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Abstract 

We develop an agricultural adaptive structural equation model (SEM) that incorporates a large number of 

factors. These factors simultaneously account for food production while uncompromising food quality and 

safety. Using the principal component analysis (PCA), we obtain provisional factors, which we rotate using 

factor analysis, thus leading to reduced number of variables. To decide on the form of the covariance structure 

in the estimation of the parameters of the regression model, we conduct analysis of covariance. The generated 

principal components are incorporated into the SEMs where testing of different inter-associations among 

latent variables (LV) is conducted. For simplicity of the model, we utilise J𝑜̈reskog linear structural equation 

(LSE) system throughout the investigation process. Using a comprehensive real-life example, we illustrate 

the concepts and effects of the outcomes. The results show that factors such as energy, transport, labour and 

fertilizer make a positive contribution in the increase of the quantity and quality food. In addition, we 

demonstrate how to determine the key factors that influence food production where some factors are not 

directly measured.  

Keywords: Structural Equation Model, Path Analysis, Factor Analysis , J𝑜̈reskog Linear 

Structural Equation.  

1. Introduction  

Structural equation models (SEMs) is a popular tool in the field of social sciences (Bentler 

and Chou, 1986; Bielby and Hausser, 1977) and across many other fields. This technique 

has been used in different fields of science to analyse cause-effect relationship between 

latent variables. Steenkamp and Baumgartner (2000) and Babin et al. (2008) applied SEMs 

techniques in marketing field to examine unobservable phenomena such as consumer 

attitudes, perception, and intentions. Wang and Staver (2001) examined relationships 

between factors of science education and student career aspiration. Singh et al. (2002) 

studied the achievement in mathematics and sciences. Lee et al. (2011) and Nitzl (2016) 

used SEMs and partial least squares (PLS) techniques in accounting. SEMs technique has 

been also used in other discipline such as hospitality management, international 

management, operations management, management informatics system, supply chain 

management, etc. (Sosik et al., 2009; Peng and Lai, 2012; Kaufmann and Graeckler, 2015; 

Richter et al. 2016; Ali et al., 2017). More recently, Hair et al. (2017) used a series of 
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ordinary least squares regressions to estimate partial model structures of composite-based 

SEM models. Henseler (2017) developed a variance-based SEM. A statistical and practical 

concern with published research featuring SEM was presented by Goodboy and Kline 

(2017). Bolt et al. (2018) used SEM approaches in medical science to empirically derive 

networks from region of interest (ROI) activity, and to assess the association of ROIs and 

their respective whole-brain activities networks with task performance using three large 

samples.  

 

The SEM(s) is a powerful tool that can be used to solve complex problems involving 

diverse factors.  In particular, the tool can provide efficient results in the evaluation of the 

relations among variables and in testing theoretical models. The SEM(s) and path analysis 

are introduced in agricultural science as powerful tools to solve complex problems 

encountered. Worldwide, agricultural studies play a significant role in the life of human 

being and particularly in sub-Saharan Africa where countries are dominated by a high 

number of hungry people (Mwichabe, 2013). 

 

SEM comprises: (i) A set of linear equations identifying or detailing the causal relationship 

between the variables in the model, and (ii) Several supporting assumptions. Similarly, to 

linear equations, SEM establishes a direct relationship between any cause and any effect 

that is generally specified by the coefficients connecting or associating two variables in the 

equation. As a result, the coefficient is the variation in effect generated by a one-unit 

variation in the level of the cause holding the other causes constant. Generally, the value 

of the coefficient is unknown. Noticing the great need for the development and 

improvement of new analytical methods in the field of agricultural science, this paper 

introduces SEM and path analysis by developing appropriate structural equations and path 

diagrams. The linear relationship in a system of equations models  can be  represented in 

different ways, but in  this paper, these equations are offered as given in equation 1(a – c). 

Section 2 presents the basic characteristics of SEMs and path analysis. Their contributions 

to the field of agricultural science is illustrated through a practical example. In Section 3, 

we develop a model of observable fact of interesting SEM. The developed model is tested 

by means of the variance-covariance technique based on Factor analysis  in the SEM 

structure. Conclusion and useful recommendations are given in Section 4. 

2. Structural Equation Model 

Associated to empirical patterns, the concept of causality has always been an alarming 

issue in various field of sciences, like in social sciences. In the same way, SEMs come 

across causality hypothesis that is normally tested in non-empirical studies models. Wright 

(1921) was the first to suggest SEM in a complete approach with regression analysis as a 

foundation to test the relationship between observed and implicit variables (Pedhazur, 

1997; Raykov and Marcoulides, 2000). In addition, SEM can perform multiple regression 

test with two or more indirect or hidden variables subjecting to a number of display 

variables associated with error terms. In general, SEM remains completely subjected to 

theoretical suggestion that SEM model will demonstrate whether the previously defined 

connection pattern could be supported or not, by the collected data. In other words, we use 

SEM in prediction of unknown parameters on linear structure of equation. The variables in 

a set of SEM equations are directly and indirect observed. In SEM, we assume existence 
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of a causality (or interconnection) structure between the directly observed variables and 

the indirect measured variables.  

Technically, SEMs hold one or more linear regressions that explain how endogenous 

structures are determined upon exogenous structure. That means, in SEM the focus is in 

terms of measurement of variables that define just how theoretical (indirect) structures 

depend on observed variables when assuming causality relationship between indirect 

variables. Path analysis (PA) and confirmatory factor analysis (CFA) are special types of 

SEM. PA examines how independent variables are statistically related to a dependent 

variable. Moreover, PA can allow causal interpretation of statistical dependencies and most 

importantly, PA allows for the examination of how the data fits to a theoretical model. PA 

enables us both to draw a path diagram based on the theory and to conduct one or more 

regression analysis (see Figure 1 and 2).  

The estimation process in SEM involves different techniques, which include maximum 

likelihood commonly used by software. It assumes either multivariate normality or 

generalized least square of robust estimators. 

 

SEM using J𝑜̈reson in linear structural relations (LISREL) notations as presented by 

Bentler and Weeks (1980) follows: 
 

 𝜂 = Β  𝜂 + Γ  𝜉  + 𝜁                                                                                                 (1 a) 

 Y = Λ
(𝑦)

 𝜂  + 𝜀                                                                                                        (1 b) 

 Χ  = Λ
(𝑥)

 𝜉 + 𝛿,                                                                                                      (1 c) 

where, 𝜂 represents the random vector latent dependent variables, Β indicates the weights 

(parameter matrices) for predicting dependent variables from each other. Γ represents 

weights (parameter matrices) for predicting dependent variable from independent variables 

(Β and Γ are coefficient matrices for linear relations of all variables involved in SEM), 𝜉 

denotes the random vector latent independent variables, 𝑌 indicates the observed indicator 

for latent dependent variable, 𝑋 denotes the observed indicator for latent independent 

variable  Λ(𝑥) and  Λ
(𝑦)

 are parameter matrices and 𝜀 and 𝛿 are random vectors. Path 

diagrams represent the models graphically and enable researchers to visualize the 

conceptual models behind the research and to show statistical results. Path diagrams 

represent functional relationships among the multiple regression models that are special 

case of structural equation model. From the output given by the path diagram, when the p-

value is greater than 5% level of significance, we conclude that the theoretical model is not 

a good one for the data. To illustrate this process we use an example. Consider four 

dependent and four independent latent variables that we want to establish the system of 

equations of the observed (𝑌 and 𝑋) and theoretical model (𝜂) using  (1a), (1b) and (1c) as 

shown in Figure 1.  
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Figure 1. Path diagram 

Figure 1 presents a path diagram for a linear SEM that provides solutions to the problem 

of hunger in Sub-Saharan Africa (SSA) by increasing food production when using the 

relationship between the exogenous and endogenous variables.  

 

Most often, PA provides a diversity of set of relationships that can be developed among 

the variables. However, some of these variables are similar. Therefore, there is a need of a 

more advanced technique (or method) that allows us to reduce a large number of variables 

into a small number. Factor analysis (FA) serves this purpose. FA is a multivariate 

statistical method for reducing large numbers of variables to fewer underlying dimensions. 

This method involves grouping of similar variables into dimensions. This process is used 

to identify latent variables or constructs. Most often, factors are rotated after extraction. 

FA has several different rotation methods, and some of them ensure that the factors are 

orthogonal (i.e. uncorrelated), which eliminates problems of multicollinearity in regression 

analysis. There are many techniques of FA with principal component analysis (PCA) being 

the most used followed by the exploratory factor analysis (EFA). PCA is used if the 

components can be derived or/and summarized. It has been used by many researchers in 

medical science, education, social science and many other related fields (Wang and Staver, 

2001; Bolt et al., 2018). However, EFA is used if the variables have unmeasured variables. 

It is not as popular as PCA. In this paper, we integrate FA into SEM in order to provide an 

optimal and cost effective model that explains better the key factors in the food production 

system. 

3. Methodology 

The current approach of SEM is more restrictive since it specifies the latent variables that 

are involved in the analysis and creates the theoretical relations between the variables. 

There is a huge diversity of set of relationships that could be developed among the 

variables. The variability of set of relationships point to inconsistent conclusions about the 

level at which a model truly is equivalent to the observed data.  Therefore, a variety of the 

path diagram are oftentimes utilized.  We present a more reliable approach that provides a 

guideline on how to evaluate the suitability of a given SEM. Researchers in agriculture 

sector use all possible variables that might be identified for a set data,  but using factor 

analysis through the PCA, researchers will be able to use the most important variables in 

the model. SEM, commonly applied in many fields is introduced in the agriculture field.   

3.1 The improved Structural Equation Models using Factor Analysis 
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We outline necessary steps to take in producing SEM using factor analysis after obtaining 

provisional factors via principal component analysis (PCA) as follow:  

(i) Screen the data for  suitability through testing;  

(ii) Apply PCA on correlation matrix to obtain provisional factors when the test in Step 

(i) is statistically significant. Using the Factor analysis (FA), calculate the 

communalities accounting for pre-set proportion of total variation; 

(iii) Determine the number of principal components to retain and rotate to obtain 

orthogonality;  

(iv) Interpret the new variables (FAs) based on factor loading for each variable; 

(v) Consider rotating the factors to attain orthogonality. Thus, final factors are 

orthogonal; 

(vi) Determine the component score coefficient matrix for the possible models.  

 

Estimation of parameters in SEM is by maximum likelihood method. It provides estimates 

for the linear equations that reduce the deviation between the observed and the proposed 

model. We incorporate the selected Factors to a number of SEMs and then test for different 

inter-associations among the latent variables. The correlations between the latent 

(unobserved) variables and latent (observed) variables were equivalent to factor loading in 

principal component analysis. The general structural equation model as given in Equation 

(1a) is equivalent to Equation (2) summarized as 

𝜂 = 𝛽+𝜂 + Σ𝜉 + 𝜁, (2) 

 

where 

𝜂 = (

𝜂1
𝜂2
𝜂3
𝜂4

), 𝛽+ = (

0
0

𝛽12
0

𝛽13 𝛽14
𝛽23 𝛽24

0 0 0 𝛽34
0 0 0 0

), Σ = Γ = (

𝛿11
𝛿21

𝛿12
𝛿22

𝛿13 𝛿14
𝛿23 𝛿24

𝛿31 𝛿32 𝛿33 𝛿34
𝛿41 𝛿42 𝛿43 𝛿44

) , 𝜉 = (

𝜉1
𝜉2
𝜉3
𝜉4

) 

and 𝜁 = (

𝜁1
𝜁2
𝜁3
𝜁4

)    

 

These structures of random vectors and parameter matrices are used in the data analysis. 

3.2 Data analysis 

In the past few decades, a number of researchers have contributed in the development of 

agricultural models to improve food production in sub-Saharan Africa (SSA). Lamb et al. 

(2010) developed a model illustrating the application of SEM in plant sciences. When 

solving the problem of food insufficiency caused by environmental conditions, individual’s 

solutions exist, but permanent results remain an issue to be addressed, since the model is 

still unknown and needs to be discovered. Therefore, the true parameters of the model can 
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only be estimated from the observed core factors. These factors are identified through the 

PCA and FA procedures.  

 

Consider data   from the FAO database http://faostat3.org/home/E from 2015 across 45 

African countries. The variables are given in Table 1 with the LISREL notations according 

to J𝑜̈reskog (2000). 

Table 1: Crop components classified into three vital factors (crop, livestock and 

contributors) with various factor levels and denoted by LISREL 

 Components Description 

of variables 

LISREL 

notations 

Crop Banana  𝑌1 

Beans  𝑌2 

Cassava  𝑌3 

Rice  𝑌4 

Groundnut  𝑌5 

Maize  𝑌6 

Sugar cane  𝑌7 

Vegetables  𝑌8 

Cereals  𝑌9 
Fruits  𝑌10 

Livestock Cattle and 

Buffaloes 
 𝑌11 

Pigs  𝑌12 

Poultry  𝑌13 

Sheep and 

Goats 
 𝑌14 

Contributors  Fertilizer 

(Factor 1) 

Nitrogen  𝑋1 
Phosphate  𝑋2 

Trade 

(Factor 2) 

Export values  𝑋3 
Import values  𝑋4 

Labour 

(Factor 3) 

Rural  𝑋5 
Urban  𝑋6 

Land 

(Factor 4) 

Arable  𝑋7 
Permanent  𝑋8 

Water 

(Factor 5) 

Rainfall  𝑋9 
Irrigated land  𝑋10 

Energy used 

(Factor 6) 

Electricity  𝑋11 
Diesel  𝑋12 
Transport  𝑋13 

 

Suppose we denote crop components Y1, Y2, . . .,Y10, livestock components Y11, Y12, . . 

.,Y14 and contributors components X1, X2, . . .,X13. 

 

In the complexity of these variables and data, PCA is used to determine the direct observed 

variables in order to decide about the number of factors to be retained in the model. PCA 

is strongly related to factor analysis by indicating the correlations or associations between 

the variables and determining the small number of latent variables. Countries were grouped 
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into crop production, livestock and contributors factors dimensions and make inference 

about stable estimate parameters for the solutions to the problem of hunger and life of 

human being at the extreme menace. We used the PCA approach to determine direct and 

indirect variables.  

 

The correlation matrix is used to determine the variables that were the most strongly 

correlated with each component. This screening of variables reduced the number of highly 

correlated variables from 25 to 10 new independent variables as indicated in Table 2. The 

retained variables explain much of the total variation in the variable of interest is explained 

by each component, as this cannot be performed in multiple regressions. The results of 

PCA determined the levels at which the variables were measured. The variables with the 

highest sample variances were among the few components taken as each variable received 

its particular weight in the analysis.  To receive equal weight in the analysis we have then 

standardized variables before carrying out the PCA (performing PCA on a correlated 

matrix). Table 2 shows the number of components and the eigenvalues (initial and rotation 

eigenvalues).  

Table 2: Screening of different variables through PCA based on the total variance 

explained 

Component 

Initial Eigenvalues Rotation Sums of Squared 

loadings 

Total % of 

Variance 

Cumulative 

% 

Total % of 

Variance 

Cumulative 

% 

1 4.746 18.985 18.985 3.077 12.310 12.310 

2 3.254 13.017 32.002 2.950 11.799 24.109 

3 2.742 10.969 42.971 2.930 11.720 35.829 

4 2.435 9.741 52.712 2.681 10.725 46.554 

5 1.885 7.542 60.254 2.123 8.492 55.046 

6 1.545 6.181 66.435 2.052 8.207 63.253 

7 1511 6.044 72.479 1.706 6.825 70.078 

8 1.402 5.606 78.085 1.532 6.127 76.205 

9 1.154 4.615 82.700 1.415 5.661 81.866 

10 1.028 4.111 86.811 1.236 4.945 86.811 

11 0.804 3.217 90.028    

Extraction Method: Principal Component Analysis 

From Table 2, about 87% of the total variation is accounted for by 10 out of 25 original 

variables. Thus, we rotate the 10 principal components using FA to attain orthogonality. 

3.3 Illustrative Example on Agricultural Data Analysis using SEMs 

In SSA countries, agriculture is one of the most dominant activities providing jobs to the 

population. Productivity in this part of the world remains low because of many challenges 

that go beyond weather, pests and lack of fertilizer. For instance, in the northern part of the 

African continent, less than thirty percent of land is irrigated and Africa is far behind in the 
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use of more advanced agricultural technology. We have used food production to display 

the values of this modelling method.  

 

In this section, the proposed technique is implemented using a real-life example based on 

food production in order to show how the newly proposed model prevails on the existing 

models. In this illustrative example, most valuable crops, livestock’s products and the 

contributor’s factors in the SSA are given in column 1 of Table 1. PCA procedure allows 

for reduction of dimension of the original variables into a few number of the principal 

components as variables explaining most of the variation in the data set.  These principal 

components are represented by component 1 to 10 as given in Table 3. The bold values are 

the highest correlations between the original variables and the components in the array.  

Table 3: The rotate component matrix 

Original variables 

Factor components 

1 2 3 4 5 6 7 8 9 10 

Bananas .100 -.045 .049 -.099 -.009 -.191 -.105 .802 -.038 -.039 

Beans -.050 -.029 .057 -.076 .114 .139 .075 .821 -.001 .073 

Cassava -.017 .040 .872 -.072 .089 .012 -.019 .114 -.044 .053 

Rice -.072 -.024 .090 .000 -.038 -.117 -.005 .050 -.031 .886 

Groundnut .033 .960 .208 -.041 -.009 -.017 .002 -.095 -.050 -.031 

Maize .074 .990 -.064 .034 .005 -.004 -.034 .003 -.027 .004 

Sugar cane .804 .083 .013 .421 .093 -.050 .203 .061 -.017 .062 

Vegetables .023 .993 .068 -.037 .001 -.005 -.032 .004 -.030 .013 

Cereals .382 .116 .843 .095 .008 -.088 -.022 .068 .081 .146 

Fruit .041 .059 .933 -.114 .023 -.056 .007 -.069 -.024 -.060 

Export .707 .016 .124 .254 .029 -.054 -.088 .243 .216 -.124 

Import .659 .071 .558 .255 .059 -.077 -.010 .126 .005 -.111 

Irrigated .775 .030 .200 .109 .144 -.102 -.065 -.169 -.078 -.051 

Rainfall -.131 -.073 -.009 -.020 .274 .070 .868 -.045 .026 .191 

Nitrogen -.111 -.019 -.044 -.049 .024 .919 -.008 .062 -.105 -.076 

Phosphate -.011 -.012 -.055 -.017 .174 .922 -.010 -.098 .069 -.027 

Rural .031 .019 .092 .010 .961 .070 .088 .112 -.054 -.040 

Urban .221 -.018 .029 .112 .934 .142 -.025 .002 .029 -.010 
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 Electricity .335 -.044 -.047 .860 -.007 .090 -.149 -.067 .058 -.025 

Diesel .409 -.060 -.012 .855 -.015 -.010 .032 -.053 -.049 .000 

Transport -.016 .029 -.023 .895 .130 -.144 .037 -.106 .044 -.006 

Cattle- Buffaloes .120 .000 -.023 -.026 -.158 -.082 .907 .009 .031 -.189 

Pigs .120 -.042 -.077 .026 -.173 .076 -.028 -.080 .889 .115 

Poultry .128 .102 -.111 -.033 -.304 .222 -.154 -.073 -.726 .361 

Sheep - goats -.565 -.064 .348 .162 -.034 -.367 .013 .125 .006 -.396 

The dominance variables explaining each of the 10 factors accounting for 87% of the total 

variation are outlined below: 

Factor 1 --- Sugar cane, Import, Irrigated and Sheep - Goat 

Factor 2 --- Groundnut, Maize, and Vegetables 

Factor 3 --- Cassava, Cereals, and Fruits  

Factor 4 --- Electricity, Diesel, and Transport 

Factor 5 --- Rural and Urban 

Factor 6 --- Nitrogen and Phosphate 

Factor 7 --- Rainfall and Cattle - Buffalos  

Factor 8 --- Bananas and Beans 

Factor 9 --- Pigs and Poultry 

Factor 10 ---Rice. 

 

The test for normality of the variables in each of the observed indicator for endogenous 

and exogenous variables is validated as shown in Tables 4 and 5.   

Table 4: Test for normality for endogenous variable 

Observation Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 

Chi-square 88.942 263.882 113.417 18.676 8.068 6.940 

Degrees of freedom 10 3 6 1 1 1 

p-value 0.000 0.000 0.000 0.000 0.005 0.008 

Table 5: Test for normality for exogenous variables 

Observation Factor 1 Factor 2 Factor 3 

Chi-square 105.636 69.642 48.157 
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Degrees of freedom 3 1 1 

p-value 0.000 0.000 0.000 

 

The variables were normally distributed since 𝑝 − 𝑣𝑎𝑙𝑢𝑒 is less than 0.05. Therefore, the 

maximum likelihood estimation can be used. The general linear SEM is given in Equations 

(1a), (1b) and (1c) (See Tables 6 and 7). The latent endogenous and exogenous models are 

the highly correlated of the factors load in which the measurement model is obtained by 

the maximum likelihood. The model fit was the result for the goodness-of-fit statistical 

tests that explain the discrepancy between latent and unobserved variables. In this practice, 

the model fits well the data as this indicated that no important paths have been omitted 

from the model.  

 

After estimating the endogenous and exogenous latent measurement model separately, a 

joint model that includes altogether latent model can now be estimated (Figure 2). 

 

Since latent variables are observed, the measurement is obtained indirectly through the 

latent endogenous and exogenous variables. The latent unobserved variables are 

represented as ellipses and the latent observed variables are represented as rectangles and 

because we cannot measure or estimate perfectly the unknown factors or parameters, we 

can only measure with error and therefore, the errors terms were associated with each of 

the latent observed variables as they form part of the overall model. The error terms are 

also represented as ellipse (Figure 2).  

 

Based on the type of regression and relationship indicated in the diagram, the SEMs are 

potentially complex interplay between a large number of observed and unobserved 

variables including error terms. Using the variables in the data and corresponding identifier 

notations, we illustrate inter-relationship using the path diagram. The path diagram 

represented the model in line of the overall outcome of this paper. Using Equation (2) and 

results in Table 3, the maximum likelihood estimates were obtained. We illustrates the path 

diagram using these estimates as follows:  
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Figure 2. Conceptual path diagram for the structural model 

 

 

Table 6 presents the endogenous variables under different models based on the factor 

loadings obtained from rotated provisional factors. The model equations, measurement 

model parameters and associated score components, in addition to goodness of fit test 

statistics are also included 

Table 6:    The endogenous descriptions model 
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Model 
Factor 

load 
Correlation 

Model 

equation 

Measurement 

model 

Component 

score 

coefficient 

Goodness-

fit test 

1 

Sugar 

Export 

Import 

Irrigation 

Sheep & 

goats 

0.804 

0.707 

0.659 

0.775 

0.565 

𝑌1 = Λ𝑦 𝜂1  

+ 𝜀 

(

 
 

 𝑦7
 𝑦14
 𝑥3
 𝑥4
 𝑥10)

 
 

 = 

(

 
 
 

λ71
𝑦

λ14,1
𝑦

λ31
𝑦

λ41
𝑦

λ10,1
𝑦
)

 
 
 
 𝜂1  + 

(

 
 

𝜀1
𝜀2
𝜀3
𝜀4
𝜀5)

 
 

 

(

 
 

 𝑦7
 𝑥3
 𝑥4
 𝑥10
 𝑦14)

 
 

 = 

(

 
 

0
0.649
0.445
0
0 )

 
 
 𝜂1  

+ 

(

 
 

𝜀1
𝜀2
𝜀3
𝜀4
𝜀5)

 
 

 

Chi-square= 

8.018 

𝑑𝑓 = 4 

p-value= 

0.005 

2 

Groundnut 

Maize 

Vegetable 

 

0.960 

0.990 

0.993 

 

𝑌2 = Λ𝑦 𝜂2  

+ 𝜀 

(

 𝑦5
 𝑦6
 𝑦8
) = 

(

λ52
𝑦

λ62
𝑦

λ82
𝑦

)  𝜂2  + 

(

𝜀1
𝜀2
𝜀3

) 

 

(

 𝑦5
 𝑦6
 𝑦8
) = 

(
0.055
0.936
0.013

)  𝜂2  + 

(

𝜀1
𝜀2
𝜀3

) 

 

Chi-square= 

0.637 

𝑑𝑓 = 2 

p-value= 

0.000 

 

 

 

3 

Cassava 

Cereals 

Fruits 

0.872 

0.843 

0.933 

 

𝑌3 = Λ𝑦 𝜂3  

+ 𝜀 

(

 𝑦3
 𝑦9
 𝑦10

) = 

(

λ33
𝑦

λ93
𝑦

λ10,3
𝑦
)  𝜂3  + 

(

𝜀1
𝜀2
𝜀3

) 

(

 𝑦3
 𝑦9
 𝑦10

) = 

(
0.152
0.186
0.688

)  𝜂3  + 

(

𝜀1
𝜀2
𝜀3

) 

Chi-square= 

15.49 

𝑑𝑓 = 2 

p-value= 

0.000 

4 
Rainfall 

Cattle 

0.868 

0.907 

𝑌4 = Λ𝑦 𝜂4  

+ 𝜀 

(
 𝑋9
 𝑦11

) = 

(
λ94

𝑦

λ11,4
𝑦)  𝜂4  + 

(
𝜀1
𝜀2
) 

(
 𝑋9
 𝑦11

) = 

(0.560
0.560

)  𝜂4  + 

(
𝜀1
𝜀2
) 

Chi-square= 

16.68 

𝑑𝑓 = 1 

p-value= 

0.000 

5 
Banana 

Beans 

0.802 

0.821 

𝑌5 = Λ𝑦 𝜂5  

+ 𝜀 

(
 𝑦1
 𝑦2
) = 

(
λ15

𝑦

λ25
𝑦)  𝜂5  + 

(
𝜀1
𝜀2
) 

(
 𝑦1
 𝑦2
) = 

(0.594
0.594

)  𝜂5  + 

(
𝜀1
𝜀2
) 

Chi-square= 

8.068 

𝑑𝑓= 1 

p-value= 

0.005 
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Model 
Factor 

load 
Correlation 

Model 

equation 

Measurement 

model 

Component 

score 

coefficient 

Goodness-

fit test 

 

6 

Pigs 

Poultry 

0.889 

-0.776 

𝑌6 = Λ𝑦 𝜂6  

+ 𝜀 

(
 𝑦12
 𝑦13

) = 

(
λ12,6

𝑦

λ13,6
𝑦)  𝜂6  + 

(
𝜀1
𝜀2
) 

 

 

(
 𝑦12
 𝑦13

) = 

(
0.600
− 0.600

)  𝜂6  

+ (
𝜀1
𝜀2
) 

 

Chi-square= 

6.940 

𝑑𝑓 = 1 

p-value= 

0.008 

 

Table 7:    The exogenous descriptions model 

Mode

l  

Factor 

load 

Correlatio

n 

Model 

equatio

n 

Measuremen

t model 

Componen

t score 

coefficient 

Goodness

-fit test 

 

1 

Electricit

y 

Diesel 

Transport 

0.860 

0.855 

0.895 

𝑋1 = Λ𝑥 𝜉1  

+ 𝛿 

(

 𝑋11
 𝑋12
 𝑋13

) = 

(

λ33
𝑥

λ93
𝑦

λ10,3
𝑥
)𝜉1  + 

(

 𝛿 1
 𝛿 2
 𝛿 3

) 

(

 𝑋11
 𝑋12
 𝑋13

) = 

(
0.376
0.582
0.057

) 𝜉1  + 

(

 𝛿 1
 𝛿 2
 𝛿 3

) 

Chi-square= 

15.49 

𝑑𝑓 = 2 

p-value= 

0.000 

 

2 

Rural 

Urban 

 

0.961 

0.934 

𝑋2 = Λ𝑥 𝜉2  

+ 𝛿 

(
 𝑋5
 𝑋6
) = 

(
λ52

𝑥

λ62
𝑥) 𝜉2  + 

(
 𝛿 1
 𝛿 2
) 

(
 𝑋5
 𝑋6
) = 

(0.513
0.513

) 𝜉2  + 

(
 𝛿 1
 𝛿 2
) 

Chi-square= 

69.64 

𝑑𝑓 = 1 

p-value= 

0.000 

 

3 

Nitrogen 

Phosphat

e 

0.919 

0.922 

𝑋3 = Λ𝑥 𝜉3  

+ 𝛿 

(
𝑋1
 𝑋2
) = 

(
λ1,3

𝑥

λ2,3
𝑥) 𝜉3  + 

(
𝛿 1
 𝛿 3
) 

(
𝑋1
 𝑋2
) = 

(0.524
0.057

) 𝜉3  + 

(
𝛿 1
 𝛿 3
) 

Chi-square= 

48.16 

𝑑𝑓 = 1 

p-value= 

0.000 

 

In this model, three major components were causes for the performance and improvement 

of food production in SSA. As these components are obtained through the analysis of the 

data when using PCA approach. The three causes derived from the data were energy (𝜉1), 

labour (𝜉2), and fertilizer (𝜉3) as indicated in the path diagram (Figure 2). These variables 

are called “exogenous variables” in this experience. This is because they were governed by 

the outside factors to the food products. In addition, these variables appear to be random. 

In other illustration, the exogenous variables maybe fixed by the researcher (Sobel, 1986). 

On the other hand, we had six effects that were derived from the data: 𝜂1, variable “Sugar 

cane and sheep - goat”,  𝜂2, variable “Groundnut, maize and vegetable”, 𝜂3, variable 

“Cassava, cereals and fruit”, 𝜂4, Variable “castle - buffaloes”, 𝜂5, Variable “bananas and 

beans”, and 𝜂6, Variable “pigs and poultry”. These variables are called “endogenous 
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variables” given that their impact depends stochastically on the operation system of food 

that solves the problem of hunger in the SSA. The arrows between these variables indicate 

that one variable was a cause of the other variable and 𝜀𝑖(𝑖 = 1, 2, …, 6) and 𝛿𝑖 (𝑖 = 1, 2, 

and 3)  are random variables that are assumed to be multivariate normal distribution. This 

means the expectation of the vector 𝜀 or 𝛿 is assumed to be equal to zero. For instance, the 

variance-covariance matrix of 𝜀 or 𝛿 was assumed to be zero and the 𝐶𝑜𝑣 ( 𝜀1, 𝜀2 ) = 𝐶𝑜𝑣 

( 𝜀2, 𝜀3 ) = ... = 𝐶𝑜𝑣 ( 𝜀𝑖, 𝜀𝑗 ) = 0, where 𝑖 = 1, 2, ..., n and  j = 1, 2, ..., m.  

 

Using the path diagram, the absence of curved arrows between the variables in 𝜀 or 𝛿 

indicated that the covariance matrix equals to zero as assumed above.  

 

This is the result of the power of the exploratory properties of factor analysis by showing 

strong indication against orthogonality solutions in this complexity of data. Therefore, the 

six-measurement model in matrix notation for the exogenous model equivalent to the path 

diagram 2 represented by Equation (1b) is then given by 

 

(

 
 
 
 
 
 
 
 
 
 

𝑦1
𝑦2
𝑦3
𝑦4
𝑦5
𝑦6
𝑦7
𝑦8
𝑦9
𝑦10
𝑦11
𝑦12
𝑦13
𝑦14)

 
 
 
 
 
 
 
 
 
 

 = 

(

 
 
 
 
 
 
 
 
0.000 0.000 0.000 0.000 0.594 0.000
0.000 0.000 0.000 0.000 0.594 0.000
0.445 0.000 0.152 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.055 0.000 0.000 0.000 0.000
0.000 0.936 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.013 0.000 0.000 0.000 0.000
0.000 0.000 0.186 0.000 0.000 0.000
0.000 0.000 0.688 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.600
0.000 0.000 0.000 0.000 0.000 −0.60
0.649 0.000 0.000 0.000 0.000 0.000)

 
 
 
 
 
 
 
 

(

  
 

 𝜂1
 𝜂2
 𝜂3
 𝜂4
 𝜂5
 𝜂6)

  
 

  + 

(

 
 
 
 
 
 
 
 
 
 

𝜀1
𝜀2
𝜀3
𝜀4
𝜀5
𝜀6
𝜀7
𝜀8
𝜀9
𝜀10
𝜀11
𝜀12
𝜀13
𝜀14)

 
 
 
 
 
 
 
 
 
 

                     (3) 

In the same way, the exogenous measurement model represented by Equation (1c) is given 

by 

(

 
 
 
 
 
 
 
 
 
 
 

𝑋1
𝑋2
𝑋3
𝑋4
𝑋5
𝑋6
𝑋7
𝑋8
𝑋9
𝑋10
𝑋11
𝑋12
𝑋13)

 
 
 
 
 
 
 
 
 
 
 

   =    

(

 
 
 
 
 
 
 
 
 
 

0.376
0
0
0
0
0
0
0
0
0
0

0.582
0
0
0

0.513
0.513
0
0
0
0
0

0.057
0
0
0
0
0
0
0
0
0

0.524
0 0 0
0 0 0.057)

 
 
 
 
 
 
 
 
 
 

   (

𝜉1
𝜉2
𝜉3

)  +    

(

 
 
 
 
 
 
 
 
 
 
 

𝛿 1
𝛿 2
𝛿 3
𝛿 4
𝛿 5
𝛿 6
𝛿 7
𝛿 8
𝛿 9
𝛿 10
𝛿 11
𝛿 12
𝛿 13)

 
 
 
 
 
 
 
 
 
 
 

                  (4) 

 

The SEM given by J𝑜̈reskog given by the Equation (2) is shown in the Table 8. 
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Table 8:   The parameters estimates and measurement model matrices 

Β =  

(

  
 

0
0
0
0

0.527
0
0
0

0.098 0.008 0.094 −0.025
−0.196 0.265 −0.102 0.066
  0             0.217  0.548 −0.634
 0               0       −0.454  0.207

0 0   0               0         0             0.244 
0 0   0              0        0            0 )

  
 

 
𝜂 = 

(

  
 

𝜂1
𝜂2
𝜂3
𝜂4
𝜂5
𝜂6)

  
 

 

 

 Γ =  

(

  
 

 0.707
−0.087
0.384
0

 0.673
−0.036
−0.141
0

0.193  0 0 0
0.761  0 0 0
−0.567 0 0 0
          0   0 0 0

0 0           0 0 0 0
0 0           0 0 0 0

 

)

  
 
  𝜁 = 

(

 
 
 

𝜁1
𝜁2
𝜁3
𝜁4
𝜁5
𝜁6)

 
 
 

 𝜉 = 

(

 
 
 

𝜉1
𝜉2
𝜉3
𝜉4
𝜉5
𝜉6)

 
 
 

  

 

The structural model estimated with the class of the linear model as given in Equation (2) 

is equivalent to 

 

(

  
 

𝜂1
𝜂2
𝜂3
𝜂4
𝜂5
𝜂6)

  
 
 = 

(

  
 

0
0
0
0

0.527
0
0
0

 
0.098 0.008 0.094 −0.025
−0.196 0.265 −0.102 0.066
  0             0.217  0.548 −0.634
 0               0       −0.454  0.207

0 0   0               0         0             0.244 
0 0  0               0        0            0 )

  
 

(

  
 

𝜂1
𝜂2
𝜂3
𝜂4
𝜂5
𝜂6)

  
 

  + 

       

(

  
 

0.707
−0.087
0.384
0

0.673
−0.036
−0.141
0

0.193 0 0 0
0.761 0 0  0

 

−0.567 0 0 0   
          0   0 0 0  

0 0           0  0 0 0  
0 0          0  0 0 0 )

  
 

(

 
 
 

𝜉1
𝜉2
𝜉3
𝜉4
𝜉5
𝜉6)

 
 
 

  +  

(

 
 
 

𝜁1
𝜁2
𝜁3
𝜁4
𝜁5
𝜁6)

 
 
 

 

 

Having the latent scores for 𝜂1,𝜂2, 𝜂3, 𝜂4, 𝜂5 and 𝜂6, and 𝜉1, 𝜉2 and 𝜉3, we can use the 

information from the model to compare the productivity level for all the identified 

components. Based on this information, Figure 2 entails that a primary crop production 

level was simultaneously controlled by the support of livestock (using manure) and the 

contributor’s factors. The SEMs  obtained extract more information about the food 

production then when using a single linear model for instance maize. In so doing with latent 

scores, we were able to estimate a single linear equation by using ordinary least squared 

(OLS) through 𝜂1 as endogenous variable. This procedure generates the equation 𝜂1 = - 

0.0479𝜉1 – 0.0182 𝜉2 + 0.404 𝜉3 . For illustration of the model, this suggested that 𝜂1  was 

a linear function of 𝜉1 , 𝜉2 and 𝜉3 and as a result, the components units can be ranked either 

on the basis of 𝜂1   or  - 0.0479 𝜉1 – 0.0182 𝜉2 + 0.404 𝜉3. 

 

As indicated earlier, the approach adopted by SEM was based on the variance-covariate 

matrix between the variables in the data and the initial path diagrams that hypothesizes the 

causal relationships among the variables. These path diagrams were later translated into a 
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diverse set of linear equations describing the relationships that define a certain pattern when 

using variance-covariance matrix.  

 

The results were as amazingly natural as the correlations between latent (unobserved) 

variables and observed variables were found highly correlated (all above 0.80) and in 

positive direction except Y (poultry) that was negatively strong (- 0.73) and Y representing 

sheep and goats (− 0.57) that was acceptable relationship. By contrast, the relationship 

between the latent (unknown) variables was positively weak but statistically significant.   

 

Given these patterns, it appears both a direct and indirect effect between exogenous and 

endogenous variables. The six endogenous variables derived from the diverse type of crop 

and kind of livestock affect mutually the three direct cause-factors exogenous: energy, 

labour and fertilizer as this is likely to maintain claims by revealing how well it is 

organized. Conversely, the energy used as a factor, labour and fertilizer types were likely 

to be exceptionally confident, as these factors were key feature to create more productivity 

of crop and conserve healthy livestock.  

4. Conclusion and Recommendations 

SEM and path analysis have been used in many fields of science to solve complex 

problems. This paper introduced the use and application of SEM in agricultural field in an 

explicit and illustrative manner. Path analysis is a technique to be used in agricultural 

studies since it helps to focus on the key activities of food production and how they all fit 

together. SEM and path analysis being statistical techniques of making decision, they also 

have their own strength and limitations. The best method should be the one addressing the 

purpose of the research. We have assumed that there is a causal structure among a set of 

latent variables, therefore SEM technique applied to food production has validated that the 

livestock’s products and crop in its diversities are likely to be integrated. The results also 

revealed that factors such as energy, labour and fertilizer are anticipated to make positive 

contributions to the increase of food production in SSA. Multiple factors influence greater 

food productivity returns over the viewing platform, including new and faster technology 

adoption of small-scale producers. Despite the confirmation of SEM, improvement and 

important gaps remain. To close current yield food production gaps represent the greatest 

challenges and uncertainties facing SSA.    
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