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Abstract 

SSA (Singular Spectrum Analysis) starts to become a popular method in decomposing time series into 

some separable and interpretable series. This study provides an error evaluation in the SSA-based model 

for trend and multiple seasonal time series forecasting. This error evaluation is obtained by means of a 

numerical study on the mean square error of the estimators and mean absolute percentage error of the 

forecast values. Four distinct types of data generating processes (DGP) with varying sample sizes are 

considered in this experimental study. The parameters are estimated from the component series of SSA. 

Each DGP is decomposed into trend, periodic and irregular components. All these components except the 

irregular one are fitted by appropriate deterministic function separately. Based on the numerical simulation 

results, the estimated parameters are closer to the true values as the sample size increases. As the 

illustrative example of the real data set implementation, we used the monthly atmospheric concentrations of 

CO2 from Moana Loa observatory for period January 1959 to June 1972. The proposed method produces 

better forecast values than the results of SSA-LRF (Linear Recurrent Formula) and TLSAR (Two Level 

Seasonal Autoregressive). The results encourage the improvement in the time series modeling on the more 

complex pattern. 

Keywords: SSA; Trend; Seasonal; Periodic; Deterministic.  

1. Introduction 

SSA (singular spectrum analysis) is a method in time series analysis. The origination of 

this method is always associated with the publication of Broomhead and King (1986). 

mailto:winita@mipa.uns.ac.id


Winita Sulandari, Subanar, Suhartono, Herni Utami, Muhammad Hisyam Lee 

Pak.j.stat.oper.res.  Vol.XIV  No.4 2018  pp945-960 946 

Though, in the same year,  Fraedrich (1986) also developed the SSA and applied the 

method to the weather and climate system. In the following years, Vautard and Ghil 

(1989) extended and refined some aspects of the SSA such as the influence of window 

length as the parameter of SSA and sample size on the results of SSA. Since then, a 

number of studies on SSA and its application have been carried out (see, for example, 

Hassani et al. (2009), Hassani et al. (2010), Hassani and Zhigljavsky (2009), Vautard and 

Ghil (1991), and Vautardet al. (1992)). 

 

SSA has become popular for analyzing and forecasting time series since it was 

introduced by Elsner (2002), Elsner and Tsonis (1996), and Golyandina et al. (2001). The 

capability of SSA in decomposing time series into some components opens up the 

possibility for a new time series modeling procedure. Some researchers such as Li et al. 

(2014), Vahabie et al. (2007) and Zhang et al. (2011) combined SSA with autoregressive 

(AR) or autoregressive integrated moving average (ARIMA) model.  

 

It has previously been observed that the components decomposed by SSA are not always 

stationary (Sulandari et al., 2017). Thus, a stationary time series model such as AR model 

is not appropriate to directly apply and even if its difference is stationary (ARIMA 

model). In this case, the polynomial regression model can be used to estimate the trend 

series (Kitagawa, 2010) while sinusoidal function can be chosen as the alternate approach 

for the seasonal series (De Livera et al., 2011; Soares and Medeiros, 2008). Moreover, 

the sinusoidal function is more general and flexible in its use (Wei, 2006).  

 

There are several studies on SSA application in trend and multiple seasonal time series 

forecasting, such as study in electric load demand by Afshar and Bigdeli (2011) and  

Briceño et al. (2013), atmospheric concentration of CO2 series by Golyandina and 

Korobeynikov (2014) and US tourist arrivals by Hassani et al. (2015). Those papers 

discussed recurrent and vector forecasting algorithm. However, none of them that 

discussed the combination of polynomial and sinusoidal deterministic function to model 

the component of SSA. As far we know, the way in which we specify the models in each 

component of SSA decomposition is not common in SSA as a tool of time series 

forecasting. Most of researchers who concern in SSA used and developed SSA with 

linear recurrent formula (SSA-LRF) as a forecasting method. While others such as 

Vahabie et al. (2007) and Zhang et al. (2011) modeled the component of SSA by using 

AR or ARIMA model. In our point of view, not all components of SSA decomposition 

can be modeled by AR or ARIMA.  

 

By combining the deterministic and stochastic model as in Soares and Medeiros (2008), 

our approach becomes more flexible. We apply basic SSA to decompose the series into 

some components and estimate each of the components except the irregular component 

by the function of time and this make the model easier to interpret.  This work presents 

the algorithm to estimate the parameters of the trend and multiple seasonal time series 

model. The parameters of the model are separately estimated from each component and 

then combined them. In order to show that the proposed algorithm is acceptable, a 

simulation study of mean square error (MSE) of the estimators and the mean absolute 

percentage error (MAPE) of the forecast value was done.  
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The remaining part of this paper is organized as follows. The detail of materials and 

methods are presented in Section 2. This section begins by a brief overview of the data 

generation used in the simulation, SSA decomposition, and the error evaluation of the 

model. It then continues with the steps of proposed algorithm in estimating parameters 

and evaluating the errors. The experimental results and the illustrative example to the real 

data are reported in Section 3. Finally, the conclusion is presented in Section 4. 

2. Materials and Methods 

This simulation study is limited to the data that are generated from deterministic function 

with two different error structures. To investigate whether the proposed algorithm is 

acceptable, the discussion would be considered in the four distinct data generating 

processes, those are trend linear with multiple seasonal time series (Model 1), trend 

quadratic with multiple seasonal time series (Model 2), trend linear with multiple 

seasonal time series in the presence of autocorrelated error (Model 3) and trend quadratic 

with multiple seasonal time series in the presence of autocorrelated error (Model 4). 

2.1 Data Generation 

This simulation study is set up from the model presented in (1), 

 

𝑋𝑡 = 𝜃0 + 𝜃1𝑡 + 𝜃2𝑡
2 +∑𝛼𝑗

2

𝑗=1

cos(𝜔𝑗𝑡) + 𝛽𝑗 sin(𝜔𝑗𝑡) + 𝑢𝑡 . 
(1) 

 

Two different error structures were considered for {𝑢𝑡}. The first type of errors is 

Gaussian white noise with mean 0 and variance 1, while the second type is the first order 

autoregressive process. The four distinct types of data generating processes (DGP) that 

will be studied further in this simulation study are presented in Table 1.  

Table 1: The four DGPs used in the simulation study 

Seasonal Trend Noise Model Parameters 

Double 

period 

Linear White 

Noise 
1 

𝜑 = [𝜃0  𝜃1  𝛼1  𝛽1  𝛼2  𝛽2  𝜔1  𝜔2  𝜎
2] 

   = [1204 −0.0122 −25  331  100 −40  0.8976 0.2096 1] 

AR(1) 3 
𝜑 = [𝜃0  𝜃1  𝛼1  𝛽1  𝛼2  𝛽2  𝜔1  𝜔2  𝜌1  𝜎

2] 
   = [1204 −0.0122  −25  331  100 −40  0.8976 0.2096 0.7  1] 

Quadratic White 

Noise 
2 

𝜑 = [𝜃0  𝜃1  𝜃2  𝛼1  𝛽1  𝛼2  𝛽2   𝜔1  𝜔2  𝜎
2] 

   = [1204 −0.0122  0.0001 −25  331  100 −40  0.8976 0.2096 1] 

AR(1) 4 
𝜑 = [𝜃0  𝜃1  𝜃2  𝛼1  𝛽1  𝛼2  𝛽2  𝜔1  𝜔2  𝜌1  𝜎

2] 
   = [1204 −0.0122  0.0001 −25 331 100 −40  0.8976 0.2096 0.7 1] 

 

These four DGP models are written as follows. 

1) Model 1: 𝑢𝑡 is independently identically distributed (i.i.d) N(0,1),  

𝑋𝑡 = 1204 − 0.0122𝑡 − 25 cos (
2𝜋

7
𝑡) + 331 sin (

2𝜋

7
𝑡)

+ 100 cos (
2𝜋

30
𝑡) − 40 sin (

2𝜋

30
𝑡) + 𝑢𝑡 . 

2) Model 2: 𝑢𝑡 is i.i.d N(0,1), 
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𝑋𝑡 = 1204 − 0.0122𝑡 + 0.0001𝑡
2 − 25 cos (

2𝜋

7
𝑡) + 331 sin (

2𝜋

7
𝑡)

+ 100 cos (
2𝜋

30
𝑡) − 40 sin (

2𝜋

30
𝑡) + 𝑢𝑡 . 

3) Model 3: 𝑢𝑡= 𝜌1𝑢𝑡−1 + 𝑒𝑡,  where 𝜌1=0.7 and 𝑒𝑡 is i.i.d N(0,1),  

𝑋𝑡 = 1204 − 0.0122𝑡 − 25 cos (
2𝜋

7
𝑡) + 331 sin (

2𝜋

7
𝑡)

+ 100 cos (
2𝜋

30
𝑡) − 40 sin (

2𝜋

30
𝑡) + 𝑢𝑡 . 

4) Model 4: 𝑢𝑡= 𝜌1𝑢𝑡−1 + 𝑒𝑡,  where 𝜌1=0.7 and 𝑒𝑡 is i.i.d N(0,1),  

𝑋𝑡 = 1204 − 0.0122𝑡 + 0.0001𝑡
2 − 25 cos (

2𝜋

7
𝑡) + 331 sin (

2𝜋

7
𝑡)

+ 100 cos (
2𝜋

30
𝑡) − 40 sin (

2𝜋

30
𝑡) + 𝑢𝑡 . 

 

The sample sizes considered in this simulation study are 𝑁= 300, 500, 700, 1000, and 

1500. The last 30 points of each data series are taken as the testing data, while the (𝑁 −
30) first points are the training data. The data generating process of each model is 

replicated 𝑅 = 100 times.  Thus, for each model, there are 100 independent time series. 

2.2 Singular Spectrum Analysis (SSA) 

SSA method consists of four steps. The first step is embedding process. The series 

{𝑋𝑡, 𝑡 = 1, 2, … , 𝑁} is mapped into a trajectory matrix, 𝐗, with the size 𝐿 × 𝐾. Notation  

𝐿, the number of the rows, denoted the parameter of SSA, named window length and 𝐾 =
𝑁 − 𝐿 + 1, is the number of the columns of 𝐗. The 𝑙th (for 𝑙 = 1, 2,…, 𝐿) row and 𝑘th (for 

𝑘 = 1, 2, …, 𝐾) column of 𝐗 is 𝑋𝑙+𝑘−1 that is the observation value at time  (𝑙 + 𝑘 − 1). 
In decomposing time series using SSA, the window lengthL is a parameter that must be 

specified by the researcher. Its choice may influence the decomposition process and the 

components of the series. Khan and Poskitt (2011) presented the theoretical analysis of 

signal-noise separation and reconstruction in SSA to provide the optimal window length 

guidance. Meanwhile Golyandina and Zhigljavsky (2013)identified that the window 

length should be large enough. 

 

In the second step, matrix 𝐗 is decomposed into some elementary matrices using singular 

value decomposition (SVD). The matrices obtained from step two are then analyzed to 

find out which matrices were separable. The separability between components is 

measured by weighted correlation defined in Elsner and Tsonis (1996), Golyandina et al. 

(2001), and Golyandina and Zhigljavsky (2013).  

 

The third step is grouping. The matrices are grouped into several separable matrices. 

Finally, in the last step, each group of matrices are transformed into a new series of 

length N by diagonal averaging algorithm (see Golyandina and Zhigljavsky (2013) for 

detail algorithm).     

 

In SSA forecasting, Golyandina et al. (2001) proposed SSA-LRF (linear recurrent 

formula). The theoretical results on the properties of forecast determined by SSA can also 

be found in  Khan and Poskitt (2014). 
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2.3 Error Evaluation 

The proposed algorithm is acceptable if the estimator established from this procedure is 

close to the real value (parameter) of the model. One of the most common measures for 

evaluating the expected distance between the estimator and the parameter is mean square 

error (MSE), and the instrument to evaluate the forecast value is mean absolute 

percentage error (MAPE). 

 

The MSE of the estimators for each 𝑅 data sets of size 𝑁 with 𝑑 parameters, can be 

calculated by 

 MSE𝑁(𝜑̂) = 𝐸‖𝜑̂ − 𝜑‖2 =
1

𝑅
∑ ∑ (𝜑̂𝑟𝑖 − 𝜑𝑖)

2𝑑
𝑖=1

𝑅
𝑟=1  (2) 

where 𝑑 is the number of parameters to be estimated, 𝜑̂𝑟𝑖 is the estimator of the i-th 

parameter obtained from the rth replication data set. Estimator 𝜑̂ is convengent in mean 

square to the parameter 𝜑 if ‖𝜑̂ − 𝜑‖→ 0 as 𝑁 →∞(Brockwell and Davis, 1991). In this 

study, some training sample sizes are considered to examine the effect of sample size to 

the MSE of estimators. The larger number of observations should provide much more 

information about the unknown parameters, and therefore, the MSE of the estimators 

would be smaller. 

 

MAPE is selected to measure the error of h-steps ahead forecast values. In this case, the 

testing data sets in the simulation study are the last 30 points of each independent series 

with varying sample sizes that are in fact different from each other. The benefit of  this 

scaled-independent MAPE is that it can be used to make comparisons between different 

data sets (Hyndman et al., 2008).  The MAPE is defined by 

 

MAPE𝑁ℎ =
1

𝑁ℎ
∑100% |

𝑋𝑡+ℎ − 𝑋̂𝑡+ℎ
𝑋𝑡+ℎ

|

𝑁ℎ

ℎ=1

, 
(3) 

where 𝑋𝑡+ℎ and 𝑋̂𝑡+ℎ are the observation value at time (𝑡 + ℎ) and the forecast value at 

time (𝑡 + ℎ), respectively. 𝑁ℎ is the length of the forecast future period.  

2.4 Experimental Design 

Each generated series is divided into two data sets. The first data set is the training data 

and the second one is the testing data set. The length of the training data set is notated by 

𝑁𝑡𝑟. SSA is used to decompose each training data set into several separable components. 

In this simulation study, 𝐿 is proportional to 𝑁𝑡𝑟. Its value is set to be the biggest integer 

less than or equal to 𝑁𝑡𝑟/2 as recommended by Golyandina (2010).  

 

Each separable component obtained from SSA decomposition is then modeled and 

combined using the proposed algorithm. The process stages of the proposed algorithm are 

visualized in Figure 1 and presented as follows. 

 

Step 1: Estimating the trend function. 

Let {𝑇𝑡, 𝑡 = 1, 2, . . , 𝑁𝑡𝑟} is the trend component obtained from SSA decomposition and 

𝑇𝑡 = ∑ 𝜃𝑖𝑡
𝑖−1𝑁𝑝𝑜𝑙

𝑖=0
+ 𝜀𝑇 is the polynomial model with the order 𝑁𝑝𝑜𝑙. Find the best fit 

function using the following procedure. 
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(a) Estimate the order of the polynomial model 𝑁𝑝𝑜𝑙, based on the behavior of 

{𝑇𝑡, 𝑡 = 1, 2, . . , 𝑁𝑡𝑟} series. 

(b) Estimate the parameter 𝜃𝑖  (𝑖 = 0,… ,𝑁𝑝𝑜𝑙) using ordinary least square (OLS) 

method.  

(c) Define 𝑇̂𝑡 = ∑ 𝜃𝑖𝑡
𝑖𝑁𝑝𝑜𝑙

𝑖=0
 and 𝜀𝑡 = 𝑇𝑡 − 𝑇̂𝑡.  

Step 2: Estimating sinusoidal function for the seasonal component. 

Let {𝑆𝑡
(𝑗)
, 𝑡 = 1,… ,𝑁𝑡𝑟} is the jth seasonal component series and the seasonal model is 

presented in equation (4) below, 

 𝑆𝑡
(𝑗)
= 𝛼𝑗 cos(𝜔𝑗𝑡) + 𝛽𝑗 sin(𝜔𝑗𝑡) + 𝜂𝑡

(𝑗)
 (4) 

for 𝑗 = 1,… ,𝑁𝑆. 𝑁𝑆is the number of seasonal components that are  not correlated one 

another. For every 𝑗, estimate 𝛼𝑗 , 𝛽𝑗 and 𝜔𝑗 using the following procedure. 

(a) Express 𝑆𝑡
(𝑗)

 in the Fourier representation, 𝑆𝑡
(𝑗)
= ∑ 𝛼𝑗𝑝 cos(𝜔𝑗𝑝𝑡) +

[𝑁𝑡𝑟/2]
𝑝=0

𝛽𝑗𝑝 sin(𝜔𝑗𝑝𝑡), where 𝜔𝑗𝑝 =
2𝜋𝑝

𝑁𝑡𝑟
, 𝑝 = 0, 1, … , [𝑁𝑡𝑟/2] are the Fourier frequencies 

and  

 

𝛼𝑗𝑝 =

{
 
 

 
 1

𝑁𝑡𝑟
∑𝑆𝑡

(𝑗)
cos (𝜔𝑗𝑝𝑡) ,

𝑁𝑡𝑟

𝑡=1

𝑝 = 0 and 𝑝 =
𝑁𝑡𝑟
2
 if 𝑁𝑡𝑟 is even,

2

𝑁𝑡𝑟
∑𝑆𝑡

(𝑗)
cos(𝜔𝑗𝑝𝑡)

𝑁𝑡𝑟

𝑡=1

, 𝑝 = 1,2, … , [
𝑁𝑡𝑟 − 1

2
] ,

 (5) 

 

𝛽𝑗𝑝 =
2

𝑁𝑡𝑟
∑𝑆𝑡

(𝑗)
sin(𝜔𝑗𝑝𝑡)

𝑁𝑡𝑟

𝑡=1

,         𝑝 = 1,2, … , [
𝑁𝑡𝑟 − 1

2
], 

(6) 

 are Fourier coefficients (Wei, 2006).  

(b) Estimate the initial 𝜔̂𝑗 using periodogram 𝐼(𝜔𝑗𝑝),  

 

𝐼 (𝜔𝑗𝑝) =

{
 
 

 
 
𝑁𝑡𝑟𝛼𝑗0

2 , 𝑝 = 0

𝑁𝑡𝑟
2
(𝛼𝑗𝑝

2 + 𝛽𝑗𝑝
2 ), 𝑝 = 1, 2, … , [

𝑁𝑡𝑟 − 1

2
] ,

𝑁𝑡𝑟𝛼𝑗𝑁𝑡𝑟
2

2 , 𝑝 =
𝑁𝑡𝑟
2
 if 𝑁𝑡𝑟  is even.

 (7) 

Initial 𝜔̂𝑗 can be determined between the value 𝜔𝑗𝑞−1 =
2𝜋(𝑞−1)

𝑁𝑡𝑟
 and 𝜔𝑗𝑞+1 =

2𝜋(𝑞+1)

𝑁𝑡𝑟
  where 𝜔𝑗𝑞  is the maximizer of 𝐼(𝜔𝑗𝑝). The procedure is presented in 

Figure 1 Step 2. 

(c) Using a given value of 𝜔̂𝑗 obtained from point (b), the parameters 𝛼𝑗 and 𝛽𝑗 are 

then can be estimated by OLS method. Intercept could be included if needed. 

Calculate 𝑆̂𝑡
(𝑗)
= 𝛼̂𝑗 cos(𝜔𝑗𝑘𝑡) + 𝛽̂𝑗 sin(𝜔𝑗𝑘𝑡) and  

 

RMSE(𝜂
(𝑗)
) = √∑(𝑆𝑡

(𝑗)
− 𝑆̂𝑡

(𝑗)
)2

𝑁𝑡𝑟

𝑡=1

/𝑁𝑡𝑟 . 
    (5) 
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(d) Define the most appropriate frequency 𝜔𝑗
∗ between 𝜔𝑗𝑞−1 and 𝜔𝑗𝑞+1 . Repeat (c) for 

a given frequency value between 𝜔𝑗𝑞−1and 𝜔𝑗𝑞+1. The most appropriate estimated 

function 𝑆̂𝑡
(𝑗)

 of the jth sinusoidal component is 𝑆̂𝑡
(𝑗)

 with the estimators  𝜔̂𝑗
∗, 𝛼̂𝑗

∗, 𝛽̂𝑗
∗ 

so that minimizes the RMSE(𝜂
(𝑗)
).  

Step 3: Investigating the superposed irregular component. 

The superposed irregular component is the sum of the irregular (I) component obtained 

from SSA decomposition and the residuals obtained from Step 1 and Step 2, that is 

 

𝑢𝑡 = 𝐼𝑡 + 𝜀𝑡 +∑𝜂𝑡
(𝑗)

𝑁𝑆

𝑗=1

 ,     𝑡 = 1, 2, … ,𝑁𝑡𝑟 . (6) 

(a) Find the superposed irregular component using equation (6), investigate whether 

it is white noise or not. If superposed irregular is white noise, the residuals of the 

model is 𝑒𝑡 = 𝑢𝑡, for 𝑡 = 1, 2, … ,𝑁𝑡𝑟 . If there were significant autocorrelation 

appeared in the superposed irregular, the process continues to (b). 
(b) Apply first order AR model, 𝑢𝑡 = 𝜌1𝑢𝑡−1 + 𝑒𝑡  to approximate the superposed 

irregular model. Estimate the parameter using OLS method and define the 

residuals of the model, 𝑒𝑡 = 𝑢𝑡 − 𝜌̂1𝑢𝑡−1.  

(c) Estimate the variance, 𝜎̂2 = ∑ 𝑒𝑡
2𝑁𝑡𝑟

𝑡=2 /(𝑁𝑡𝑟 − 2). 

Step 4: Evaluating the error. 

(a) Calculate MSEs of estimators using formula (2) and MAPEs for the testing data 

using formula (3). 

(b) Compare MSEs of estimators and MAPEs between the different sample sizes. 

 

 
Figure 1: The flowchart of the proposed algorithm used in the simulation study 
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3. Results and Discussion 

In this section, the proposed method is implemented to the four types of DGPs as a 

simulation study. The algorithm is then applied to CO2 time series CO2 from Mauna Loa 

to show how this algorithm works to the real data.  

3.1 Simulation Study 

The estimated parameters and the forecast values are then evaluated using MSE of 

estimators and MAPE for 1 to 30-steps ahead forecast values.  All models are estimated 

on a notebook Intel Core i7 with 8 Gb of Ram memory and running Matlab R2015a. The 

computational time for all 2000 SSA decomposition (4 types × 5 sample sizes × 100 

series) and estimating all 7000 models ((2 types × (3 + 4 components) × 5 sample sizes 

× 100 series) is negligible, even though its need much time.Figure 2 (left) presents one of 

w-correlation matrix result for the series generated from Model 1 with 𝑁 = 500 and 𝐿 = 

235.  The color in the Figure 2 (left) informs the degree of the correlation or separability 

between components. The stronger the correlation is shown by the darker the color and 

the weaker the correlation or the stronger the separability is shown by the lighter color. 

 

  
Figure 2: w-correlation matrix for Model 1 with 𝑁 = 500 (left) and components of Model 

1 with 𝑁 = 500 (right) 

 

In this case, the series can be decomposed into 4 component groups (see Figure 2 (right)), 

constructed from component 1, 2-3, 4-5 and 6-235. The first component is trend series, 

the next two group of components are the seasonal series, and the last group of 

component is the irregular series. The trend component of the series generated from 

Model 1 and Model 2 are estimated by linear model while those are generated from 

Model 3 and 4 are approximated by quadratic model. All seasonal components are 

estimated by sinusoidal function, and the residuals obtained from the polynomial and the 

sinusoidal model are then added to the irregular component, named superposed irregular. 

 

Perhaps, the estimate parameters are affected by the choice of window length in SSA. By 

putting window length proportionally to the sample size, i.e. the biggest integer less than 

a half of training data, its influence to the decomposition results will be reduced. 
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The periodogram is only used for estimate the initial value of frequency of the sinusoidal 

function since it provides a crude estimate of frequency parameter (Quinn, 1994).Quinn 

(1994) presented the technique to find the frequency from three Fourier components that 

are the Fourier component at the maximizer of the periodogram and at the two adjacent 

Fourier frequencies. The estimate frequency parameters 𝜔𝑗
∗ is obtained from the value 

𝜔𝑗𝑞−1 to 𝜔𝑗𝑞+1 for a certain k such that 𝜔𝑗𝑞  is the maximizer of the periodogram. This 

paper presents the algorithm of finding estimate frequency in different way from Quinn 

(1994).  In Quinn (1994), the estimate frequency is obtained by considering the real part 

ratio of exponential periodogram function at 𝜔𝑗𝑞+1 to 𝜔𝑗𝑞  and 𝜔𝑗𝑞−1to 𝜔𝑗𝑞 . While this 

study determines the estimate frequency iteratively between the value 𝜔𝑗𝑞−1 and 𝜔𝑗𝑞+1or 

perhaps in a narrower interval (𝜔𝑗𝑞−𝛿 , 𝜔𝑗𝑞+𝛿) for 0 < 𝛿 < 1 until the RMSE of equation 

(5) reaches the minimum value.Though the proposed algorithm probably needs more 

computation, the recent computational advances make it simpler and easier.  

 

The results of estimated parameters are summarized in Table 2 to Table 5. As shown in 

Table 2 and Table 3, the estimated parameters for the sample of size 𝑁 = 300 are far 

from the true values and consequently the MSEs of estimators become much larger than 

other sample sizes. As well as shown in Table 4 and Table 5. Generally, it is apparent 

from those tables that the average value of each estimated parameters tends to be closer 

to the true value as the sample size increases. It is also indicated by the value of MSEs of 

estimators that become smaller as the sample sizes increase, as can be seen from Table 2 

to Table 5. 

Table 2: The average of estimated parameters and MSEs of estimators for 100 

replicates of series generated from Model 1 

 

Parameters of Model 1 ( 𝜑 = [𝜃0  𝜃1  𝛼1  𝛽1  𝛼2  𝛽2  𝜔1  𝜔2  𝜎
2] ) 

 𝜃0 
1204 

𝜃1 
−0.0122 

𝛼1 
−25 

𝛽1 
331 

𝛼2 
100 

𝛽2 
−40 

𝜔1 
0.8976 

𝜔2 
0.2094 

𝜎2 
1 

N 

Estimated parameters of Model 1 

MSE𝑁(𝜑̂) 
𝜃̂0 𝜃̂1 𝛼̂1 𝛽̂1 𝛼̂2 𝛽̂2 𝜔̂1 𝜔̂2 𝜎̂2 

300 1202.60 −0.0023 −23.00 330.59 99.15 −37.10 0.8976 0.2096 4.67 29.2396 

500 1202.63 −0.0108 −24.47 330.97 100.12 −38.14 0.8976 0.2095 3.07 10.0029 
700 1203.66 −0.0110 −24.39 331.35 99.06 −40.04 0.8976 0.2094 1.90   2.4194 
1000 1204.47 −0.0126 −24.68 330.90 99.43 −39.89 0.8976 0.2094 1.68  1.3954 
1500 1203.98 −0.0122 −25.01 330.99 99.92 −39.89 0.8976 0.2094 1.01   0.0459 
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Table 3: The average of estimated parameters and MSEs of estimators for 100 

replicates of series generated from Model 2 

 

Table 4: The average of estimated parameters and MSEs of estimators for 100 

replicates of series generated from Model 3 

 
Parameter of Model 3 ( 𝜑 = [𝜃0  𝜃1  𝛼1  𝛽1  𝛼2  𝛽2  𝜔1  𝜔2  𝜌1  𝜎

2] ) 
 𝜃0 

1204 
𝜃1 

−0.0122 
𝛼1 
−25 

𝛽1 
331 

𝛼2 
100 

𝛽2 
−40 

𝜔1 
0.8976 

𝜔2 
0.2094 

𝜌1 
0.7 

𝜎2 
1 

𝑁 
Estimated parameters of Model 3 

MSE𝑁(𝜑̂) 
𝜃0 𝜃1 𝛼̂1 𝛽̂1 𝛼̂2 𝛽̂2 𝜔̂1 𝜔̂2 𝜌̂1 𝜎̂2 

300 1204.94 −0.0023 −24.39 330.25   99.12 −37.13 0.8976 0.2096 0.92 3.26 17.1576 
500 1204.20 −0.0109 −24.45 330.95 100.15 −38.10 0.8976 0.2095 0.83 1.25   6.3667 
700 1204.11 −0.0111 −24.39 331.34   99.11 −40.01 0.8976 0.2094 0.76 1.17   1.7690 
1000 1204.45 −0.0118 −24.61 330.91   99.48 −39.86 0.8976 0.2094 0.76 1.07   1.0482 
1500 1203.95 −0.0121 −25.01 331.00   99.96 −39.85 0.8976 0.2094 0.70 1.04   0.1732 

Table 5: The average of estimated parameters and MSEs of estimators for 100 

replicates of series generated from Model 4 

 
Parameters of Model 4 ( 𝜑 = [𝜃0  𝜃1  𝜃2  𝛼1  𝛽1  𝛼2  𝛽2  𝜔1  𝜔2  𝜌1  𝜎

2] ) 
 𝜃0 

1204 

𝜃1 

−0.0122 

𝜃2 

0.0001 

𝛼1 

−25 

𝛽1 

331 

𝛼2 

100 

𝛽2 

−40 

𝜔1 

0.8976 

𝜔2 

0.2094 

𝜌1 

0.7 
𝜎2 

1 

𝑁 
Estimated parameters of Model 4 

  MSE𝑁(𝜑̂) 
𝜃0 𝜃1 𝜃2 𝛼̂1 𝛽̂1 𝛼̂2 𝛽̂2 𝜔̂1 𝜔̂2 𝜌̂1 𝜎̂2 

300 1201.97     0.0609 0.0001 −24.39 330.25 99.17 −37.10 0.8976 0.2096 0.93 1.63 15.5710 

500 1202.97 −0.0000 0.0001 −24.44 330.95 99.94 −39.71 0.8976 0.2095 0.75 1.26    1.9405 

700 1203.84 −0.0098 0.0001 −24.39 331.34 99.10 −40.03 0.8976 0.2094 0.77 1.18    1.8214 

1000 1204.50 −0.0119 0.0001 −24.61 330.91 99.47 −39.89 0.8976 0.2094 0.76 1.06    1.0985 

1500 1203.82 −0.0115 0.0001 −25.01 331.00 99.97 −39.84 0.8976 0.2094 0.70 1.00    0.2060 

 

Figure 3 provides the MSEs of estimators obtained from the simulation study of Model 1 

to Model 4 for the sample size of  𝑁 = 300, 500, 700, 1000, and 1500 with 100 

replications. In Figure 3 there is a clear trend of decreasing MSEs of estimators as the 

sample size increases. This means that the proposed algorithm yields consistent 

estimators.  

 
Parameters of Model 2 ( 𝜑 = [𝜃0  𝜃1  𝜃2  𝛼1  𝛽1  𝛼2  𝛽2  𝜔1  𝜔2  𝜎

2] ) 
 𝜃0 

1204 
𝜃1 

−0.0122 
𝜃2 

0.0001 
𝛼1 
−25 

𝛽1 
331 

𝛼2 
100 

𝛽2 
−40 

𝜔1 
0.8976 

𝜔2 
0.2094 

𝜎2 
1 

𝑁 

Estimated parameters of Model 2 

MSE𝑁(𝜑̂) 
𝜃0 𝜃1 𝜃2 𝛼̂1 𝛽̂1 𝛼̂2 𝛽̂2 𝜔̂1 𝜔̂2 𝜎̂2 

300 1200.39 0.0466 0.0000 −24.83 330.46 99.15 −37.10 0.8976 0.2096 4.97 38.3990 
500 1202.10 −0.0044 0.0001 −24.47 330.97 100.11 −38.11 0.8976 0.2095 3.18  12.2854 
700 1203.98 −0.0103 0.0001 −24.39 331.35 99.05 −40.06 0.8976 0.2094 1.89    2.4115 
1000 1204.52 −0.0122 0.0001 −24.69 330.90 99.42 −39.92 0.8976 0.2094 1.68   1.4491 
1500 1203.73 −0.0112 0.0001 −25.01 330.99 99.92 −39.88 0.8976 0.2094 1.02   0.1220 
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Figure 3: MSE of estimators for Model 1, 2, 3 and 4 with the sample size 𝑁 = 300, 500, 

700, 1000, and 1500. 

 

Figure 4 shows the behavior of MAPEs for 1 to 30-steps ahead forecast values for Model 

1 to Model 4.  As shown in Figure 4, the models constructed from the largest sample size 

(in this case, 𝑁 = 1500) produce the smallest MAPEs and otherwise the models 

constructed from the smallest sample size (𝑁 = 300) yield the larger and unstable 

MAPEs. It means that the model performance is getting better when the training sample 

size is increasing. 

 
 

  

 
Figure 4: MAPEs h-steps ahead for Model 1, 2, 3 and 4 with the sample size 𝑁 = 300, 

500, 700, 1000, and 1500. 

The discussion here is limited to the linear and quadratic trend and double stationary 

periodic function. After all, the empirical findings in this study provide a new 
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understanding of SSA based model procedure, especially for the time series with trend 

and multiple seasonal patterns. More research is required to determine the appropriate 

optimization algorithm for estimating the frequency of sinusoidal model. Further 

investigation and experimentation into more complex pattern, i.e. amplitude-modulated 

periodic series, is also needed to establish the more general procedure in modeling time 

series with trend and multiple seasonal patterns.  

3.2 Application to CO2 Time Series 

As an illustrative example of implementation of the proposed method on the real data, we 

used the monthly atmospheric concentrations of CO2 from Mauna Loa Observatory, 

Hawaii(Keeling and Whorf, 1997). Golyandina and Korobeynikov(2014) showed that the 

data have a trend and two seasonal components. The period of data used in this study is 

January 1959 to June 1972. The first 150 observations are used as the training data set 

and the next 12 observations are used as the testing data set. 

 

The components obtained by SSA decomposition for the training data with L = 75 are 

depicted in Figure 5 and the most appropriate function for the reconstructed 1, 2 and 3 are 

presented in Table 6. The reconstructed 1 shows the trend series while the reconstructed 2 

and 3 are the seasonal components. 

 
Figure 5: The original and components of CO2 series for period Jan 1959 – June 1971   

(L = 75) 

Table 6: Model for the trend and seasonal components of CO2   

Reconstructed  Model 

1 Tt = 315.4992 + 0.0547 t  + 9.3161e-05 t 2 + t 

2 St
(1) = − 0.0186 − 1.7543 cos (0.5244 t) + 1.8693 sin (05244 t) +t

(1) 

3 St
(2) = 0.0043 + 0.6902 cos (1.0430 t) − 0.1875 sin (1.0430 t) +t

(2) 

 

The superposed residuals (𝑢𝑡, t = 1, 2, …, 150) can then be calculated from t, t
(1), t

(2), 

and the irregular (I) component (reconstructed 4). Since the superposed residuals are not 

stationary in mean, the series have to be made stationary by differencing so that the 
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autoregressive model can be implemented. In this case, the differenced first-order 

autoregressive model  

𝑢̇𝑡 = −0.3134 𝑢̇𝑡−1 + 𝑒𝑡, 
where 𝑢̇𝑡 = 𝑢𝑡 − 𝑢𝑡−1 is the best fit model to the superposed residuals. Further, the 

model CO2 can be represented as 

Xt = 315.4849 + 0.0547t  + 9.3161e-05 t 2− 1.7543 cos (0.5244 t)  

+ 1.8693 sin (0.5244 t) + 0.6902 cos (1.0430 t) − 0.1875 sin (1.0430 t)  

     + 0.6866 𝑢𝑡−1+0.3134 𝑢𝑡−2+ 𝑒𝑡. 
 

This model is then compared with SSA-LRF proposed by Golyandina et al. (2001) and 

two level seasonal autoregressive (TLSAR)  model proposed by (Soares and Medeiros, 

2008). The TLSAR model is constructed based on a two-step decomposition. The linear 

trend and harmonic of seasonal component based on Fourier series are involved in the 

first step and linear autoregressive model is involved in the second step.  

Table 7: RMSE of the SSA-LRF, TLSAR, and the proposed method for the CO2 

series 

Method 
RMSE 

Training Testing 

SSA-LRF 0.6629 0.7789 

TLSAR  0.2904 2.7534 

The proposed method 0.3033 0.4391 

 

Based on Table 7, TLSAR yields the smallest RMSE for the training data compared to 

others, but its value is very close to the result of the proposed method nevertheless. For 

the testing data, the proposed method produces the smallest RMSE and vice versa, the 

RMSE of TLSAR is the largest and even much larger than others. 

 
Figure 6: MAPE h-steps ahead for period July 1971 – June 1972 

However, the MAPEs for h-steps ahead for period July 1971 to June 1972 obtained from 

the proposed method yields lowest values than those obtained from SSA-LRF and 

TLSAR (see Figure 6).  For this case, the proposed method is slightly more efficient and 

gives better forecast values than the results of the SSA-LRF and TLSAR.  
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4. Conclusions 

In this paper, the simulation study of error evaluation in trend and multiple seasonal time 

series forecasting based on SSA is presented. The error of estimators is measured by 

MSE of estimators while the error of forecast values is measured by MAPE. Based on the 

experimental result, MSEs of estimators tend to be smaller with the increasing of the 

sample sizes. It could be said that the experiment yields consistent estimators. And along 

with that, the forecasting values of the models constructed by the larger sample sizes 

produce the smaller MAPEs. 

Based on the implementation of the proposed method on CO2 series, it can be seen that 

the proposed method is worthy to be considered in trend and multiple seasonal time series 

modeling. This conclusion is also reinforced by the comparative results of RMSE and 

MAPE h-steps ahead between the SSA-LRF, TLSAR, and the proposed method.  
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