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Abstract

The main goal of this paper is to study the asymptotic normality of the estimate of the conditional
distribution function of a scalar response variable Y given a hilbertian random variable X when
the observations are quasi-associated. Our approach is based on the Doob’s technique. It is shown
that, under the concentration property on small balls of the probability measure of the functional
estimator and some regularity conditions, the kernel estimate of the conditional distribution function
is asymptotically normally distributed. We performed out simulation experiments to examine the
behavior of this asymptotic property over finite sample data.

Keywords: Conditional distribution function; probabilities of small balls; asymp-
totic normality; nonparametric kernel estimation; quasi-associated data.

1. Introduction

In recent years, the functional estimate has attracted a lot of attention in the sta-
tistical literature. Functional data arise in a variety of fields including econometrics,
epidemiology, environmental science and many others.
For nonparametric functional estimation, the book of Ferraty and Vieu (2006) gives an
excellent synthesis of kernel method for conditional models, where many asymptotic
properties of regression, conditional quantile and conditional density estimator have
been obtained. The estimation of the conditional distribution function in a functional
framework was introduced by Ferraty et al. (2006). They constructed a dual kernel
estimator for the conditional distribution function and specified the almost complete
convergence rate of this estimator when the observations are independent and iden-
tically distributed. The case of α-mixing observations was studied by Ferraty et al.
(2007). An example of an application on conditional median prediction, as well as the
determination of prediction intervals, was considered in this article. Several authors
have treated the estimation of the conditional distribution function as a preliminary
study of the estimation of conditional quantile. For example, Ezzahrioui and Ould-
Säıd (2008) have studied the asymptotic normality of this estimator in both cases
(i.i.d. and mixing).
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The associated random variables play an important role in a wide variety of areas, in-
cluding reliability theory, mathematical physics, multivariate statistical analysis, life
sciences and in percolation theory. Many works were treated data under positive and
negative dependant random variables, one can quote, Newman (1984) and Matula
(1992). The concept of quasi-association is a special case of weak dependence intro-
duced by Doukhan and Louhichi (1999) for real-valued stochastic processes. To the
best of our knowledge, there is few papers dealing with the nonparametric estimation
for quasi-associated random variables. We quote, Douge (2010) studied a limit theo-
rem for quasi-associated hilbertian random variables, Attaoui and Ling (2016) studied
asymptotic results of a nonparametric conditional cumulative distribution estimator
in the single functional index modeling of time series data, Tabti and Ait Saidi (2018)
studied the estimation and simulation of the conditional hazard function in the quasi-
associated framework when the observations are linked via a functional single index
structure, the asymptotic normality of this last estimator was studied by Daoudi et
al. (2018). Mechab and Laksaci (2016) studied Nonparametric relative regression for
associated random variables. Daoudi et al. (2019) studied the asymptotic normality
of the nonparametric conditional density function estimate with functional variables
for quasi-associated data
The main contribution of this work is the study of the asymptotic normality of the
estimator of the conditional distribution function of Ferraty et al. (2006) in case of
quasi-associated data. Note that, like all asymptotic statistics nonfunctional para-
metric, our result is related to the phenomenon of concentration of the probability
measure of the explanatory variable and regularity of the functional space of the
model. we recall the definition of quasi-association:

Definition 1.1. A sequence (Xn)n∈N of real random vectors variables is said to be
Quasi-Association (QA), if for any disjoint subsets I and J of N and all bounded
Lipschitz functions f : R|I|d → R and g : R|J |d → R satisfying

Cov(f(Xi, i ∈ I), g(Xj, j ∈ J)) ≤ Lip(f)Lip(g)
∑
i∈I

∑
j∈J

d∑
k=1

d∑
l=1

∣∣Cov(Xk
i , X

l
j)
∣∣

where Xk
i denotes the kth component of Xi,

Lip(f) = sup
x 6=y

|f(x)− f(y)|
||x− y||1

with ||(x1, ..., xk)||1 = |x1|+ · · ·+ |xk|.

The paper is organized as follows: in the next section, we present our model. Section 3
is dedicated to fixing notations and hypotheses. We state our main results in Section
4. An application on simulated data is given to validate our theoretical result in
Section 5. The auxiliary results and proofs are given in Section 6. We finalize the
paper with a conclusion in Section 7.

2. The model

Consider Zi = (Xi, Yi)1≤i≤n be a n quasi-associated random identically distributed as
the random Z = (X, Y ), with values in H × R, where H is a separable real Hilbert
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space with the norm ‖ . ‖ generated by an inner product < ., . >.
We consider the semi-metric d defined by ∀x, x′ ∈ H, d(x, x′) =|< x− x′, α >| where
α ∈ H. In the following x will be a fixed point in H.

We intend to estimate the conditional distribution function F x(y) using n dependent
observations (Xi, Yi)i∈N draw from a random variables with the same distribution

with Z := (X, Y ). To this aim, we introduce the kernel type estimator F̂ x of F x

defined by:

F̂ x(y) =

∑n
i=1K(h−1K d(x,Xi))H(h−1H (y − Yi))∑n

i=1K(h−1K d(x,Xi))
, ∀y ∈ R (1)

where K is the kernel, H is a given distribution function and hK = hK,n (resp.
hH = hH,n) is a sequence of positive real numbers.

3. Notations and hypotheses

All along the paper, when no confusion will be possible, we will denote by C or/and
C ′ some strictly positive generic constants whose values are allowed to change. We
assume that the random pair Zi = {(Xi, Yi), i ∈ N} is stationary quasi-associated
processes.
Let λk the covariance coefficient defined as:

λk = sups≥k
∑
|i−j|≥s

λi,j

where:

λi,j =
∞∑
k=1

∞∑
l=1

| cov(Xk
i , X

l
j) | +

∞∑
k=1

| cov(Xk
i , Yj) | +

∞∑
l=1

| cov(Yi, X
l
j) | +cov(Yi, Yj) | .

Xk
i denotes the kth component of Xi defined as Xk

i :=< Xi, e
k >.

For h > 0, let B(x, h) := {x′ ∈ H/d(x′, x) < h} be the ball of center x and radius h.

To establish the asymptotic normality of the estimator F̂ x, we need to include the
following assumptions:

(H1) P(d(x′, x) < hK) = φx(hK) > 0 and Moreover, there exists a function β(x, .)
such that:

∀s ∈ [0, 1], lim
hK→0

φ(x, shK)

φ(x, hK)
= β(x, s).

.

(H2) For l ∈ {0, 2}, the functions Φl(s) = E[∂
lFX(y)
∂yl

− ∂lFx(y)
∂yl

| d(x,X) = s] are
differentiable at s = 0.

(H3) H is a cumulative distribution has derivative H
′

such that:
∫
H
′2/r(t)dt < ∞

and
∫
| t |b2 H ′2dt <∞.
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(H4) K is a kernel function and bounded continuous Lipschitz function such that:

C1[0,1](.) < K(.) < C
′
1[0,1](.)

where 1[0,1] is the indicator function on [0,1], and its derivative K
′

is such that:

−∞ < C < K
′
(t) < C

′
< 0 for 0 ≤ t ≤ 1.

(H5) The bandwidths (hK , hH) satisfied:

(i) lim
n→∞

hK = 0, lim
n→∞

hH = 0 and (ii) lim
n→∞

(hb2H + hb1K)
√
nφ(x, hK) = 0.

(H6) The sequence of random pairs (Xi, Xj), i ∈ N is quasi-associated with covariance
coefficient λk, k ∈ N satisfying:

∃α > 0,∃C > 0,such that λk ≤ Ce−αk.

(H7)
sup
i 6=j

P [(Xi, Xj) ∈ B(x, hK)×B(x, hK)] = Ψi,j > 0

Ψi,j = maxi 6=j{P(d(x,Xi)) < hK ,P(d(x,Xj)) < hK)} = O(φ2
x(hK)).

Comments on the hypotheses

Assumption (H1) is the concentration property of the explanatory variable in small
balls. The function β(x, .) plays a fundamental role in all asymptotic, in particular
for the variance term. The condition (H2) is used to control the regularity of the
functional space of our model and these are needed to evaluate the bias term of
the convergence rates. The hypotheses (H3) and (H4) are technical conditions on
the cumulative function H and the kernels K, H

′
and K

′
. Assumption (H5) is

also classical in the functional estimation in finite or infinite dimension spaces, in
particular, is used to eliminate the term bias in the result of asymptotic normality.
The hypothesis (H6) is a structural condition used for the quasi-associated data. To
establish the asymptotic normality of our model under quasi-association, we need the
assumption (H7), which describes the asymptotic behavior of the joint distribution
of the couple (Xi, Xj).

4. Main Results: Asymptotic Normality

Theorem 4.1. Under hypotheses (H1)-(H7), as n goes to infinity, we have:√
nφ(x, hK)

σ2(x)

(
F̂ x(y)− F x(y)

)
D−→ N (0, 1) n→∞

where

σ2(x) =
C2F

x(y)(1− F x(y))

C2
1

∫
H ′2(t)dt
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with

Cj = K(1)−
∫ 1

0

(Kj)′(s)β(x, s)ds, for j = 1, 2.

Proof of Theorem 4.1. The proof of this theorem is based on the following decom-
position and the lemmas bellow:

F̂ x(y)− F x(y) =
F̂ x
N(y)− F x(y)F̂ x

D(y)

F̂ x
D(y)

=
1

F̂ x
D(y)

{F̂ x
N(y)− E(F̂ x

N(y))

+ E(F̂ x
N(y))− F x

N(y))}

− 1

F̂ x
D(y)

{
F x(y)(F̂ x

D(y)− 1)
}

where

F̂ x
N(y) =

1

nE(K1(x))

n∑
i=1

Ki(x)Hi(y)

and

F̂ x
D =

1

nE(K1(x))

n∑
i=1

Ki(x),

with
Ki(x) = K

(
h−1K d(x,Xi)

)
and Hi(y) = H

(
h−1H (y − Yi)

)
.

Finally, to state the asymptotic normality of F x(y), we show that the numerator
suitably normalized is asymptotically normally distributed (with law N (0, σ2(x)))
and that the denominator converges in probability to 1.
Then, the proof of Theorem 4.1 can be deduced from the following lemmas:

Lemma 4.1. Under the hypotheses of Theorem 4.1, as n goes to infinity, we have:√
nφ(x, hK)

(
F̂ x
N(y)− E(F̂ x

N(y))
)
D−→ N (0, σ2(x)).

Lemma 4.2. (See, (Laksaci and Mechab, 2014)). Under the hypotheses (H1)-(H5),
we have:

E(F̂ x
N(y))− F x

N(y) = BF
H(x, y)h2H +BF

K(x, y)hK + o(h2H) + o(hK)

where

BF
H(x, y) =

1

2

∂2F x(y)

∂y2

∫
t2H ′(t)dt

and

BF
K(x, y) = hKΦ′0(0)

C0

C1

.
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Lemma 4.3. Under the hypothesis (H1)-(H7), as n goes to infinity, we have:√
nφ(x, hK)

(
F x(y)(F̂ x

D(y)− 1)
)
→ 0 in probability.

Lemma 4.4. Under hypotheses of Theorem 4.1, we have∑
n∈N

P
(
F̂ x
D(y) < 1/2

)
<∞.

5. Application on simulated data

We aim to evaluate, on a finite sample, performances of the asymptotic normality of
the conditional distribution on simulated data. In particular, our main purpose is to
show how we can implement easily and quickly this estimator in practice. Of course,
the applicability of our asymptotic normality result requires a practical estimation of
the asymptotic bias and variance.
The main purpose of this section is to test the effectiveness of the two asymptotic
normality results. For this purpose, we consider the functional nonparametric model
as follows:

Y = r(x) + ε where ε ∼ N (0, 1)

We are interested in functional data derived from a mixture of two Gaussian stochastic
processes Z1(t) and Z2(t) over an interval [-1,1] defined by:

Z1(t) =
√
−2log(U)cos(2π(1−W )t), Z2(t) =

√
−2log(1− U)sin(2πWt)

where U and W are random variables distributed uniformly over the interval [0,1].
The explanatory functional variables are quasi-associated are constructed by:

X(t) = Z1(t) + Z2(t)

We generate a sample of size 200 {Xi(t)}i=1,...,200 of X(t), and we observe each vari-
able Xi on (tj)j=1,...,100 ∈ [−1, 1]).
The curves obtained are plotted in Figure 1: On the other hand, for i = 1, ..., n = 200,

Figure 1: A sample of 200 curves
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the scalar response Yi is computed by considering the following operator:

r(x) =

∫ 1

0

dt

1+ | x(t) |
Recall that, the conditional distribution of Y given X = x corresponding to this
model is explicitly given by the law of εi shifted by r(x). Then, the corresponding
conditional density fx(y) is:

fx(y) =
1

2π
exp(−1

2
(y − r(x))2

Elsewhere, as it is well-known in FDA, the choice of the metric and the smoothing
parameters have crucial roles in the computational issues. To optimize these choices
in this illustration, we use firstly the cross-validation procedure method for choosing
smoothing parameters, secondly regarding the shape of the curves Xi , it is clear that
the PCA-type semi-metric (see Benhenni et al. 2007), is well-adapted to this kind of
data. Then, we point out that, we opted for a quadratic kernel which is supported
within (0,1) and taken K = H ′.

Figure 2: The asymptotic distribution of the conditional distribution function

The obtained results are shown in figure 2. It appears clearly that, asymptotic distri-
butions have good behaviors with respect to the standard normal distribution. This
conclusion is confirmed by the Kolmogorov-Smirnov test which, for n = m = 200 ,
gives 0.80 as a P value for the first model and 0.69 for the second one.

6. Auxiliary results and proofs

First of all, we state the following lemmas.

Lemma 6.1. (See, Douge (2010)). Let (Xn)n∈N be a quasi-associated sequence of
random variables with values in H. Let f ∈ BL(H|I|) ∩ L∞ and g ∈ BL(H|J |) ∩ L∞,
for some finite disjoint subsets I, J ⊂ N. Then

Cov(f(Xi, i ∈ I), g(Xj, j ∈ J)) ≤ Lip(f)Lip(g)
∑
i∈I

∑
j∈J

∞∑
k=1

∞∑
l=1

∣∣Cov(Xk
i , X

l
j)
∣∣

where (BL(Hu;u > 0) is the set of bounded Lipschitz functions f : Hu → R and L∞
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is the set of bounded functions.

Lemma 6.2. (See, Kallabis and Nemann (2006)). Let X1, ..., Xn the real random
variables such that E(Xj) = 0 and P(| Xj |≤ M) = 1 for allj = 1, ..., n and some
M <∞, Let σ2

n = V ar(
∑n

i=1 ∆i).
Assume, furthermore, that there exist K < ∞ and β > 0 such that, for all u-uplets
(s1, ..., su) ∈ Nu, (t1, ..., tv) ∈ Nv with 1 ≤ s1 ≤ · · · ≤ su ≤ t1 ≤ · · · ≤ tv ≤ n.
The following inequality is fulfilled:

| cov(Xs1 ...Xsu , Xt1 ...Xtv) |≤ K2Mu+v−2ve−β(t1−su).

Then,

P(|
n∑
j=1

Xj |> t) ≤ exp{− t2/2

An +B
1/3
n t5/2

}

for some
An ≤ σ2

n

and

Bn = (
16nK2

9An(1− e−β) ∨ 1
)
2(K ∨M)

1− e−β
.

6.1 Proof of lemma 4.1

We denote

Zni(x, y) =

√
φ(x, hK)√
nE(K1)

(Γi(x, y)− EΓi(x, y))

where
Γi(x, y) = K(h−1K d(x,Xi))Hi(y)− E[K1H1], 1 ≤ i ≤ n

and

Sn :=
n∑
i=1

Zni(x, y) (2)

Therefore,
Sn =

√
nφ(x, hK)(F̂N(x, y)− E(F̂N(x, y)).

Thus, our claimed result is, now:

Sn → N (0, σ2(x)).

To do that, we use the basic technique of Doob (1959). Indeed, we consider p = pn
and q = qn two sequences of natural numbers tending to infinity, such that

p = O(
√
nφ(x, hK)), q = o(p)

and we split Sn into

Sn = Tn + T ′n + ξk with Tn =
∑k

j=1 ηj and T ′n =
∑k

j=1 ηj
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where

ηj =
∑
i∈IJ

Zni(x, y), ξj =
∑
i∈IJ

Zni(x, y), ζk =
∑

i=k(p+q)+1

Zni(x, y)

with

Ij = (j − 1)(p+ q) + 1, ..., (j − 1)(p+ q) + p,
Jj = (j − 1)(p+ q) + p+ 1, ..., j(p+ q).

Observe that, for k = n
p+q

, (where [.] stands for the integral part), we havekq
n
→ 0

and kp
n
→ 1, q

n
→ 0 , which imply that p

n
→ 0 as n→∞.

Now, our asymptotic result is based on:

E(T ′n)2 + E(ζn)2 → 0 (3)

and
Tn → N (0, 1). (4)

Proof of (3).
By stationarity, we get

E(T ′n)2 = kV ar(ζ1) + 2
∑

1≤i<j≤k

| Cov(ζi, ζj) | (5)

and
kV ar(ζ1) ≤ qkV ar(Zn1(x, y)) + 2k

∑
1≤i<j≤k

Cov(Zni(x, y), Znj(x, y)) (6)

by the fact that kq
n
→ 0. We obtain

qkV ar(Zn1(x, y)) = φ(x, hK)qk
1

n(E(K1))2
V ar(Γ1(x, y))

= O(
kq

n
)→ 0, as n→∞.

On the other hand, we have

k
∑

1≤i<j≤k

| Cov(Zni(x, y), Znj(x, y)) |= kφ(x, hK)

n(E(K1))2

∑
1≤i<j≤k

Cov(Zni(x, y), Znj(x, y))

we obtain, ∑
1≤i<j≤k

| Cov(Zni(x, y), Znj(x, y)) |= o(qφ(x, hK)).

Then

k
∑

1≤i<j≤k

| Cov(Zni(x, y), Znj(x, y)) |= O(
kq

n
)→ 0, as n→∞. (7)
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From (5)-(7), we obtain
kV ar(ξi)→ 0, as n→∞. (8)

We use the stationarity, to evaluate the second term in the right-hand side of (4)∑
1≤i<j≤k

| Cov(ξni, ξnj) | =
∑

1≤i<j≤k

(k − l) | Cov(ξni, ξnj) |

≤ k
∑

1≤i<j≤k

| Cov(ξni, ξnj) |

≤
k−1∑
l=1

∑
(i,j)∈J×Jl+1

Cov(Zni(x, y), Znj(x, y))

It is clear that, for all (i, j) ∈ Ji × Jj, we have |i− j| ≥ p+ 1 > p, then

∑
1≤i<j≤k

| Cov(ξni, ξnj) | ≤ k
Cφ(x, hK)(h−1K Lip(K) + h−1H Lip(H))2

n(E[K1)2

p∑
i=1

v∑
j=2p+q+1,|i−j|>p

λi,j

≤ Ckpφ(x, hK)(h−1K Lip(K) + h−1H Lip(H))2

n(E[K1)2
λp

≤ Ckp(h−1K Lip(K) + h−1H Lip(H))2

nφ(x, hK)
e−αp

≤ Ckp

nh2Hφ
3(x, hK)

e−αp → 0.

Finally, by combining this last result and (7). We can write

E(T ′1)
2 → 0 as n→∞. (9)

Moreover

E(ζk)
2 ≤ (n− k(p+ q))V ar(Zn1(x, y)) + 2

∑
1≤i<j≤k

| Cov(Zni(x, y), Znj(x, y)) |

≤ pV ar(Zn1(x, y)) + 2
∑

1≤i<j≤k

| Cov(Zni(x, y), Znj(x, y)) |

≤ pφ(x, hK)

nE(K1)2
V ar(Zn1(x, y)) +

Cφ(x, hK)

nE(K1)2

∑
1≤i<j≤k

| Cov(Zni(x, y), Znj(x, y)) |︸ ︷︷ ︸
o(1)

≤ Cp

n
+ o(1).

Then,

E(ζk)
2 → 0 as n→∞.

Which combining with (3) completes the proof of (4).
Proof of (6).
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The proof of convergence in (6) is based in the following two results

| E(eit
∑k

j=1 ηj)−
k∏
j=1

E(eitηj) |→ 0 (10)

and
kV ar(η1)→ σ2(x), kE(η211η1>εσ(x))→ 0. (11)

Proof of (10).

| E(eit
∑k

j=1 ηj)−
k∏
j=1

E(eitηj) | ≤ | E(eit
∑k

j=1 ηj)− E(eit
∑k−1

j=1 ηj)E(eitηj) |

+ | E(eit
∑k−1

j=1 ηj)−
k−1∏
j=1

E(eitηj) |

= | Cov(eit
∑k−1

j=1 ηj , eitηk) | + | E(eit
∑k−1

j=1 ηj)

−
k−1∏
j=1

E(eitηj) | (12)

and successively, we have

| E(eit
∑k

j=1 ηj)−
k∏
j=1

E(eitηj) |≤| Cov(eit
∑k−1

j=1 ηj , eitηk) | + | Cov(eit
∑k−2

j=1 ηk−1, eitηj) |

+ · · ·+ | Cov(eitη2 , eitη1) | . (13)

Once again we apply Lemma 6.2, to write

| Cov(eitη2 , eitη1) |≤ C(h−1K Lip(K) + h−1H Lip(H))2
φ(x, hK)

n(E[K1)2

∑
i∈I1

∑
j∈I2

λi,j.

Applying this inequality to each term on the right-hand side of (13). We obtain

| E(eit
∑k

j=1 ηj)−
k∏
j=1

E(eitηj) |≤ C(h−1K Lip(K) + h−1H Lip(H))2
φ(x, hK)

n(EK1)2

×

∑
i∈I1

∑
j∈I2

λi,j +
∑

i∈I1∪I2

∑
j∈I3

λi,j + · · ·+
∑

i∈I1∪···∪Ik−1

∑
j∈Ik

λi,j

 .

Observe that for every 2 ≤ l ≤ k − 1, (i, j) ∈ Il ∗ Il+1, we have |i − j| ≥ q + 1 > q,
then ∑

i∈I1∪···∪Ik−1

∑
j∈Ik

λi,j ≤ pλq.

Pak.j.stat.oper.res. Vol.XV No.IV 2019 pp999-1015 1009



Daoudi, Mechab

Therefore, inequality (12) becomes

| E(eit
∑k

j=1 ηj)−
k∏
j=1

E(eitηj) | = Ct2(h−1K Lip(K) + h−1H Lip(H))2
φ(x, hK)

n(E[K1])2
kpλq

= Ct2(h−1K Lip(K) + h−1H Lip(H))2
φ(x, hK)

(E[K1])2
kpe−αq

= Ct2(h−1K Lip(K) + h−1H Lip(H))2
1

nφ(x, hK)
kpλq

= Ct2
kp

nh2Hφ
3(x, hK)

λq → 0.

Proof of (11).
By the same arguments used in 5, we have

lim
n→∞

kV ar(η1) = lim
n→∞

kpV ar(Zn1(x, y))

= lim
n→∞

φ(x, hK)

n(EK1)2
V ar(Γ1(x, y))

So, by using the same arguments as those used by (Ferraty and Vieu, 2007), we get

1

φ(x, hK)
E(K2

1)→ K2
1 −

∫ 1

0

(K2)′(s)β(x, s)ds+ o(1)

E(K2
1H

2
1 )

E(K2
1)
→ F x(y)(1− F x(y))

∫
H
′2(t)dt

E(K2
1H

2
1 )

E(K2
1)
→ F x(y)(1− F x(y))

which imply that
φ(x, hK)

n(EK1)2
V ar(Γ1(x, y))→ σ2(x).

Hence
kV ar(η1)→ σ2(x).

For the second part of (11), we use the fact that:

| η1 |≤ Cp | Zn1(x, y) |≤ Cp√
nφ(x, hK)

and by Tchebychev’s inequality we get:

kE(η211η1>εσ(x)) ≤
Cp2k

nφ(x, hK)
P(η1 > εσ(x))

≤ Cp2k

nφ(x, hK)

V ar(η1)

ε2σ2(x)

= O

(
p2

nφ(x, hK)

)
.
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6.2 Proof of lemma 4.3

We have

|F̂ x
D(y)− EF̂ x

D(y)| = 1

nE[K1]

n∑
i=1

∆i

where
∆i = K(h−1K d(x,Xi))− E[K1], 1 ≤ i ≤ n

clearly we have E(∆i) = 0 and Moreover, we can write:

‖ ∆i ‖∞ 1 ≤ 2C ‖ K ‖∞

and
Lip(∆i) ≤ Ch−1K Lip(K).

Now, to apply lemma 6.2, we have to evaluate the variance term V ar(
∑n

i=1 ∆i) and
the covariance term cov(∆s1 ...∆su ,∆t1 ...∆tv), for all (s1, ..., su) ∈ Nu,(t1, ..., tv) ∈ Nv

with 1 ≤ s1 ≤ · · · ≤ su ≤ t1 ≤ · · · ≤ tv ≤ n.
Firstly, for the covariance term, we consider the following cases: If t1 = su. By using
the fact that E[| K1 |] = O(φ(x, hK)) we have:

| Cov(∆s1 ...∆su ,∆t1 ...∆tv) | ≤
(

C

nE[K1]

)u+v
E | ∆i |u+v

≤
(
C ‖ K ‖∞
nE[K1]

)u+v
E[| K1 |]

≤ φ(x, hK)

(
C

nφ(x, hK)

)u+v
If t1 > su, we use the quasi-association, under (H7), we get :

| Cov(∆s1 ...∆su ,∆t1 ...∆tv) | ≤
(

Lip(K)

nhKE[K1]

)2

×
(

C

nE[K1]

)u+v−2 u∑
i=1

v∑
j=1

λsi,tj

≤
(
h−1K Lip(K)

)2( C

nE[K1]

)u+v
vλt1−su

≤
(
h−1K Lip(K)

)2( C

φ(x, hK)

)u+v
ve−α(t1−su).

(14)

On the other hand, by (H7) we have:

1For any function f we denote by ‖ f ‖∞ the supremun norm.
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| Cov(∆s1 ...∆su ,∆t1 ...∆tv) |≤(
C ‖ K ‖∞
n[K1]

)u+v−2
(| E[∆su ,∆t1 ] | +E | ∆su | E | ∆t1 |

≤
(
C ‖ K ‖∞
nE[K1]

)u+v−2(
C

nE[K1]

)2

× (supi 6=jP
(
(Xi, Xj) ∈ B(x, hK)×B(x, hK) + P (X1 ∈ B(x, hK))2

)
≤

(
C

φ(x, hK)

)u+v
(φ(x, hK))2.

(15)

Furthermore, taking a γ − power of (14), (1− γ)− power of (15), with 1 = 4 < γ <
1 = 2, we obtain an upper-bound of the tree terms as follows: for 1 ≤ s1 ≤ · · · ≤
su ≤ t1 ≤ · · · ≤ tv ≤ n

| cov(∆s1 ...∆su ,∆t1 ...∆tv) |≤ φ(x, hK)

(
C

nφ(x, hK)

)u+v
.

Secondly, for the variance term V ar(
∑n

i=1 ∆i),
we put, for all 1 ≤ i ≤ n,

| V ar(∆s1 ...∆su ,∆t1 ...∆tv) | =

(
1

nE[K1]

)2 n∑
i=1

n∑
j=1

Cov(Ki, Kj)

=

(
1

nE[K1]

)2

V ar(K1)

+

(
1

nE[K1]

)2 n∑
i=1

n∑
j=1,i 6=j

Cov(Ki, Kj)

(16)

for the first term,
V ar(K1) = E

(
K2

1

)
− (E(K1))

2

then,
E[K2

1 ] = O (φ(x, hK)) .

It follows that: (
1

nE[K1]

)2

V ar(K1) = O(nφ(x, hK)). (17)

Now, let us evaluate the asymptotic behavior of the sum in the second term of (16).
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For this, we need the following decomposition:

n∑
i=1

n∑
j=1,i 6=j

Cov(Ki, Kj) =
n∑
i=1

n∑
j=1,0<|i−j|≤mn

Cov(Ki, Kj)︸ ︷︷ ︸
I

+
n∑
i=1

n∑
j=1,|i−j|>mn

Cov(Ki, Kj)︸ ︷︷ ︸
II

where (mn) is a sequence of positive integer which goes to infinity as n→∞. From
Assumptions (H1), (H4) and (H8), we have, for i 6= j

I ≤ nmn

(
maxi 6=j | E(KiKj) | +(E(K1))

2
)

≤ Cnmn

(
φ2(x, hK) + φ2(x, hK)

)
≤ Cnmn

(
φ2(x, hK)

)
.

(18)

Since the kernels K is bounded and Lipschitzian, we get

II ≤ (h−1K Lip(K))2
u∑
i=1

v∑
j=1|i−j|>mn

λi,j

≤ C(h−1K Lip(K))2
u∑
i=1

v∑
j=1|i−j|>mn

λi,j

≤ Cn(h−1K Lip(K))2λmn

≤ Cn(h−1K Lip(K))2e−αmn .

(19)

Then, by (18) and (19), we get

n∑
j=1,i 6=j

Cov(Ki, Kj) ≤ C
(
nmn(φ2(x, hK)) + n

(
h−1K Lip(K)

)2
e−αmn

)
by choosing

mn = log

(
(h−1K Lip(K))2

αφ2(x, hK)

)
we get

1

φ(x, hK)

n∑
j=1,i 6=j

Cov(Ki, Kj)→ 0, as n→∞. (20)
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Finally, by combining results (16), (17) and (20), we get:

V ar

(
n∑
i=1

∆i

)
= O

(
1

nφ(x, hK)

)
.

6.3 Proof of lemma 4.4

We have

P{|F̂ x
D(y)| ≤ 1/2} ≤ P{|F̂ x

D(y)− 1| > 1/2}
≤ P{|F̂ x

D(y)− EF̂ x
D(y)| > 1/2}

we deduce that ∑
n∈N

P
(
F̂ x
D(y) < 1/2

)
<∞.

7. Conclusion

In this paper, we established the asymptotic normality property of the kernel estimate
of the conditional distribution function in quasi-associated data framework. Our the-
oretical and practical studies confirm that our kernel estimator has good asymptotic
properties.
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