present the two 

important sub-models of this new family. 

3.1 The NE-normal (NEN) distribution 

As a first example, we extend the ordinary normal distribution which has symmetrical 

and bell-shaped. We define the NEN distribution by taking 𝐺(𝑥; 𝜇, 𝜎) = Φ (
𝑥−𝜇

𝜎
) for 

𝑥, 𝜇 ∈ ℜ  and 𝜎 > 0, where Φ(⋅) is the cdf of the standard normal distribution. Hence, the 

cdf of the NEN distribution is given by  

𝐹(𝑥; 𝛼, 𝛽, 𝜇, 𝜎) =
21/𝛼Φ (

𝑥−𝜇

𝜎
)

[1 + Φ (
𝑥−𝜇

𝜎
)
𝛼

]
1/𝛼

[1 + [1 − Φ (
𝑥−𝜇

𝜎
)]
𝛽

]
1/𝛽
. 

 

Some possible plots of the NEN density for selected parameter values are displayed in 

Figure 1. 

 
Figure  1: The pdf plots of NEN distributions for some selected parameter values. 
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3.2 The NE-Weibull (NEW) distribution 

As the second example, we define the NEW distribution by employing the Weibull cdf 

with shape 𝛾 > 0 and scale 𝜃 > 0 parameters, defined by 𝐺(𝑥; 𝜃, 𝛾) = 1 −
exp(  −(𝜃𝑥)𝛾) (for 𝑥 > 0). The cdf of the NEW distribution is given by  

 

𝐹(𝑥; 𝛼, 𝛽, 𝜃, 𝛾) =
21/𝛼(1 − 𝑒−(𝜃𝑥)

𝛾
)

[1 + (1 − 𝑒−(𝜃𝑥)
𝛾)𝛼]1/𝛼[1 + 𝑒−𝛽(𝜃𝑥)

𝛾]1/𝛽
. 

 

Possible plots of the NEW density and hrf for selected parameter values are displayed in 

Figure 2. From these Figures, we can say that pdf shapes of the NEW distribution can be 

bi-modal, uni-modal and decreasing-increasing-decreasing shaoed. Also, its hrf can be 

both monotone and non-monotone shaped. 

 

 

 

 

Figure  2: Possible pdf and hrf plots of NEW distributions for some selected parameter 

values. 
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4. Mathematical properties 

4.1 Moments, incomplete moments and generating function 

The r 𝑡ℎordinary moment of 𝑋 is given by 𝜇𝑟
′ = 𝐸(𝑋𝑟) =  ∫

∞

−∞
 𝑥𝑟  𝑓(𝑥)𝑑𝑥. Then we 

obtain 

𝜇𝑟
′ = ∑∞

𝑖,𝑘=0 ∑
𝑖
𝑗=0 𝜈𝑖,𝑘,𝑗𝑌1+(𝑖−𝑗)𝛼+𝑘

𝑟 .                                                             (9) 

 

Henceforth, 𝑌𝛿 denotes the Exp-G model with power parameter 𝛿.  For 𝛿 > 0, we have 

𝐸(𝑌𝛿
𝑟) = 𝛿  ∫

∞

−∞
𝑥𝑟   𝑔 (𝑥; 𝜂) 𝐺 (𝑥; 𝜂)

𝛿−1

  𝑑𝑥, which can be computed numerically in 

terms of the baseline quantile function (qf) 𝑄𝐺 (𝑢; 𝜂) = 𝐺
−1 (𝑢; 𝜂) as 𝐸(𝑌𝛿

𝑛) =

𝛿  ∫
1

0
𝑄𝐺 (𝑢; 𝜂)

𝑛

  𝑢𝛿−1𝑑𝑢. Setting 𝑟 = 1 in (9), we have the mean of 𝑋. The last 

integration can be carried out  numerically for most parent distributions. The skewness 

and kurtosis measures can be calculated from the ordinary moments using well-known 

relationships. The n 𝑡ℎcentral moment of 𝑋, say 𝑀𝑛, is  

𝑀𝑛 = 𝐸(𝑋 − 𝜇)
𝑛 =∑

𝑛

ℎ=0

(−1)ℎ  (
𝑛
ℎ
) (𝜇1

′ )𝑛 𝜇𝑛−ℎ
′ . 

 

The r 𝑡ℎincomplete moment, say 𝐼𝑟(𝑡), of 𝑋 can be expressed from (6) as  

𝐼𝑟(𝑡) = ∫
𝑡

−∞
𝑥𝑟𝑓(𝑥)𝑑𝑥 = ∑∞

𝑖,𝑘=0 ∑
𝑖
𝑗=0  ∫

𝑡

−∞
 𝜈𝑖,𝑘,𝑗𝑥

𝑟𝜋1+(𝑖−𝑗)𝛼+𝑘(𝑥)𝑑𝑥.      (10) 

 

The mean deviations about the mean and about the median are 

𝐸(|𝑋 − 𝐸(𝑋)|) = 2𝜇1
 ′𝐹(𝐸(𝑋)) − 2𝐼1(𝐸(𝑋)), 

𝐸(|𝑋 − 𝑄(0.5)|) = 𝐸(𝑋) − 2𝐼1(𝑄(0.5)), 

where 𝑄(0.5) = 𝑀𝑒𝑑𝑖𝑎𝑛(𝑋) is the median, 𝐹(𝐸(𝑋)) = 𝐹(𝜇1
′ ) is easily calculated using 

(2) and 𝐼1(𝑡) is the first incomplete moment given by (10) with 𝑟 = 1. A general equation 

for 𝐼1(𝑡) can be derived from (10) as  

𝐼1(𝑡) = ∑

∞

𝑖,𝑘=0

∑

𝑖

𝑗=0

𝜈𝑖,𝑘,𝑗𝐽1+(𝑖−𝑗)𝛼+𝑘(𝑥)|−∞
𝑡 , 

where 𝐽𝛿(𝑥)|−∞
𝑡 = ∫

𝑡

−∞
 𝑥 𝜋𝛿(𝑥)𝑑𝑥 is the first incomplete moment of the Exp-G model. 

The moment generating function (mgf) 𝑀𝑋(𝑡) = 𝐸(𝑒
𝑡 𝑋) of 𝑋 can be derived using 

equation (9) as  

𝑀𝑋(𝑡) = ∑

∞

𝑖,𝑘=0

∑

𝑖

𝑗=0

𝜈𝑖,𝑘,𝑗𝑀1+(𝑖−𝑗)𝛼+𝑘(𝑡), 

where 𝑀𝛿(𝑡) is the mgf of 𝑌𝛿. Hence, 𝑀𝑋(𝑡) can be determined from the Exp-G 

generating function. 

4.2 Moments of residual and reversed residual life 

The n 𝑡ℎmoment of the residual life say, 𝑧𝑛(𝑡) = 𝐸[(𝑋 − 𝑡)
𝑛|𝑋 > 𝑡],𝑛 = 1,2,.. uniquely 

determines 𝐹(𝑥). The n 𝑡ℎmoment of the residual life of 𝑋 is given by  
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𝑧𝑛(𝑡) = [1 − 𝐹(𝑡)]
−1  ∫

∞

𝑡

(𝑥 − 𝑡)𝑛𝑑𝐹(𝑥). 

Therefore 

𝑧𝑛(𝑡) = [1 − 𝐹(𝑡)]
−1 ∑

∞

𝑖,𝑘=0

∑

𝑖

𝑗=0

∑

𝑛

𝑟=0

𝜈𝑖,𝑘,𝑗(1 − 𝑡)
𝑛∫

∞

𝑡

𝑥𝑟𝜋1+(𝑖−𝑗)𝛼+𝑘(𝑥)𝑑𝑥. 

 

The n 𝑡ℎmoment of the reversed residual life say, 𝑍𝑛(𝑡) = 𝐸[(𝑡 − 𝑋)
𝑛|𝑋 ≤ 𝑡] for 𝑡 > 0 

and 𝑛 = 1,2,... uniquely determines 𝐹(𝑥). We obtain  

𝑍𝑛(𝑡) = 𝐹(𝑡)
−1∫

𝑡

0

(𝑡 − 𝑥)𝑛𝑑𝐹(𝑥). 

Then, the n 𝑡ℎmoment of the reversed residual life (RRL) of 𝑋 becomes 

𝑍𝑛(𝑡) = 𝐹(𝑡)
−1 ∑

∞

𝑖,𝑘=0

∑

𝑖

𝑗=0

∑

𝑛

𝑟=0

𝜈𝑖,𝑘,𝑗(−1)
𝑟 (
𝑛
𝑟
) 𝑡𝑛−𝑟∫

𝑡

0

𝑥𝑟𝜋𝛼(𝑗+1)+𝑘(𝑥)𝑑𝑥. 

 

The mean residual life (MRL) function or the life expectation at age 𝑡 defined by 𝑧1(𝑡) =
𝐸[(𝑋 − 𝑡)|𝑋 > 𝑡], which represents the expected additional life length for a unit which is 

alive at the age 𝑡. The MRL of 𝑋 can be obtained by setting 𝑛 = 1 in 𝑧𝑛(𝑡) equation. 

5. Characterizations 

This section is devoted to the characterizations of the NE-G family of distributions in 

different directions: (𝑖) based on the ratio of two truncated moments; (𝑖𝑖) in terms of the 

reverse hazard function.  Note that (𝑖) can be employed also when the cdf does not have a 

closed form. We would also like to mention that due to the nature of NE-G family of 

distributions, our characterizations may be the only possible ones.  We present our 

characterizations  (𝑖) − (𝑖𝑖)  in two subsections. 

5.1 Characterizations based on two truncated moments 

This subsection deals with the characterizations of NE-G family of distributions based on 

the ratio of two truncated moments. Our first characterization employs a theorem due to 

Glänzel (1987), see Theorem 1 of Appendix A . The result, however, holds also when the 

interval 𝐻  is not closed, since the condition of the Theorem is on the interior of 𝐻. 

 

Proposition 5.1: Let 𝑋:Ω → ℝ be a continuous random variable and let    

𝑞1(𝑥) = 𝐺(𝑥; 𝜂)
𝛼−1{1 + 𝐺(𝑥; 𝜂)𝛽−1[1 + 𝐺(𝑥; 𝜂)𝛼+1]}

−1
[1 + 𝐺(𝑥; 𝜂)𝛽]

1

𝛽
+1
, 

 and  

𝑞2(𝑥) = 2
1

𝛼
+1𝑞1(𝑥)[1 + 𝐺(𝑥; 𝜂)

𝛼]−1/𝛼  for𝑥 ∈ ℝ. 
 

The random variable 𝑋  has pdf (3) if and only if the function   𝜉 defined in Theorem 1 is 

of the form 

𝜉(𝑥) = 21/𝛼[1 + 𝐺(𝑥; 𝜂)𝛼]−1/𝛼 + 1,    𝑥 ∈ ℝ. 
Proof: Suppose the random variable 𝑋  has pdf (3), then 

(1 − 𝐹(𝑥))𝐸[𝑞1(𝑋)|𝑋 ≥ 𝑥] = 2
1/𝛼[1 + 𝐺(𝑥; 𝜂)𝛼]−1/𝛼 − 1,    𝑥 ∈ ℝ, 
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and 

(1 − 𝐹(𝑥))𝐸[𝑞2(𝑋)|𝑋 ≥ 𝑥] = 2
2/𝛼[1 + 𝐺(𝑥; 𝜂)𝛼]−2/𝛼 − 1,    𝑥 ∈ ℝ. 

Further, 

𝜉(𝑥)𝑞1(𝑥) − 𝑞2(𝑥) = 𝑞1(𝑥){1 − 2
1/𝛼[1 + 𝐺(𝑥; 𝜂)𝛼]−1/𝛼} > 0,    𝑓𝑜𝑟  𝑥 ∈ ℝ. 

Conversely, if 𝜉 is of the above form, then 

𝑠′(𝑥) =
𝜉′(𝑥)𝑞1(𝑥)

𝜉(𝑥)𝑞1(𝑥) − 𝑞2(𝑥)
=
−21/𝛼𝑔(𝑥; 𝜂)𝐺(𝑥; 𝜂)𝛼−1[1 + 𝐺(𝑥; 𝜂)𝛼]−

1

𝛼
−1

1 − 21/𝛼[1 + 𝐺(𝑥; 𝜂)𝛼]−1/𝛼
,    𝑥 ∈ ℝ, 

and consequently 

𝑠(𝑥) = −ln{1 − 21/𝛼[1 + 𝐺(𝑥; 𝜂)𝛼]−1/𝛼},    𝑥 ∈ ℝ. 

Now, according to Theorem 1,   𝑋  has density (3). 
 

Corollary 5.1: Let 𝑋:Ω → ℝ  be a continuous random variable and let 𝑞1(𝑥) be as in 

Proposition 5.1.  The random variable   𝑋  has pdf (3) if and only if there exist functions 

𝑞2 and 𝜉 defined in Theorem 1 satisfying the following differential equation 

𝜉′(𝑥)𝑞1(𝑥)

𝜉(𝑥)𝑞1(𝑥) − 𝑞2(𝑥)
=
−2

1

𝛼𝑔(𝑥; 𝜂)𝐺(𝑥; 𝜂)𝛼−1[1 + 𝐺(𝑥; 𝜂)𝛼]−
1

𝛼
−1

1 − 2
1

𝛼[1 + 𝐺(𝑥; 𝜂)𝛼]−
1

𝛼

,    𝑥 ∈ ℝ. 

 

Corollary 5.2: The general solution of the differential equation in Corollary 5.1 is 

𝜉(𝑥) = {1 − 21/𝛼[1 + 𝐺(𝑥; 𝜂)𝛼]−1/𝛼}
−1
× 

[∫ 21/𝛼𝑔(𝑥; 𝜂)𝐺(𝑥; 𝜂)𝛼−1[1 + 𝐺(𝑥; 𝜂)𝛼]−
1

𝛼
−1(𝑞1(𝑥))

−1
𝑞2(𝑥)𝑑𝑥 + 𝐷], 

where 𝐷 is a constant. We like to point out that one set of functions satisfying the above 

differential equation is given in Proposition 5.1 with 𝐷 =
1

2
. Clearly, there are other 

triplets (𝑞1, 𝑞2, 𝜉) which satisfy conditions of Theorem1. 

5.2 Characterization in terms of the reverse hazard function 

The reverse hazard function, 𝑟𝐹, of a twice differentiable distribution function, 𝐹 , is 

defined as 

𝑟𝐹(𝑥) =
𝑓(𝑥)

𝐹(𝑥)
,    𝑥 ∈ 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑜𝑓𝐹. 

In this subsection we present a characterization of NE-G family of distributions for 𝛼 =
𝛽 = 1, in terms of the reverse hazard function. In this case 

𝑟𝐹(𝑥) =
2𝑔(𝑥; 𝜂)(2 + 𝐺(𝑥; 𝜂)2)

𝐺(𝑥; 𝜂)(1 + 𝐺(𝑥; 𝜂))(2 − 𝐺(𝑥; 𝜂))
,    𝑥 ∈ ℝ. 

 

Proposition 5.2.  Let 𝑋:Ω → ℝ be a continuous random variable.  The random variable 𝑋  

has pdf (3), for 𝛼 = 𝛽 = 1, if and only if its reverse hazard function 𝑟𝐹(𝑥) satisfies the 

following differential equation 

𝑟𝐹
′(𝑥) −

𝑔′(𝑥; 𝜂)

𝑔(𝑥; 𝜂)
𝑟𝐹(𝑥) 

= 2𝑔(𝑥; 𝜂)2 {
2𝐺(𝑥; 𝜂)4 − 𝐺(𝑥; 𝜂)3 + 6𝐺(𝑥; 𝜂)2 − 4𝐺(𝑥; 𝜂) − 2

𝐺(𝑥; 𝜂)2[(1 + 𝐺(𝑥; 𝜂))(2 − 𝐺(𝑥; 𝜂))]
2 } , 𝑥 ∈ ℝ, 

with the boundary condition lim𝑥→∞𝑟𝐹(𝑥) = 3lim𝑥→∞𝑔(𝑥; 𝜂).  
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Proof: If  𝑋  has 𝑝𝑑𝑓 (3), then clearly the above differential equation holds. Now, if the 

differential equation holds, then 

𝑑

𝑑𝑥
{𝑟𝐹(𝑥)𝑔(𝑥; 𝜂)

−1} = 2
𝑑

𝑑𝑥
{

2 + 𝐺(𝑥; 𝜂)2

𝐺(𝑥; 𝜂)(1 + 𝐺(𝑥; 𝜂))(2 − 𝐺(𝑥; 𝜂))
}, 

or 

𝑟𝐹(𝑥) =
2𝑔(𝑥; 𝜂)(2 + 𝐺(𝑥; 𝜂)2)

𝐺(𝑥; 𝜂)(1 + 𝐺(𝑥; 𝜂))(2 − 𝐺(𝑥; 𝜂))
,    𝑥 ∈ ℝ, 

which is the reverse hazard function of (3) with the boundary condition lim𝑥→∞𝑟𝐹(𝑥) =
3lim𝑥→∞𝑔(𝑥; 𝜂). 
 

Examples:  

a)  Take the baseline cdf to be exponential with parameter 𝜂 , then cdf will be given by  

 𝐹(𝑥) =
2(1−𝑒−𝜂𝑥)

[1+𝑒−𝜂𝑥][2−𝑒−𝜂𝑥]
,    𝑥 ≥ 0. 

b)  Take the baseline cdf to be uniform (0,1), then cdf will have the form  

 𝐹(𝑥) =
2𝑥

[1+𝑥][2−𝑥]
,    0 ≤ 𝑥 ≤ 1. 

6.   Estimation and inference 

Several approaches for parameter estimation were proposed in the literature but the 

maximum likelihood method is the most commonly employed. The MLEs enjoy 

desirable properties and can be used for constructing confidence intervals and also for 

test statistics. The normal approximation for these estimators in large samples can be 

easily handled either analytically or numerically. Here, we consider the estimation of the 

unknown parameters of the new family from complete samples only by maximum 

likelihood. Let 𝑥1, … , 𝑥𝑛 be a random sample from the NE-G models with a (𝑞 + 2) × 1 

parameter vector 𝚽 =(𝛼, 𝛽, 𝜂ú) ú, where 𝜂 is a 𝑞 × 1 baseline parameter vector. The log-

likelihood function for 𝚽 is given by 

ℓ𝑛(𝚽) =∑

𝑛

𝑖=1

log {1 + 𝐺 (𝑥𝑖; 𝜂)
𝛽−1

[1 + 𝐺 (𝑥𝑖; 𝜂)
𝛼+1

]} 

+𝑛𝛼−1log2 − (𝛼−1 + 1)∑

𝑛

𝑖=1

log [1 + 𝐺 (𝑥𝑖; 𝜂)
𝛼

] 

−(𝛽−1 + 1)∑

𝑛

𝑖=1

log [1 + 𝐺 (𝑥𝑖; 𝜂)
𝛽

] +∑

𝑛

𝑖=1

log𝑔 (𝑥𝑖; 𝜂). 

The above log-likelihood can be maximized numerically using R (optim), SAS (PROC 

NLMIXED), or Ox program (sub-routine MaxBFGS), among others. 

 

Details for fitting univariate distributions using maximum likelihood in R for censored or 

non censored data can be obtained at http://www.inside-

r.org/packages/cran/fitdistrplus/docs/mledist.  

 

http://www.inside-r.org/packages/cran/fitdistrplus/docs/mledist
http://www.inside-r.org/packages/cran/fitdistrplus/docs/mledist
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The log-likelihood function can be maximized by solving the following nonlinear normal 

equations 𝑈(𝛼) =
∂ℓ𝑛(𝚽)

∂𝛼
, 𝑈(𝛽) =

∂ℓ𝑛(𝚽)

∂𝛽
 and 𝑈 (𝜂𝑟) =

∂ℓ𝑛(𝚽)

∂𝜂𝑟
 (for 𝑟 = 1, . . . , 𝑞).  Setting 

the nonlinear system of equations 𝑈(𝛼) = 𝑈(𝛽) = 𝑈 (𝜂𝑟) = 0 (for 𝑟 = 1 = ⋯ , 𝑞) and 

solving them simultaneously yields the MLE �̂�. To solve these equations, it is more 

convenient to use nonlinear optimization methods such as the quasi-Newton algorithm to 

maximize ℓ𝑛(𝚽) numerically . For interval estimation of the parameters, we can evaluate 

numerically the elements of the (𝑞 + 2) × (𝑞 + 2) observed information matrix 𝐽(𝚽) =

{−
∂2

∂Φ𝑟 Φ𝑠
[ℓ𝑛(𝚽)]}. Under standard regularity conditions when 𝑛 → ∞, the distribution 

of �̂� can be approximated by a multivariate normal 𝑁𝑝(0, 𝐽(�̂�)
−1) distribution to 

construct approximate confidence intervals for the parameters. Here, 𝐽(�̂�) is the total 

observed information matrix evaluated at �̂�. The method of the re-sampling bootstrap 

can be used for correcting the biases of the MLEs of the model parameters. Good interval 

estimates may also be obtained using the bootstrap percentile method. 

7.   Simulation studies 

In this Section, we perform two simulation studies by using the new extended normal and 

Wiebull distributions to illustrate the performance of MLEs corresponding to these 

distribution. The random numbers generation is obtained by the inverse of their cdfs. All 

results related to MLEs were obtained using optim-CG routine in the R programme. 

7.1 Simulation study 1 

In the first simulation study, we obtain the graphical results. We generate 𝑁 = 1000 

samples of size 𝑛 = 20,25, … ,1000 from new extended normal distribution with true 

parameters values 𝛼 = 3, 𝛽 = 12, 𝜇 = 0 and 𝜎 = 0.1. In this simulation study, we 

empirically calculate the mean, standard deviations (sd), bias and mean squared error 

(MSE) of the MLEs. The bias and MSE are calculated by (for ℎ = 𝛼, 𝛽, 𝜇, 𝜎) 

𝐵𝑖𝑎𝑠ℎ̂ =
1

1000
∑

1000

𝑖=1
(ℎ̂𝑖 − ℎ), 

and 

𝑀𝑆𝐸ℎ̂ =
1

1000
∑

1000

𝑖=1
(ℎ̂𝑖 − ℎ)

2
 

respectively. We give results of this simulation study in Figure 3. From Figure 3, we 

observe that when the sample size increases, the empirical means approach the true 

parameter value whereas all biases, sds and MSEs approach 0 in all cases.  
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Figure 3: Simulation results of the new extended normal distribution. 

7.2 Simulation study 2 

In the second simulation study, we generate 1,000 samples of sizes 50, 100 and 200 

from selected new extended Weibull distributions. For this simulation study, we obtain 

the empirical means and sd’s of the MLEs. The results of this simulation study are 

reported in Table 1. Table 1 shows that when the sample size increases, the empirical 

means approach true parameter value whereas the sds decrease, as expected. 

Table 1: Empirical means and standard deviations (in parentheses) for the new 

extended Weibull distributions. 

Parameters 𝐧 = 𝟓𝟎 𝐧 = 𝟏𝟎𝟎 𝐧 = 𝟐𝟎𝟎 

𝛂, 𝛃, 𝛌, 𝛄 �̂� �̂� �̂� �̂� �̂� �̂� �̂� �̂� �̂� �̂� �̂� �̂� 

0.5,5,0.5,5 0.5592 4.9945 0.5046 5.1534 0.4702 4.9941 0.5012 5.0517 0.5099 5.0001 0.5011 5.0170 

 (0.4102) (0.0686) (0.0177) (0.4318) (0.2294) (0.0537) (0.0131) (0.3009) (0.1160) (0.0140) (0.0093) (0.1097) 

1.5,3,0.1,3 1.5026 2.9980 0.1005 3.0064 1.5030 3.0087 0.1003 3.0381 1.5008 3.0021 0.1006 3.0018 

 (0.0534) (0.0329) (0.0046) (0.1870) (0.0914) (0.0558) (0.0035) (0.1282) (0.0355) (0.0298) (0.0025) (0.0689) 

0.8,15,0.5,5 0.8342 15.0008 0.5043 5.1451 0.7902 15.0002 0.4995 5.0394 0.8112 14.9989 0.5009 5.0124 

 (0.3962) (0.0093) (0.0167) (0.4057) (0.2883) (0.0033) (0.0132) (0.2384) (0.0857) (0.0006) (0.0084) (0.1026) 

1,10,2,1 1.1831 10.0009 2.0111 1.1161 0.9237 10.0373 2.0085 1.0767 1.0539 10.0085 1.9938 1.0466 

 (1.2940) (0.3448) (0.3924) (0.1894) (0.8701) (0.2054) (0.2987) (0.1384) (0.7699) (0.1062) (0.2306) (0.1256) 

1,5,0.1,5 0.9868 4.9986 0.1015 5.0461 0.9904 5.0014 0.0998 4.9930 1.0049 4.9989 0.0999 4.9967 

 (0.2149) (0.0356) (0.0033) (0.2812) (0.0681) (0.0075) (0.0022) (0.0973) (0.0594) (0.0120) (0.0014) (0.0612) 
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8.   Log-NEW regression model 

Let 𝑋 be a random variable having the NEW density function with four parameters 𝛼 >
0, 𝛽 > 0, 𝜃 > 0 and 𝛾 > 0 as discussed in Subsection 2.3. By replacing 𝛾 = 1/𝜎 and 𝜃 =
exp(𝜇), the density function of 𝑌 =  𝑙𝑜𝑔 (𝑋) is given by (for 𝑦 ∈ ℜ) 

𝑓(𝑦) =

2𝛼
−1

𝜎
exp[(

𝑦−𝜇

𝜎
)−exp(

𝑦−𝜇

𝜎
)]{1+(exp[  −exp(

𝑦−𝜇

𝜎
)])

𝛽−1
[1+{1−exp[  −exp(

𝑦−𝜇

𝜎
)]}

𝛼+1
]}

[1+{1−exp[  −exp(
𝑦−𝜇

𝜎
)]}

𝛼
]
𝛼−1+1

[1+(exp[  −exp(
𝑦−𝜇

𝜎
)])

𝛽
]

𝛽−1+1
,..(11) 

where 𝜇 ∈ ℜ is the location parameter, 𝜎 > 0 is the scale parameter, 𝛼 > 0 and 𝛽 > 0 

are the shape parameter. We refer to Equation (11) as the log-NEW (LNEW) distribution 

and write 𝑌~ 𝐿𝑁𝐸𝑊 (𝛼, 𝛽, 𝜎, 𝜇). Figure 4 displays plots of this density function for some 

parameter values. They reveal that the LNEW density can be very flexible for modeling 

left skewed and symmetric data. 

 
Figure  4: Plots of the LNEW density for selected parameter values. 

 

The corresponding survival function is  

𝑆(𝑦) = 1 −
2𝛼
−1
{1−exp[  −exp(

𝑦−𝜇

𝜎
)]}

[1+{1−exp[  −exp(
𝑦−𝜇

𝜎
)]}

𝛼
]
𝛼−1

+[1+(exp[  −exp(
𝑦−𝜇

𝜎
)])

𝛽
]

𝛽−1
…………....(12) 

 

The standardized random variable 𝑍 = (𝑌 − 𝜇)/𝜎 has density function 

𝑓(𝑧) =
2𝛼
−1
exp[(𝑧)−exp(𝑧)]{1+(exp[  −exp(𝑧)])𝛽−1[1+{1−exp[  −exp(𝑧)]}𝛼+1]}

[1+{1−exp[  −exp(𝑧)]}𝛼]𝛼
−1+1[1+(exp[  −exp(𝑧)])𝛽]

𝛽−1+1
.            (13) 

 

Based on the LNEW distribution, a linear location-scale regression model is proposed by 

linking the response variable 𝑦𝑖 and the explanatory variable vector 𝐯𝑖
𝛵 = (𝑣𝑖1, … , 𝑣𝑖𝑝) by  

𝑦𝑖 = 𝐯𝑖
𝛵 𝜷 + 𝜎𝑧𝑖, i = 1,… , n,                                                                         (14) 

where the random error 𝑧𝑖 has density function (13), 𝛽 = (𝛽1, … , 𝛽𝑝)
𝛵, 𝜎 > 0, 𝛼 > 0 and 

𝜷 ∈ ℜ𝑝 are unknown parameters. The parameter 𝜇𝑖 = 𝐯𝑖
𝛵𝛽 is the location of 𝑦𝑖. The 

location parameter vector 𝜇 = (𝜇1, … , 𝜇𝑛)
𝛵 is represented by a linear model 𝜇 = 𝑉𝜷, 

where 𝑉 = (𝑣1, … , 𝑣𝑛)
𝛵 is a known model matrix. 
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Consider a sample (𝑦1, 𝑣1),⋯ , (𝑦𝑛, 𝑣𝑛) of 𝑛 independent observations, where each 

random response is defined by 𝑦𝑖 = min{log(𝑥𝑖), log(𝑐𝑖)}. We assume non-informative 

censoring such that the observed lifetimes and censoring times are independent. Let 𝐹 

and 𝐶 be the sets of individuals for which 𝑦𝑖 is the log-lifetime or log-censoring, 

respectively. The log-likelihood function for the vector of parameters 𝜏 = (𝛼, 𝛽, 𝜎, 𝜷𝛵)𝛵 

from model (14) has the form 𝑙(𝜏) = ∑𝑖∈𝐹 𝑙𝑖(𝜏) + ∑𝑖∈𝐶 𝑙𝑖
(𝑐)
(𝜏), where 𝑙𝑖(𝜏) =

log[𝑓(𝑦𝑖)], 𝑙𝑖
(𝑐)
(𝜏) = log[𝑆(𝑦𝑖)], 𝑓(𝑦𝑖) is the density (11) and 𝑆(𝑦𝑖) is the survival 

function (12) of 𝑌𝑖. Then, the total log-likelihood function for 𝜏 is given by  

ℓ(𝜏) = 𝑟log (
2𝛼
−1

𝜎
) + ∑𝑖∈𝐹 (𝑧𝑖 − 𝑢𝑖) + ∑𝑖∈𝐹 log[{1 + (exp[−𝑢𝑖])

𝛽−1[1 + {1 − exp[  −𝑢𝑖]}
𝛼+1]}]

−𝛼−1(𝛼 + 1)∑𝑖∈𝐹 log[1 + {1 − exp[  −𝑢𝑖]}
𝛼] − 𝛽−1(𝛽 + 1)∑𝑖∈𝐹 log[1 + (exp[  −𝑢𝑖])

𝛽]

+∑𝑖∈𝐶 log [1 −
2𝛼
−1
{1−exp[  −𝑢𝑖]}

[1+{1−exp[  −𝑢𝑖]}
𝛼]𝛼

−1
+[1+(exp[  −𝑢𝑖])

𝛽]
𝛽−1
] ,

(15) 

where 𝑢𝑖 = exp(𝑧𝑖), 𝑧𝑖 = (𝑦𝑖 − 𝑣𝑖
𝛵𝜷)/𝜎 and 𝑟 is the number of uncensored observations 

(failures) and 𝑐 is the number of censored observations. The MLE �̂� of the vector of 

unknown parameters can be evaluated by maximizing the log-likelihood (15). 

 

The asymptotic covariance matrix 𝐾(𝜏)−1 of �̂� can be approximated by the inverse of the 

(𝑝 + 2) × (𝑝 + 2) observed information matrix −Ł̈(𝜏), whose elements are evaluated 

numerically in most statistical packages. The approximate multivariate normal 

distribution 𝑁𝑝+2(0,−Ł̈(𝜏)
−1) for �̂� can be used in the classical way to construct 

approximate confidence intervals for the parameters in 𝜏. 

8.1 Residual analysis 

Residual analysis has critical role in checking the adequacy of the fitted model. In order 

to analyze departures from the error assumption, two types of residuals are considered: 

martingale and modified deviance residuals. 

8.1.1 Martingale residual 

The martingale residuals is defined in counting process and takes values between −∞ 

and +1 (see, Fleming and Harrington(1994) for details). The martingale residuals for 

LNEW model is,  

𝑟𝑀𝑖 =

{
 
 

 
 1 + log (1 −

2𝛼
−1
{1−exp[  −𝑢𝑖]}

[1+{1−exp[−𝑢𝑖]}
𝛼]𝛼−1+[1+(exp[  −𝑢𝑖])

𝛽]
𝛽−1
)   if 𝑖 ∈ 𝐹,

log (1 −
2𝛼
−1
{1−exp[  −𝑢𝑖]}

[1+{1−exp[  −𝑢𝑖]}
𝛼]𝛼−1+[1+(exp[  −𝑢𝑖])

𝛽]
𝛽−1
)   if 𝑖 ∈ 𝐶,

           (16) 

𝑢𝑖 = exp(𝑧𝑖) and 𝑧𝑖 = (𝑦𝑖 − 𝑣𝑖
𝛵𝜷)/𝜎. 

8.1.2 Modified deviance residual 

The main drawback of martingale residual is that when the fitted model is correct, it is 

not symmetrically distributed about zero. To overcome this problem, modified deviance 
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residual was proposed by Therneau et al. (1990). The modified deviance residual is given 

by 

𝑟𝐷𝑖 = {
𝑠𝑖𝑔𝑛(𝑟𝑀𝑖){  −2[𝑟𝑀𝑖 + log(1 − 𝑟𝑀𝑖)]}

1/2
, if 𝑖 ∈ 𝐹

𝑠𝑖𝑔𝑛(𝑟𝑀𝑖){  −2𝑟𝑀𝑖}
1/2
, if 𝑖 ∈ 𝐶,

                                (17) 

where �̂�𝑀𝑖 is the martingale residual. 

9.   Data Analysis 

In this section, we provide applications to three real data sets to prove empirically the 

potentiality of NEW and NEN models. We also compare the fits of these models with 

some generalizations of the Weibull and normal distributions on two real data sets. The 

third data set refers to regression modeling. To determine the optimum model, we also 

compute Cramer von Mises (𝑊∗) and Anderson-Darling (𝐴∗) goodness of-fit statistics for 

all models. The statistics 𝑊∗ and 𝐴∗ are described in detail in Chen and Balakrishnan 

(1995). In general, it can be chosen as the best model which has the smaller values of the 

𝑊∗ and 𝐴∗ statistics. All computations of the MLEs are performed by the maxLik routine 

and all goodness-of-fits statistics are calculated by the goftest routine in the R 

programme. The details are given by followings. 

9.1. Stress data 

The first real data set introduces the stress-rupture life of kevlar 49/epoxy strands which 

are subjected to constant sustained pressure at the 90% stress level until all had failed 

such that we obtain complete data with exact failure times. This data set was studied by 

Andrews and Herzberg (1985), Cooray and Ananda (2008) and Paraniaba et al. (2013).  

 

The data are: 0.01, 0.01, 0.02, 0.02, 0.02, 0.03, 0.03, 0.04, 0.05, 0.06, 0.07, 0.07,0.08, 

0.09, 0.09, 0.1, 0.1, 0.11, 0.11, 0.12, 0.13, 0.18, 0.19, 0.2, 0.23, 0.24, 0.24, 0.29 , 0.34, 

0.35, 0.36, 0.38, 0.4, 0.42, 0.43, 0.52, 0.54, 0.56, 0.6, 0.6, 0.63, 0.65, 0.67, 0.68, 0.72, 

0.72, 0.72, 0.73, 0.79, 0.79, 0.8, 0.8, 0.83, 0.85, 0.9, 0.92, 0.95, 0.99, 1, 1.01, 1.02, 1.03, 

1.05, 1.1, 1.1, 1.11, 1.15, 1.18, 1.2, 1.29, 1.31, 1.33, 1.34, 1.4, 1.43, 1.45, 1.5, 1.51, 1.52, 

1.53, 1.54, 1.54, 1.55, 1.58, 1.60, 1.63, 1.64, 1.8, 1.8, 1.81, 2.02, 2.05, 2.14, 2.17, 2.33, 

3.03, 3.03, 3.34, 4.2, 4.69, 7.89. 

 

In the applications, the shape of the hrf can help in selecting a particular model. For this 

aim, the total time on test (TTT) plot (Aarset, 1987) can be used. The TTT plot is 

obtained by plotting 𝑇 (
𝑟

𝑛
) against 𝑟/𝑛 where 𝑇 (

𝑟

𝑛
) = [∑𝑛𝑖=1 𝑦(𝑖) + (𝑛 − 𝑟)𝑦(𝑟)]/

∑𝑛𝑖=1 𝑦(𝑖), 𝑟 = 1, . . . , 𝑛 and 𝑦𝑖 are the order statistics of the sample. It is convex shape for 

decreasing hrf and is concave shape for increasing hrf. The TTT plots for this set is given 

by Figure 5. From Figure 5, the data set deals with convex-concave-convex shaped. 
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Figure  5: TTT plot for Stress data. 

 

 

On this data set, we compare the NEW model with the Weibull (W), beta Weibull (BW), 

by Lee et al. (2007), Kumaraswamy Weibull (KwW), by Cordeiro and de Castro (2011), 

odd log-logistic Weibull (OLLW), by Cruz et al. (2016), and generalized odd log-logistic 

Weibull (GOLL2W), by Haghbin et al. (2017), under above criteria. 

 

Table 2 lists the MLEs, their standard errors of the parameters and goodness-of-fits 

statistics from the fitted models. Table 2 shows that the NEW model could be chosen as 

the best model among the fitted models since these models have the lowest values of the 

𝑊∗ and 𝐴∗ statistics. 

Table 2:  MLEs, standard erros of the estimates (in parentheses) and goodness-of-

fits statistics for the first data set 

Model α̂ β̂ θ̂ γ̂ A∗ W∗ 

NEW 0.2117 1.9899 0.7058 1.1436 0.6911 0.1167 

 (0.2311) (0.8222) (0.1392) (0.1548)   

GOLL2W 0.9201 1.0409 0.9745 0.9964 1.0247 0.1822 

 (0.2069) (3.7793) (3.5523) (0.1801)   

BW 0.7547 0.2398 3.4282 1.0439 0.8439 0.1387 

 (0.1203) (0.0273) (0.0049) (0.0136)   

KwW 0.2429 0.7264 3.4964 1.0366 0.8469 0.1355 

 (0.0243) (0.0443) (0.0003) (0.0001)   

OLLW 0.9200  1.0149 0.9965 1.0250 0.1824 

 (0.2068)  (0.1276) (0.1800)   

W   0.9938 0.9365 1.0882 1.1896 

   (0.1125) (0.0743)   

 

The plots of the fitted densities, cdfs and hrfs of all models, and probability-probability 

(P-P) plot of NEW model are displayed in Figure 6. These plots show that the NEW 

model provides the good fit to these data compared to the other models. The fitted hrf 
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shape of NEW model is close to TTT plot of data set. None of the models, except NEW, 

fit to Figure 5(a). 

 

 

 

Figure  6: The fitted plots for the first data set. 

9.2   Windshield data 

Secondly, we consider the data on service times (in 1000 hours) for a particular model 

windshield given in Murthy et al. (2004). Recently, this data set has been analized by 

Ramos et al. (2013) and Tahir et al. (2015). The data are 0.046, 1.436, 2.592, 0.140, 

1.492, 2.600, 0.150, 1.580, 2.670, 0.248, 1.719, 2.717, 0.280, 1.794, 2.819, 0.313, 1.915, 

2.820, 0.389, 1.920, 2.878, 0.487, 1.963, 2.950, 0.622, 1.978, 3.003, 0.900, 2.053, 3.102, 

0.952, 2.065, 3.304, 0.996, 2.117, 3.483, 1.003, 2.137, 3.500, 1.010, 2.141, 3.622, 1.085, 

2.163, 3.665, 1.092, 2.183, 3.695, 1.152, 2.240, 4.015, 1.183, 2.341, 4.628, 1.244, 2.435, 

4.806, 1.249, 2.464, 4.881, 1.262, 2.543, 5.140. 

 

On this data set, we compare the NEW model with the norma (N), beta normal (BN), by 

Eugene et al. (2002), Kumaraswamy normal (KwN), by Cordeiro and de Castro (2011), 

odd log-logistic normal (OLLN), by da Silva Braga et al. (2016), and generalized odd 

log-logistic normal (GOLL2N), by Haghbin et al. (2017), under above criteria. Table 2 

lists the MLEs, their standard errors of the parameters and goodness-of-fits statistics from 

the fitted models. Table 2 shows that the NEW model could be chosen as the best model 

among the fitted models since these models have the lowest values of the 𝑊∗ and 𝐴∗ 
statistics. Table 3 lists the MLEs, their standard errors of the parametersand goodness-of-

fits statistics from the fitted models. Table 3 shows that the NEN model could be chosen 
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as the best model among the fitted models since these models have the lowest values of 

the 𝑊∗ and 𝐴∗ statistics. 

Table 3:  MLEs, standard erros of the estimates (in parentheses) and goodness-of-

fits statistics for the second data set 

Model α̂ β̂ μ̂ σ̂ A∗ W∗ 

NEN 0.5682 28.6104 2.6402 1.1817 0.3075 0.0352 

 (0.6472) (8.3947) (0.2200) (0.1610)   

GOLL2N 1.3962 0.0890 -0.0234 0.6326 0.6313 0.0851 

 (0.1508) (0.0093) (0.0063) (0.00001)   

BN 4.6173 0.1146 -0.4056 0.6796 0.3511 0.0560 

 (1.6998) (0.0193) (0.0019) (0.0032)   

KwN 0.1161 0.4288 -0.1576 0.6490 0.3444 0.0437 

 (0.0146) (0.0008) (0.0018) (0.0018)   

OLLN 0.7854  2.1063 1.0145 0.4592 0.0581 

 (0.4949)  (0.1651) (0.5110)   

N   2.0855 1.2354 0.4060 0.0470 

   (0.1556) (0.1101)   

 

The plots of the fitted densities and cdfs are given in Figure 7. P-P plots of all models are 

also drown in Figure 8. These plots show that the NEN model provides the good fit to 

these data compared to the other models. 

 

 

Figure 7: The fitted plots for the second data set. 
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Figure  8: The P-P plots for the second data set. 

9.3 HIV survival data 

The hypothetical dataset, belongs to Health Maintenance Organization(HMO) is used to 

demonstrate the usefulness of LNEW regresion model. The data set can be found in R 

package Bolstad2. The variables involved in the study are: 𝑦𝑖 - observed survival time (in 

months); 𝑐𝑒𝑛𝑠𝑖 - censoring indicator (0= alive at study end or lost to follow-up,1=death 

due to AIDS or AIDS related factors), 𝑥𝑖1(1 = 𝑦𝑒𝑠, 0 = 𝑛𝑜) represents the history of 

drug use and 𝑥𝑖2 represents the ages of patients.  

We consider the following regression model  

𝑦𝑖 = 𝜷𝟎 + 𝜷𝟏𝑥𝑖1 + 𝜷𝟐𝑥𝑖2 + 𝜎𝑧𝑖, 
where 𝑦𝑖 has the LOLLBXII density, for 𝑖 = 1,… ,100. The MLE method is used to 

estimate unknown parameters of LNEW and Log-Weibull (LW) regression models. The 

survival function of LW regression model is given by  

𝑆(𝑦) = exp [  −exp (
𝑦−𝐯𝑇𝜷

𝜎
)].                                                                     (18) 

 

Table 4 lists the MLEs of the model parameters of the LNEW and LW regression models 

fitted to the current data and the estimated minus log-likelihood values. Based on the 

figures in Table 4, the LNEW regression model has the lower minus log-likelihood value 

than LW regression model. Therefore, it is concluded that LNEW regression model 

provides better fits than LW regression model for used data set. Based on the estimated 
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regression parameters, note that 𝛽0, 𝛽1 and 𝛽2 is statistically significant at any 

significance level. 

Table 4:  MLEs of the parameters, their standard errors and 𝒑-values, the 

estimated −𝓵. 

  Parameters 

  

LNEW regression model LW regression model 

Estimates Std.Errors p-values Estimates Std.Errors p-values 

𝛼 0.768 0.880 - - - - 

𝛽 4.642 4.613 - - - - 

𝜎 0.737 0.140 - 0.839 0.072 <0.001 

𝛽0 6.445 0.526 <0.001 6.148 0.510 <0.001 

𝛽1 -0.090 0.013 <0.001 -0.090 0.013 <0.001 

𝛽2 -1.008 0.199 <0.001 -1.049 0.188 <0.001 

−ℓ 127.8124 128.502 

9.3.1 Residual Analysis 

Figure 9 displays the index plot of the modified deviance residuals and its Q-Q plot 

against to 𝑁(0,1) quantiles for used data set. Based on Figure 9,it is concluded that none 

of the values appears as a possible outlier. Therefore, the fitted model is statistically 

valid.  

 

(a) (b) 

  

Figure  9: (a) Index plot of the modified deviance residual and (b) Q-Q plot for modified 

deviance residual. 

10.   Conclusions 

In this work, we propose a new flexible exended G family of distribution. Some of its 

structural properties are derived and some useful characterization results are presented. 

The maximum likelihood method is discussed to estimate the model parameters by means 

of graphical and numerical Monte Carlo simulation study. Moreover, we introduce a new 

log-location regression model based on the proposed family. The martingale and 

modified deviance residuals are defined to detect outliers and evaluate the model 

assumptions. The potentiality of the new regression model is illustrated by means of a 
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real data. The flexibility of the new family illustrated by means of two real data sets. The 

NE-Weibull and NE-normal models outperforms several of the well-known lifetime 

Weibull and normal distributions with respect to the 1st and the 2nd real data applications 

respectively. 
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Appendix A  

Theorem 1: Let (Ω, ℱ, 𝐏) be a given probability space and let  𝐻 = [𝑎, 𝑏] be an interval 

for some  𝑑 < 𝑏  (𝑎 = −∞, 𝑏 = ∞  mightaswellbeallowed). Let 𝑋:Ω → 𝐻  be a 

continuous random variable with the distribution function 𝐹 and let 𝑞1 and 𝑞2 be two real 

functions defined on 𝐻 such that 

𝐄[𝑞2(𝑋)|𝑋 ≥ 𝑥] = 𝐄[𝑞1(𝑋)|𝑋 ≥ 𝑥]𝜉(𝑥),    𝑥 ∈ 𝐻, 
is defined with some real function 𝜂. Assume that 𝑞1, 𝑞2 ∈ 𝐶

1(𝐻), 𝜉 ∈ 𝐶2(𝐻) and 𝐹 is 

twice continuously differentiable and strictly monotone function on the set 𝐻. Finally, 

assume that the equation 𝜉𝑞1 = 𝑞2 has no real solution in the interior of 𝐻. Then 𝐹 is 

uniquely determined by the functions 𝑞1, 𝑞2 and 𝜉 , particularly 

𝐹(𝑥) = ∫
𝑥

𝑎

𝐶 |
𝜉′(𝑢)

𝜉(𝑢)𝑞1(𝑢) − 𝑞2(𝑢)
| exp(−𝑠(𝑢))𝑑𝑢, 

where the function  𝑠  is  a solution of the differential equation 𝑠′ =
𝜉′𝑞1

𝜉𝑞1−𝑞2
 and 𝐶 is the 

normalization constant, such that ∫
𝐻
𝑑𝐹 = 1. We like to mention that this kind of 

characterization based on the ratio of truncated moments is stable in the sense of weak 

convergence (see, Glänzel [2]), in particular, let us assume that there is a sequence  {𝑋𝑛}  
of random variables with distribution functions  {𝐹𝑛}  such that the functions  𝑞1𝑛, 𝑞2𝑛 

and  𝜉𝑛 (𝑛 ∈ ℕ)  satisfy the conditions of Theorem 1 and let  𝑞1𝑛 → 𝑞1 , 𝑞2𝑛 → 𝑞2  for 

some continuously differentiable real functions  𝑞1 and   𝑞2.  Let, finally,  𝑋  be a random 

variable with distribution  𝐹 .  Under the condition that  𝑞1𝑛(𝑋)  and 𝑞2𝑛(𝑋)  are 

uniformly integrable and the family  {𝐹𝑛} is relatively compact, the sequence  𝑋𝑛 

converges to  𝑋  in distribution if and only if  𝜉𝑛 converges to  𝜉 , where 

𝜉(𝑥) =
𝐸[𝑞2(𝑋)|𝑋 ≥ 𝑥]

𝐸[𝑞1(𝑋)|𝑋 ≥ 𝑥]
. 

 

This stability theorem makes sure that the convergence of distribution functions is 

reflected by corresponding convergence of the functions  𝑞1 , 𝑞2  and  𝜉 , respectively.  It 

guarantees, for instance, the ’convergence’ of characterization of the Wald distribution to 

that of the Lévy-Smirnov distribution if  𝛼 → ∞. A further consequence of the stability 

property of Theorem 1 is the application of this theorem to special tasks in statistical 

practice such as the estimation of the parameters of discrete distributions.  For such 

purpose, the functions  𝑞1, 𝑞2  and, specially,  𝜉  should be as simple as possible.  Since 

the function triplet is not uniquely determined it is often possible to choose  𝜉  as a linear 

function. Therefore, it is worth analyzing some special cases which helps to find new 

characterizations reflecting the relationship between individual continuous univariate 

distributions and appropriate in other areas of statistics. 


