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Abstract  

 

This paper develops Bayesian estimation and prediction, for a mixture of Weibull and Lomax distributions, in the 

context of the new life test plan called progressive first failure censored samples. Maximum likelihood estimation and 

Bayes estimation, under informative and non-informative priors, are obtained using Markov Chain Monte Carlo 

methods, based on the symmetric square error Loss function and the asymmetric linear  exponential (LINEX) and 

general entropy loss functions. The maximum likelihood estimates and the different Bayes estimates are compared via 

a Monte Carlo simulation study. Finally, Bayesian prediction intervals for future observations are obtained using a 

numerical example. 

 

Key Words: Mixture model; Progressive First Failure Censored Scheme; Loss Function; Maximum Likelihood 

Estimation; Bayesian Estimation and Prediction; Markov Chain Monte Carlo. 

 

1. Introduction  

Mixtures models have received great attention from analysts in the recent years due to their important role in life 

testing and reliability. In many applications, mixture models are used to analyze random duration in possibly 

heterogeneous populations, statistical analysis and machine learning such as modeling, classification, and survival 

analysis. Attention has been paid by some authors to the finite mixtures to discuss lifetime distributions, [see Everitt 

and Hand (1981),Titterington et al. (1985), Mclachlan and Basford (1988), Lindsay (1995), Mclachlan and Peel 

(2000)]. Also, mixture distributions have been considered extensively  by several researchers using both classical 

and Bayesian techniques, [for example Shawky and Bakoban (2009),Abu-Zinadah (2010), Erisoglu et al. (2011), 

Feroze and Aslam (2014), Daniyal and Rajab (2015), Elshahat and Mahmoud (2016), Mahmoud et al. (2017)]. 

 

The Weibull distribution has been widely used in modeling of lifetime event data; this is due to the variety of shapes 

of the probability density function (pdf) based on its parameters. The Weibull distribution has been shown to be 

useful for modeling and analyzing lifetime data in the applied engineering sciences [see Murthy et al. (2003)]. The 

Lomax distribution, sometimes called Pareto of the second kind, has a considerable importance in the field of life 

testing because of its uses to fit business failure data [see Lomax (1954)].  

A random variable X is said to have a mixture of two component Weibull and Lomax distribution if its probability 

density function (pdf) is given by 
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𝑓(𝑥) = ∑ 𝑝𝑗𝑓𝑗(𝑥)2
𝑗=1 ,                    𝑗 = 1,2.                                                                                                                    (1) 

𝑓1(𝑥) = 𝛼1𝜃1𝑥𝜃1−1𝑒−𝛼1𝑥𝜃1           𝑓2(𝑥) = 𝛼2𝜃2(1 + 𝜃2𝑥)−(𝛼2+1)      

where    𝑥 > 0, (𝛼𝑗 > 0, 𝜃𝑗 > 0), 𝑗 = 1, 2. The mixing proportions 𝑝𝑗  are such that 0 ≤ 𝑝𝑗 ≤ 1 , ∑ 𝑝𝑗 = 1.2
𝑗=1  

The corresponding cumulative distribution function (cdf) and reliability function, respectively are given by 

𝐹(𝑥) = ∑ 𝑝𝑗𝐹𝑗(𝑥)2
𝑗=1 ,                   𝑗 = 1,2.                                                                                                                                    (2) 

𝐹1(𝑥) = 1 − 𝑒−𝛼1𝑥𝜃1                       𝐹2(𝑥) = 1 − (1 + 𝜃2𝑥)−𝛼2                            

and    𝑅(𝑥) = ∑ 𝑝𝑗𝑅𝑗(𝑥)2
𝑗=1 ,                    𝑗 = 1,2.                                                                                                          (3)                  

𝑅1(𝑥) = 𝑒−𝛼1𝑥𝜃1                            𝑅2(𝑥) = (1 + 𝜃2𝑥)−𝛼2  

 

Common censoring schemes of type I and type II censoring do not allow units to be removed from the test at any 

other point than the final termination point. Therefore, the focus in the last few years has been on progressive 

censoring due to its flexibility that allows the experimenter to remove active units during the experiment.  

Progressive censoring has been studied by many authors. Some of the early work on progressive censoring are 

Cohen (1963), Mann (1971), Viveros and Balakrishnan(1994), Balasooriya et al. (2000), Balakrishnan and 

Aggarwala (2000) and Balakrishnan (2007) have presented an elaborate  overview of various developments in 

progressive censoring data. 

  

The experimental time is usually an important concern for the life test designers. Although conventional censoring 

scheme can shorten the duration of a life test, the experimental time is still too long that cannot be waited for when 

the units are highly reliable. Johnson (1964) introduced the first failure censoring by grouping the test units into 

several sets. The experimenter runs all test units simultaneously until the first failure in one of the sets. Some 

references that discussed this type of first failure are Balasooriya (1995), Wu et al. (2003) and Wu and Yu (2005). 

 

Wu and Kus (2009) described new life test scheme, progressively first failure censoring scheme by combining the 

concept of first failure censoring with the progressive censoring. Many authors have discussed inference for 

different distributions based on this scheme introduced by Huang and Wu (2011), Soliman et al. (2012), Abou-

Elheggag (2013), Javadkhani et al. (2014), kim and Han (2015), Dube et al. (2016) and Rashad et al. (2017). 

 

The prediction problems of the future samples based on censored data is an important topic in statistics. The 

prediction techniques are used in medicine, engineering, business and other areas as well. Several authors studied 

Bayesian prediction for future observation; [see Al-Hussaini et al. (2001), Jaheen (2003)]. 

  

The objective of this work is to apply the Bayesian procedure to estimate the parameters and obtain two sample 

prediction bounds for future observations from the proposed model, based on progressive first failure censoring 

scheme. The rest of this paper is organized as follows: In Section 2, the progressive first-failure censoring scheme is 

described. In Section 3, we obtain maximum likelihood estimators of the parameters. Different loss functions are 

presented in Section 4. The Bayesian estimation is discussed in Section 5, using Markov Chain Monte Carlo 

technique. In Section 6, Monte Carlo simulation study is conducted to compare the performance of different 

estimation methods. Bayesian prediction with numerical data are presented in Section 7. Finally, we conclude the 

paper in Section 8. 

2. A Progressive  First-Failure Censoring Scheme 

In a life- testing experiment, suppose sample of 𝑛 independent groups with 𝑘 items in each group are put in a life 

test. After units have failed, each item can be attributed to the appropriate subpopulation. Thus if the 𝑚 are failed 
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during the interval (0, 𝑥(𝑚)): 𝑟1 from the first subpopulation and 𝑟2 from the second subpopulation. When the first 

failure is observed, 𝑅1 groups and the group with observed failure are randomly removed. At the second observed 

failure, 𝑅2 groups and the group with observed failure are randomly removed. This experiment terminates at the 

time when the 𝑚𝑡ℎ failure is observed and the remaining 𝑅𝑚 groups and the group with observed failure are all 

removed. Here 𝑥1,𝑚,𝑛,𝑘
𝑅 < 𝑥2,𝑚,𝑛,𝑘

𝑅 < ⋯ < 𝑥𝑚,𝑚,𝑛,𝑘
𝑅 ,  are known as progressive first failure censored orders statistics 

with the progressive censoring scheme 𝑅 = (𝑅1, 𝑅2, … , 𝑅𝑚); (𝑚 ≤ 𝑛), Let 𝑥𝑖𝑗  denote the failure of the 𝑗𝑡ℎ unit that 

belongs to the 𝑖𝑡ℎ subpopulation and 𝑥𝑖𝑗 ≤ 𝑥(𝑚) ; 𝑗 = 1,2, … , 𝑚𝑖; 𝑚 = 𝑟1 + 𝑟2. where  𝑥(𝑚) denotes the failure time 

of the 𝑚𝑡ℎ unit. For a two component mixture model, the likelihood function, is defined as 

𝐿(𝑥1, 𝑥2, … , 𝑥𝑚) = 𝐶𝑘𝑚 [∏ 𝑝1𝑓1(𝑥1𝑗) ∏ 𝑝2𝑓2(𝑥2𝑗)

𝑟2

𝑗=1

𝑟1

𝑗=1

] ∏[1 − 𝐹(𝑥𝑗)]
(𝑘(𝑅𝑗+1)−1)

𝑚

𝑗=1

      

0 < 𝑥1,𝑚,𝑛,𝑘
𝑅 < 𝑥2,𝑚,𝑛,𝑘

𝑅 < ⋯ < 𝑥𝑚,𝑚,𝑛,𝑘
𝑅 < ∞                                                                                           (4) 

where 𝐶 = 𝑛(𝑛 − 𝑅1 − 1)(𝑛 − 𝑅1 − 𝑅2 − 2) … (𝑛 − ∑ 𝑅𝑗 − 𝑚 + 1𝑚−1
𝑗=1 ),      𝑝1 = 𝑝,    𝑝2 = 1 − 𝑝. Note that if 𝑘 =

1 then, sampling scheme reduces to the progressively type II censoring, a first failure censored scheme when 𝑅 =
(0, … , 0), a usual type II censored scheme when 𝑘 = 1 and 𝑅 = (0, … ,0), and complete sample case if 𝑘 = 1 and 

𝑅 = (0, … ,0), with 𝑛 = 𝑚. It should be noted that 𝑥1,𝑚,𝑛,𝑘
𝑅 , 𝑥2,𝑚,𝑛,𝑘

𝑅 , … , 𝑥𝑚,𝑚,𝑛,𝑘
𝑅  can be viewed as a progressive type 

II censored sample from a population with distribution function  1 − (1 − 𝐹(𝑥))
𝑘
. For this reason, results extended 

to progressive first- failure censored scheme easily. The progressive first-failure censored plan has advantages in 

terms of reducing the test time, in which more items are used but only 𝑚 of 𝑛 × 𝑘 items are failures. 

3. Maximum Likelihood Estimation (MLE) 

Let 𝑥𝑖,𝑚,𝑛,𝑘
𝑅 , 𝑖 = 1,2, … , 𝑚, with 𝑥1,𝑚,𝑛,𝑘

𝑅 ≤ 𝑥2,𝑚,𝑛,𝑘
𝑅 , … ≤ 𝑥𝑚,𝑚,𝑛,𝑘

𝑅  denote the progressively first failure censored from 

the mixture of Weibull and Lomax distributions, with censored scheme  𝑅 = (𝑅1, 𝑅2, … , 𝑅𝑚). Substituting (1) and 

(2) into (4), the likelihood function based on a progressive first failure censored sample is given by 

 

𝐿(𝑝, 𝛼1, 𝛼2, 𝜃1, 𝜃2|𝑥)   

= 𝐶𝑘𝑚 [∏ 𝑝1𝛼1𝜃1𝑥1𝑗
𝜃1−1

𝑒
−𝛼1𝑥1𝑗

𝜃1

∏ 𝑝2𝛼2𝜃2(1 + 𝜃2𝑥2𝑗)
−(𝛼2+1)

𝑟2

𝑗=1

𝑟1

𝑗=1

]

× ∏[𝑝1𝑅1(𝑥𝑗) + 𝑝2𝑅2(𝑥𝑗)]
(𝑘(𝑅𝑗+1)−1)

𝑚

𝑗=1

                                                                                                   (5) 

Assuming that the parameters 𝜃1 and 𝜃2 are known, the likelihood function (5) reduces to  

𝐿(𝑝, 𝛼1, 𝛼2|𝑥) ∝ 𝐶𝑘𝑚 ∏(𝑝𝑖𝛼𝑖)
𝑟𝑖 ∏ 𝑥1𝑗

𝜃1−1

𝑟1

𝑗=1

× 𝑒
−𝛼1 ∑ 𝑥1𝑗

𝜃1𝑟1
𝑗=1 ∏(1 + 𝜃2𝑥2𝑗)

−(𝛼2+1)

𝑟2

𝑗=1

2

𝑖=1

× ∏[𝑝1𝑅1(𝑥𝑗) + 𝑝2𝑅2(𝑥𝑗)]
(𝑘(𝑅𝑗+1)−1)

                                                                                                   (6) 

𝑚

𝑗=1

 

Thus, the log-likelihood function of the parameters 𝛼1, 𝛼2 and 𝑝 are given by 
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ln 𝐿(𝑝, 𝛼1, 𝛼2|𝑥) ∝ ln 𝐶 + 𝑚 ln 𝑘 + ∑{𝑟𝑖 ln 𝑝𝑖 + 𝑟𝑖 ln 𝛼𝑖}

2

𝑖=1

− 𝛼1 ∑ 𝑥1𝑗
𝜃1

𝑟1

𝑗=1

− (𝛼2 + 1) ∑ ln(1 + 𝜃2𝑥2𝑗)

𝑟2

𝑗=1

+ ∑(𝑘(𝑅𝑗 + 1) − 1)

𝑚

𝑗=1

ln [𝑝1𝑒
−𝛼1𝑥𝑗

𝜃1

+ 𝑝2(1 + 𝜃2𝑥𝑗)
−𝛼2

]                                                                   (7) 

Partially differentiating equation (7) with respect to 𝛼1, 𝛼2 and 𝑝 maximum likelihood estimates (MLEs) can 

obtained by solving the equations after equating it to zero 

𝜕 ln 𝐿(𝑝, 𝛼1, 𝛼2)

𝜕𝛼1

=
𝑟1

𝛼1

− ∑ 𝑥1𝑗
𝜃1

𝑟1

𝑗=1

− ∑
(𝑘(𝑅𝑗 + 1) − 1)𝑝1𝑥𝑗

𝜃1𝑒
−𝛼1𝑥𝑗

𝜃1

𝑝1𝑒
−𝛼1𝑥

𝑗
𝜃1

+ 𝑝2(1 + 𝜃2𝑥𝑗)
−𝛼2

𝑚

𝑗=1

 

𝜕 ln 𝐿(𝑝, 𝛼1, 𝛼2)

𝜕𝛼2

=
𝑟2

𝛼2

− ∑ ln(1 + 𝜃2𝑥2𝑗) − ∑
(𝑘(𝑅𝑗 + 1) − 1)𝑝2(1 + 𝜃2𝑥𝑗)

−𝛼2
ln(1 + 𝜃2𝑥𝑗)

𝑝1𝑒
−𝛼1𝑥

𝑗
𝜃1

+ 𝑝2(1 + 𝜃2𝑥𝑗)
−𝛼2

𝑚

𝑗=1

𝑟2

𝑗=1

 

𝜕 ln 𝐿(𝑝, 𝛼1, 𝛼2)

𝜕𝑝
=

𝑟1

𝑝1

−
𝑟2

𝑝2

+ ∑
(𝑘(𝑅𝑗 + 1) − 1) {𝑒

−𝛼1𝑥𝑗
𝜃1

− (1 + 𝜃2𝑥𝑗)
−𝛼2

}

𝑝1𝑒
−𝛼1𝑥

𝑗
𝜃1

+ 𝑝2(1 + 𝜃2𝑥𝑗)
−𝛼2

𝑚

𝑗=1

 

4. Loss Function 

In decision theory, the loss criterion is specified in order to obtain the best estimator. Three loss functions are 

proposed, symmetric (square error) loss function and asymmetric (LINEX and general entropy) loss functions, as 

follows: 

• Squared error loss function: A simple, and very common loss function is defined by 

𝐿1(�̂�, 𝜃) = 𝑐(�̂� − 𝜃)
2
; c is a constant 

which is symmetrical in nature and gives equal weight to overestimation as well as under estimation. However, in 

real applications, estimation of reliability and failure rate function, an overestimate is more serious than the 

underestimates. The use of asymmetric loss function might be inappropriate as has been recognized by Basu and 

Ebrahimi (1991). 

• Linear exponential loss function (LINEX): One of the most commonly used asymmetric loss functions, introduced 

by Varian (1975) under the assumption that the minimal loss occurs at �̂� = 𝜃, it can be expressed as 

𝐿2(∆) ∝ 𝑒−𝑞∆ − 𝑞∆ − 1,      ∆= θ̂ − 𝜃,      𝑞 ≠ 0 

where 𝑞 determines the shape of the loss function. If 𝑞 > 0 means overestimation and underestimation if 𝑞 < 0, 

but in a situation where 𝑞 ≅ 0, the LINEX loss is almost symmetric and approaches square error loss function. 

Under the above loss function, the Bayes estimator �̂�𝐿𝐼𝑁𝐸𝑋 of  𝜃 can be obtained as 

�̂�𝐿𝐼𝑁𝐸𝑋 = −
1

𝑞
ln[𝐸(𝑒−𝑞𝜃|𝑥)] 

provided that the expected value with respect to the posterior function of 𝜃, 𝐸(𝑒−𝑞𝜃|𝑥) exists and is finite. 
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• General entropy loss function: Another commonly asymmetric loss function is the modified LINEX loss function 

called a general entropy loss function proposed by Calabria and Pulcini (1996) 

𝐿3(𝜃,̂ 𝜃) ∝ (
�̂�

𝜃
)

ℎ

− ℎ ln (
�̂�

𝜃
) − 1,        ℎ ≠ 0 

which has a minimum at �̂� = 𝜃. Also, the loss function used by several authors, in the original form having the 

shape parameter ℎ = 1, for ℎ > 0, a positive error has a more effect than a negative error. In this case, the Bayes 

estimate of 𝜃 is given by  

�̂�𝐺𝐸 = [𝐸(𝜃−ℎ|𝑥)]
−

1
ℎ 

provided that the expected value with respect to the posterior function of 𝜃, 𝐸(𝜃−ℎ|𝑥)  exists and is finite. 

5. Bayesian Estimation 

In this section, we derive Bayes estimators of the parameters 𝛼1, 𝛼2 and 𝑝 of the considered model based first failure 

progressively censored sample. Assuming the following independent prior distributions for the parameters  

𝛼1~𝐺𝑎𝑚𝑚𝑎(𝑎1, 𝑏1), 𝛼2~𝐺𝑎𝑚𝑚𝑎(𝑎2, 𝑏2), and 𝑝~𝐵𝑒𝑡𝑎(𝑐, 𝑑) for the mixing parameter 𝑝. The joint prior 

distribution of 𝛼1, 𝛼2 and 𝑝 is  

𝜋(𝛼1, 𝛼2, 𝑝) = 𝜋1(𝛼1)𝜋2(𝛼2)𝜋3(𝑝) 

where 

𝜋(𝛼𝑖) ∝ 𝛼𝑖
𝑎𝑖−1

𝑒−𝑏𝑖𝛼𝑖;   𝛼𝑖 > 0, 𝑎𝑖 , 𝑏𝑖 > 0;    𝑖 = 1,2

𝑎𝑛𝑑       𝜋3(𝑝) ∝ 𝑝1
𝑐−1𝑝2

𝑑−1
}                                                                                                            (8) 

The joint density function of  𝛼1, 𝛼2, 𝑝 and the sample 𝑥 can be written as follows 

𝑃(𝑝, 𝛼1, 𝛼2, 𝑥) ∝ (∏ 𝑝𝑖
𝑟𝑖𝛼𝑖

𝑟𝑖 × 𝑒
−𝛼1 ∑ 𝑥1𝑗

𝜃1𝑟1
𝑗=1 ∏(1 + 𝜃2𝑥2𝑗)

−(𝛼2+1)

𝑟2

𝑗=1

2

𝑖=1

∏[𝑝1𝑅1(𝑥𝑗) + 𝑝2𝑅2(𝑥𝑗)]
(𝑘(𝑅𝑗+1)−1)

𝑚

𝑗=1

)

× (𝑝1
𝑐−1𝑝2

𝑑−1 ∏ 𝛼𝑖
𝑎𝑖−1

𝑒−𝑏𝑖𝛼𝑖

2

𝑖=1

)   

𝑃(𝑝, 𝛼1, 𝛼2, 𝑥) ∝ 𝑝1
𝑟1+𝑐−1

𝑝2
𝑟2+𝑑−1

∏ 𝛼𝑖
𝑟𝑖+𝑎𝑖−1

𝑒−𝛼𝑖𝜑𝑖  ∏[𝑝1𝑅1(𝑥𝑗) + 𝑝2𝑅2(𝑥𝑗)]
(𝑘(𝑅𝑗+1)−1)

𝑚

𝑗=1

2

𝑖=1

                                     (9) 

where             𝜑1 = 𝑏1 + ∑ 𝑥1𝑗
𝜃1𝑟1

𝑗=1                            𝑎𝑛𝑑                           𝜑2 = 𝑏2 + ∑ ln(1 + 𝜃2𝑥2𝑗)
𝑟2
𝑗=1  

 

Based on Equation (9) , the joint posterior density function of 𝛼1, 𝛼2 and 𝑝, is given by 

 

𝑃(𝑝, 𝛼1, 𝛼2|𝑥) =
𝑃(𝑝, 𝛼1, 𝛼2, 𝑥)

∫ ∫ ∫ 𝑃(𝑝, 𝛼1, 𝛼2, 𝑥)𝑑𝛼1𝑑𝛼2𝑑𝑝
∞

0

∞

0

1

𝑜

                                                                                                         (10) 



Pak.j.stat.oper.res.  Vol.16  No. 2 2020 pp357-372  DOI: http://dx.doi.org/10.18187/pjsor.v16i2.2442 
 

 

 

 
Bayesian  Estimation  and  Prediction Based  on  Progressively  First Failure Censored  Scheme from a Mixture of  Weibull and  Lomax  Distributions 

 

362 

 

Thus, under the squared error, LINEX and general entropy loss functions, the Bayes estimators of any function of 
(𝑝, 𝛼1, 𝛼2), say 𝜙(𝑝, 𝛼1, 𝛼2), is 

�̂�𝑆𝐸(𝑝, 𝛼1, 𝛼2) =
∫ ∫ ∫ 𝜙(𝑝, 𝛼1, 𝛼2)𝑃(𝑝, 𝛼1, 𝛼2, 𝑥)𝑑𝛼1𝑑𝛼2𝑑𝑝

∞

0

∞

0

1

0

∫ ∫ ∫ 𝑃(𝑝, 𝛼1, 𝛼2, 𝑥)
∞

0

∞

0

1

0
𝑑𝛼1𝑑𝛼2𝑑𝑝

                                                                                  (11)  

�̂�𝐿𝐼𝑁𝐸𝑋(𝑝, 𝛼1, 𝛼2) = −
1

𝑞
ln [

∫ ∫ ∫ 𝑒−𝑞𝜙(𝑝,𝛼1,𝛼2)𝑃(𝑝, 𝛼1, 𝛼2, 𝑥)𝑑𝛼1𝑑𝛼2𝑑𝑝
∞

0

∞

0

1

0

∫ ∫ ∫ 𝑃(𝑝, 𝛼1, 𝛼2, 𝑥)
∞

0

∞

0

1

0
𝑑𝛼1𝑑𝛼2𝑑𝑝

]                                                             (12) 

�̂�𝐺𝐸(𝑝, 𝛼1, 𝛼2) = [
∫ ∫ ∫ 𝜙(𝑝, 𝛼1, 𝛼2)−ℎ𝑃(𝑝, 𝛼1, 𝛼2, 𝑥)𝑑𝛼1𝑑𝛼2𝑑𝑝

∞

0

∞

0

1

0

∫ ∫ ∫ 𝑃(𝑝, 𝛼1, 𝛼2, 𝑥)
∞

0

∞

0

1

0
𝑑𝛼1𝑑𝛼2𝑑𝑝

]

− 
1
ℎ

                                                                     (13) 

The ratio of the integrals in Equations (11), (12) and (13) cannot be obtained in a closed form. Therefore, the 

Markov Chain Monte Carlo technique will be used to approximate the integrals. 

5.1. Markov Chain Monte Carlo method (MCMC) 

In this subsection, we apply the importance sampling technique to obtain the approximate Bayes estimates. This 

technique needs no calculation of the normalizing constant. The joint posterior density function of  𝛼1, 𝛼2 and 𝑝 

given data 𝑥 can be written in the form 

𝑃(𝑝, 𝛼1, 𝛼2|𝑥) ∝ 𝑓𝐵𝑒𝑡𝑎(𝑝; 𝑟1 + 𝑐, 𝑟2 + 𝑑)𝑓𝐺𝐴(𝛼1; 𝑟1 + 𝑎1, 𝜑1)𝑓𝐺𝐴(𝛼2; 𝑟2 + 𝑎2, 𝜑2)ℎ(𝛼1, 𝛼2, 𝑝)                                 (14) 

where  𝜑1, 𝜑2 are defined as above, and  

ℎ(𝛼1, 𝛼2, 𝑝) = ∏[𝑝1𝑅1(𝑥𝑗) + 𝑝2𝑅2(𝑥𝑗)]
(𝑘(𝑅𝑗+1)−1)

    

𝑚

𝑗=1

                                                                                                      (15) 

According to the importance sampling technique, the approximate Bayes estimators, based on the three loss 

functions, can be computed by the following algorithm 

Step1: 𝑝~𝐵𝑒𝑡𝑎(𝑟1 + 𝑐, 𝑟2 + 𝑑) 

𝛼1~𝐺𝑎𝑚𝑚𝑎(𝑟1 + 𝑎1, 𝜑1) 

𝛼2~𝐺𝑎𝑚𝑚𝑎(𝑟2 + 𝑎2, 𝜑2) 

Step2: Repeat this procedure to obtain important sample {(𝑝𝑖 , 𝛼1𝑖 , 𝛼2𝑖), 𝑖 = 1, … , 𝑁} 

Step 3: Calculate Bayes estimator of  𝜙(𝑝, 𝛼1, 𝛼2), under squared error, LINEX and general entropy loss functions, 

respectively by 

�̂�𝑆𝐸(𝑝, 𝛼1, 𝛼2) =
∑ 𝜙(𝑝, 𝛼1, 𝛼2)ℎ(𝛼1𝑖 , 𝛼2𝑖 , 𝑝𝑖)

𝑁
𝑖=1

∑ ℎ(𝛼1𝑖 , 𝛼2𝑖 , 𝑝𝑖)
𝑁
𝑖=1

   

�̂�𝐿𝐼𝑁𝐸𝑋(𝑝, 𝛼1, 𝛼2) = −
1

𝑞
ln [

∑ 𝑒−𝑞𝜙(𝑝,𝛼1,𝛼2)ℎ(𝛼1𝑖 , 𝛼2𝑖, 𝑝𝑖)𝑁
𝑖=1

∑ ℎ(𝛼1𝑖 , 𝛼2𝑖, 𝑝𝑖)𝑁
𝑖=1

] 
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�̂�𝐺𝐸(𝑝, 𝛼1, 𝛼2) = [
∑ 𝜙(𝑝, 𝛼1, 𝛼2)−ℎℎ(𝛼1𝑖 , 𝛼2𝑖, 𝑝𝑖)𝑁

𝑖=1

∑ ℎ(𝛼1𝑖 , 𝛼2𝑖 , 𝑝𝑖)
𝑁
𝑖=1

]

− 
1
ℎ

 

6. Comparison Study 

In this section, we present the numerical results of a simulation study to compare the performance of the various 

estimates for different combinations of (𝑛, 𝑚, 𝑘). We consider different sampling schemes 𝑅 = (𝑅1, … , 𝑅𝑚) as 

follow                                            

                                     Table 1: Censoring schemes of progressively censored 

(𝑘, 𝑛, 𝑚) Scheme 𝑅𝑖 

 

(2,50,30) 

I (20, 290) 

II (290, 20) 

III (10, 280, 10) 

 

(2,50,40) 

I (10, 390) 

II (390, 10) 

III (5, 380, 5) 

 

(4,75,45) 

I (30, 440) 

II (440, 30) 

III (15, 430, 15) 

 

(4,75,55) 

I (20, 540) 

II (540, 20) 

III (10, 530, 10) 

To carry out this comparative study, we follow the following steps: 

• In this study the following parameters values were used (𝛼1, 𝛼2, 𝑝) = (1,2,0.40) along with   (𝜃1, 𝜃2) = (0.5,1.5). 

The values chosen for the constants 𝑞 are (0.5, −0.5) for the LINEX and for ℎ are (1, −1) for general entropy loss 

functions. The following values are used for the hyper parameters (𝑎1 = 3, 𝑎2 = 2, 𝑏1 = 2, 𝑏2 = 1, 𝑐 = 2 𝑎𝑛𝑑 𝑑 =
4) for informative prior. In case of non-informative prior, we take {(𝑎1 = 𝑎2 = 𝑏1 = 𝑏2 = 0), (𝑐 = 𝑑 = 1)}. 

• Appling the algorithms of Balakrishnan and Sandhu (1995) to generate a progressive first-failure censored sample 

from mixture Weibull and Lomax distributions for different values of  (𝑛, 𝑚, 𝑘, 𝑅). 

• Based on the progressive first-failure censored data, maximum likelihood estimates and Bayes estimates of the 

parameters are calculated according to Section 3 and Section 5, respectively. 

• The above steps are repeated 1000 times, and computation off the average of the estimates and mean square error 

for different values (𝑛, 𝑚, 𝑘, 𝑅) are presented in Tables (2-8). The computations are done using Mathematica 10.0. 

Table (2-8) indicates that the Bayes estimates perform better under informative prior than non-informative prior for 

all different loss functions. In most cases, notice that the performance of the Bayes estimates under informative prior 

are  smaller than the  maximum likelihood estimates in terms of MSE. Also, the Bayesian estimates under general 

entropy loss function in case of the value (ℎ = −1) are almost the same as the estimates under squared error loss 

function. The mean square error of all estimates decreases when the sample size 𝑛 and effective sample size 𝑚 

increase. Also, when the value of the group size 𝑘 increases, the mean square error decreases. 
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Table 2: Average values and the corresponding MSE based MLEs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(𝑘, 𝑛, 𝑚) SC Maximum  Likelihood Estimation 

𝛼1 𝛼2 𝑝 

 

 

(2,50,30) 

I 1.03676 

(0.02118) 

2.20610 

(0.19323) 

0.40994 

(0.00065) 

II 0.74133 

(0.11755) 

1.70425 

(0.26606) 

0.48890 

(0.01020) 

III 0.75646 

(0.11778) 

1.73760 

(0.27541) 

0.47448 

(0.00804) 

 

 

(2,50,40) 

I 1.04959 

(0.01516) 

2.25190 

(0.16074) 

0.40806 

(0.00037) 

II 0.76587 

(0.11302) 

1.73385 

(0.27612) 

0.46558 

(0.00654) 

III 0.86449 

(0.07537) 

1.90287 

(0.22749) 

0.44234 

(0.00369) 

 

 

(4,75,45) 

I 0.65021 

(0.15266) 

1.43521 

(0.41863) 

0.41540 

(0.00031) 

II 0.81885 

(0.07292) 

1.76575 

(0.16383) 

0.41292 

(0.00043) 

III 0.78610 

(0.08594 

1.70020 

(0.20451) 

0.41297 

(0.00036) 

 

 

(4,75,55) 

I 0.64870 

(0.14971) 

1.42957 

(0.41584) 

0.41550 

(0.00029) 

II 0.77324 

(0.08521) 

1.67761 

(0.19722) 

0.41426 

(0.00037) 

III 0.73617 

(0.10280) 

1.60063 

(0.25517) 

0.41424 

(0.00034) 
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Table 3: Average values and corresponding MSE of parameter 𝛼1 based informative prior 

(𝑘, 𝑛, 𝑚) SC Square 

Error 

LINEX General Entropy 

𝑞 = 0.5 𝑞 = −0.5 ℎ = 1 ℎ = −1 

 

(2,50,30) 

I 1.11252 

(0.09090) 

1.09040 

(0.07975) 

1.13601 

(0.10455) 

1.03598 

(0.06846) 

1.11252 

(0.09090) 

II 1.15429 

(0.11326) 

1.13055 

(0.09904) 

1.17962 

(0.13049) 

1.07533 

(0.08309) 

1.15429 

(0.11326) 

III 1.12124 

(0.10132) 

1.09866 

(0.08865) 

1.14529 

(0.11683) 

1.04441 

(0.07510) 

1.12124 

(0.10132) 

 

(2,50,40) 

I 1.10453 

(0.07751) 

1.08770 

(0.06990) 

1.12217 

(0.08644) 

1.04578 

(0.06132) 

1.10453 

(0.07751) 

II 1.12562 

(0.08511) 

1.10799 

(0.07638) 

1.14411 

(0.09528) 

1.06522 

(0.06573) 

1.12562 

(0.08511) 

III 1.10145 

(0.08140) 

1.08427 

(0.07307) 

1.11947 

(0.09126) 

1.04173 

(0.06437) 

1.10145 

(0.08140) 

 

(4,75,45) 

I 1.07658 

(0.06134) 

1.06246 

(0.05645) 

1.09126 

(0.06610) 

1.02571 

(0.05110) 

1.07658 

(0.06134) 

II 1.09767 

(0.06848) 

1.08266 

(0.06243) 

1.1133 

(0.07549) 

1.04457 

(0.05519) 

1.09767 

(0.06848) 

III 1.07333 

(0.06380) 

1.05884 

(0.05857) 

1.0884 

(0.06989) 

1.02105 

(0.05318) 

1.07333 

(0.06380) 

 

(4,75,55) 

I 1.06722 

(0.05298) 

1.0553 

(0.04918) 

1.06695 

(0.05463) 

1.02382 

(0.04493) 

1.06722 

(0.05298) 

II 1.08769 

(0.06191) 

1.0754 

(0.05740) 

1.10038 

(0.06700) 

1.04378 

(0.05185) 

1.08769 

(0.06191) 

III 1.0921 

(0.05829) 

1.07964 

(0.05374) 

1.10498 

(0.06344) 

1.04769 

(0.04796) 

1.0921 

(0.05829) 
 

Table 4: Average values and corresponding MSE of parameter 𝛼2 based  informative prior 

(𝑘, 𝑛, 𝑚) SC Square 

Error 

LINEX General Entropy 

𝑞 = 0.5 𝑞 = −0.5 ℎ = 1 ℎ = −1 

 

(2,50,30) 

I 2.03588 

(0.19947) 
1.98295 

(0.17784) 
2.09315 

(0.23221) 
1.93307 

(0.18304) 
2.03588 

(0.19947) 
II 2.11918 

(0.23750) 
2.06157 

(0.20304) 
2.18172 

(0.28599) 
2.01164 

(0.20143) 
2.11918 

(0.23750) 
III 2.05643 

(019529) 
2.00280 

(0.17155) 
2.11441 

(0.23068) 
1.95296 

(0.17461) 
2.05643 

(0.19529) 
 

(2,50,40) 

I 2.04134 

(0.16174) 
2.00055 

(0.14688) 
2.08452 

(0.18227) 
1.96233 

(0.14898) 
2.04134 

(0.16174) 
II 2.07451 

(0.15337) 
2.03293 

(0.13690) 
2.11866 

(0.17599) 
1.99493 

(0.13651) 
2.07451 

(0.15337) 
III 2.06282 

(0.15368) 
2.02129 

(0.13824) 
2.10691 

(0.17497) 
1.98290 

(0.13874) 
2.06282 

(0.15368) 
 

(4,75,45) 

I 1.98372 

(0.13120) 
1.94923 

(0.12471) 
2.0201 

(0.14132) 
1.91489 

(0.12977) 
1.98372 

(0.13120) 
II 2.05776 

(0.14037) 
2.02084 

(0.12754) 
2.09658 

(0.15757) 
1.98651 

(0.12785) 
2.05776 

(0.14041) 
III 2.03646 

(0.13702) 
2.00075 

(0.12757) 
2.07408 

(0.14790) 
1.96694 

(0.12822) 
2.03648 

(0.13702) 
 

(4,75,55) 

I 2.01132 

(0.10798) 
1.98235 

(0.10203) 
2.04153 

(0.11639) 
1.95408 

(0.10426) 
2.01132 

(0.10798) 
II 2.07333 

(0.13141) 
2.04255 

(0.12020) 
2.10543 

(0.14565) 
2.01449 

(0.11908) 
2.07333 

(0.13141) 
III 2.0087 

(0.11706) 
1.97964 

(0.11031) 
2.03899 

(0.12639) 
1.95149 

(0.11251) 
2.0087 

(0.11706) 
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Table 5: Average values and corresponding MSE of parameter 𝑝 based informative prior 

(𝑘, 𝑛, 𝑚) SC Square 

Error 

LINEX General Entropy 

𝑞 = 0.5 𝑞 = −0.5 ℎ = 1 ℎ = −1 

 

(2,50,30) 

I 0.38863 

(0.00553) 
0.38708 

(0.00555) 
0.39018 

(0.00551) 
0.37137 

(0.00655) 
0.38863 

(0.00553) 
II 0.39062 

(0.00610) 
0.38908 

(0.00611) 
0.39218 

(0.00609) 
0.37344 

(0.00707) 
0.39062 

(0.00610) 
III 0.38925 

(0.00606) 
0.38771 

(0.00607) 
0.39080 

(0.00604) 
0.37208 

(0.00605) 
0.38925 

(0.00606) 
 

(2,50,40) 

I 0.39290 

(0.00438) 
0.39167 

(0.00439) 
0.39413 

(0.00437) 
0.37961 

(0.00494) 
0.39290 

(0.00438) 
II 0.39150 

(0.00473) 
0.39027 

(0.00474) 
0.39279 

(0.00472) 
0.37804 

(0.00536) 
0.39150 

(0.00473) 
III 0.38871 

(0.00481) 
0.38749 

(0.00483) 
0.38993 

(0.00479) 
0.37535 

(0.00550) 
0.38871 

(0.00481) 
 

(4,75,45) 

I 0.39352 

(0.00393) 
0.39240 

(0.00394) 
0.39464 

(0.00392) 
0.38148 

(0.00439) 
0.39352 

(0.00393) 
II 0.39256 

(0.00412) 
0.39145 

(0.00413) 
0.39368 

(0.00412) 
0.38061 

(0.00460) 
0.39256 

(0.00412) 
III 0.39140 

(0.00405) 
0.39029 

(0.00406) 
0.39252 

(0.00404) 
0.37936 

(0.00456) 
0.39140 

(0.00405) 
 

(4,75,55) 

I 0.38898 

(0.00358) 
0.38805 

(0.00359) 
0.38991 

(0.00356) 
0.37894 

(0.00402) 
0.38898 

(0.00358) 
II 0.39275 

(0.00367) 
0.39181 

(0.00368) 
0.39369 

(0.00367) 
0.38272 

(0.00405) 
0.39175 

(0.00367) 
III 0.39222 

(0.00363) 
0.39128 

(0.00364) 
0.39316 

(0.00362) 
0.38217 

(0.00401) 
0.39222 

(0.00363) 
 

Table 6: Average values and corresponding MSE of parameter 𝛼1 based non-informative prior 

(𝑘, 𝑛, 𝑚) SC Square 

Error 

LINEX General Entropy 

𝑞 = 0.5 𝑞 = −0.5 ℎ = 1 ℎ = −1 

 

(2,50,30) 

I 1.06434 

(0.11318) 
1.03748 

(0.09795) 
1.09373 

(0.13197) 
0.96989 

(0.09849) 
1.06434 

(0.11318) 
II 1.11986 

(0.15991) 
1.09008 

(0.13418) 
1.15247 

(0.19673) 
1.02246 

(0.11777) 
1.11968 

(0.15986) 
III 1.08625 

(0.13244) 
1.05873 

(0.11403) 
1.11633 

(0.15731) 
0.99166 

(0.10380) 
1.08625 

(0.13244) 
 

(2,50,40) 

I 1.06124 

(0.08708) 
1.04194 

(0.0777) 
1.08166 

(0.09873) 
0.99239 

(0.07124) 
1.06124 

(0.08708) 
II 1.07316 

(0.09799) 
1.05355 

(0.08794) 
1.09388 

(0.11019) 
1.0040 

(0.08007) 
1.07316 

(0.09799) 
III 1.07992 

(0.09728) 
1.05973 

(0.08659) 
1.10142 

(0.11057) 
1.00927 

(0.07843) 
1.07992 

(0.09728) 
 

(4,75,45) 

I 1.03387 

(0.06658) 
1.01782 

(0.06128) 
1.0507 

(0.07308) 
0.97434 

(0.05856) 
1.03387 

(0.06658) 
II 1.06191 

(0.07635) 
1.04502 

(0.06956) 
1.07963 

(0.08453) 
1.00096 

(0.06410) 
1.06191 

(0.07635) 
III 1.0442 

(0.07317) 
1.02785 

(0.06716) 
1.06137 

(0.08047) 
0.98452 

(0.06305) 
1.0442 

(0.07317) 
 

(4,75,55) 

I 1.02123 

(0.05676) 
1.00857 

(0.05311) 
1.03437 

(0.06113) 
0.97383 

(0.05103) 
1.02123 

(0.05676) 
II 1.07138 

(0.06791) 
1.05751 

(0.06232) 
1.08581 

(0.07443) 
1.02165 

(0.05711) 
1.07138 

(0.06791) 
III 1.04105 

(0.05995) 
1.02818 

(0.05590) 
1.05439 

(0.06471) 
0.99337 

(0.05307) 
1.04105 

(0.05995) 
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Table 7: Average values and corresponding MSE of parameter 𝛼2 based non-informative prior 

(𝑘, 𝑛, 𝑚) SC Square 

Error 

LINEX General Entropy 

𝑞 = 0.5 𝑞 = −0.5 ℎ = 1 ℎ = −1 

 

(2,50,30) 

I 2.05088 

(0.25008) 
1.99093 

(0.21861) 
2.11627 

(0.29671) 
1.93594 

(0.22475) 
2.05088 

(0.25008) 
II 2.10759 

(0.31001) 
2.04345 

(0.26424) 
2.17814 

(0.37649) 
1.98835 

(0.26617) 
2.10759 

(0.31001) 
III 2.10062 

(0.27298) 
2.03715 

(0.22998) 
2.17026 

(0.33621) 
1.98188 

(0.23176) 
2.10062 

(0.27298) 
 

(2,50,40) 

I 2.06909 

(0.20625) 
2.02334 

(0.18368) 
2.11791 

(0.23678) 
1.98215 

(0.18473) 
2.06909 

(0.20625) 
II 2.10569 

(0.23132) 
2.05883 

(0.20762) 
2.15573 

(0.27302) 
2.01818 

(0.20652) 
2.10569 

(0.23570) 
III 2.08595 

(0.21484) 
2.0393 

(0.18857) 
2.13576 

(0.26746) 
1.99824 

(0.18837) 
2.08595 

(0.21484) 
 

(4,75,45) 

I 2.01609 

(0.17404) 
1.9777 

(0.16088) 
2.05673 

(0.19249) 
1.94115 

(0.16490) 
2.01609 

(0.17404) 
II 2.06383 

(0.18269) 
2.02361 

(0.16494) 
2.10634 

(0.20625) 
1.98697 

(0.16564) 
2.06383 

(0.18269) 
III 2.0391 

(0.16029) 
2.0006 

(0.14681) 
2.07976 

(0.17880) 
1.96445 

(0.14903) 
2.0391 

(0.16029) 
 

(4,75,55) 

I 2.02569 

(0.12196) 
1.99425 

(0.11356) 
2.05854 

(0.13338) 
1.96426 

(0.11492) 
2.02569 

(0.12196) 
II 2.06601 

(0.13954) 
2.03336 

(0.12752) 
2.1001 

(0.15496) 
2.00333 

(0.12710) 
2.06601 

(0.13954) 
III 2.04398 

(0.13454) 
2.01167 

(0.12416) 
2.07784 

(0.14837) 
1.98154 

(0.12468) 
2.04398 

(0.13454) 

Table 8: Average values and corresponding MSE of parameter 𝑝 based non-informative prior 

(𝑘, 𝑛, 𝑚) SC Square 

Error 

LINEX General Entropy 

𝑞 = 0.5 𝑞 = −0.5 ℎ = 1 ℎ = −1 

 

(2,50,30) 

I 0.40647 

(0.00763) 
0.40472 

(0.00759) 
0.40823 

(0.00678) 
0.38753 

(0.00823) 
0.40647 

(0.00763) 
II 0.41368 

(0.00714) 
0.41191 

(0.00708) 
0.41545 

(0.00721) 
0.39487 

(0.00743) 
0.41368 

(0.00714) 
III 0.40721 

(0.00687) 
0.40546 

(0.00683) 
0.40897 

(0.00692) 
0.38829 

(0.00742) 
0.40721 

(0.00687) 
 

(2,50,40) 

I 0.40503 

(0.00533) 
0.40367 

(0.00531) 
0.40639 

(0.00536) 
0.39058 

(0.00567) 
0.40503 

(0.00533) 
II 0.40356 

(0.00527) 
0.40220 

(0.00526) 
0.40492 

(0.00530) 
0.38911 

(0.00565) 
0.40356 

(0.00527) 
III 0.40329 

(0.00541) 
0.40194 

(0.00539) 
0.40464 

(0.00543) 
0.38897 

(0.00577) 
0.40329 

(0.00541) 
 

(4,75,45) 

I 0.40534 

(0.00491) 
0.40411 

(0.00489) 
0.40658 

(0.00494) 
0.392411 

(0.005153) 
0.40534 

(0.00491) 
II 0.40310 

(0.00476) 
0.40278 

(0.00473) 
0.40521 

(0.00477) 
0.39121 

(0.00502) 
0.40310 

(0.00475) 
III 0.402959 

(0.00450) 
0.40174 

(0.00448) 
0.40418 

(0.00452) 
0.39016 

(0.00477) 
0.40296 

(0.00450) 
 

(4,75,55) 

I 0.40293 

(0.00429) 
0.40193 

(0.00427) 
0.403941 

(0.00430) 
0.39243 

(0.00448) 
0.40293 

(0.00429) 
II 0.40366 

(0.00409) 
0.40265 

(0.00408) 
0.40466 

(0.00411) 
0.39316 

(0.00427) 
0.40366 

(0.00409) 
III 0.40375 

(0.00413) 
0.40274 

(0.00411) 
0.40476 

(0.00414) 
0.39322 

(0.00431) 
0.40375 

(0.00413) 
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7. Bayesian Prediction For Future Observations 

In this section, the Bayesian two sample prediction of a future order statistics is considered based on the observed 

progressive first failure censored data 𝑥. Based on a random sample of size 𝑛 drawn from a population with pdf 

(1), a future unobservable independent random sample of size 𝑚 from the same population is under consideration. 

Let 𝑦𝑠 represents the 𝑠𝑡ℎ ordered statistic in the future sample, 1 ≤ 𝑠 ≤ 𝑚. The 𝑠𝑡ℎ order statistic in a sample of 

size 𝑚 represents the life length of a (𝑚 − 𝑠 + 1) out of 𝑚 system. The distribution function of 𝑦𝑠 the ordered 

future sample is given, [See Arnold et al.(1992) and Jaheen (2003)], by 

𝐹𝑌𝑠
(𝑝, 𝛼1, 𝛼2) = ∑ (

𝑚

𝑙
) [𝐹𝑋(𝑦𝑠|𝑝, 𝛼1, 𝛼2)]𝑙[1 − 𝐹𝑋(𝑦𝑠|𝑝, 𝛼1, 𝛼2)]𝑚−𝑙

𝑚

𝑙=𝑠

 

= ∑ ∑ (
𝑚

𝑙
) (

𝑙

𝑗1

) (−1)𝑗1[𝑅(𝑦𝑠)]𝑚−𝑙+𝑗1                                                                                                                                         (16)

𝑙

𝑗1=0

𝑚

𝑙=𝑠

 

where  𝐹𝑌𝑠
(𝑝, 𝛼1, 𝛼2) is the distribution function of the mixture model and 𝑅(𝑦𝑠) is the reliability function of the 

mixture model after replacing 𝑥 by 𝑦𝑠. 

Using the binomial expansion for [𝑅(𝑦𝑠)]𝑚−𝑙+𝑗1, we get 

[𝑅(𝑦𝑠)]𝑚−𝑙+𝑗1 = [𝑝1𝑒−𝛼1𝑦𝑠
𝜃1

+ 𝑝2(1 + 𝜃2𝑦𝑠)−𝛼2]
𝑚−𝑙+𝑗1

 

= ∑ (
𝑚 − 𝑙 + 𝑗1

𝑗2

) 𝑝1
𝛿1𝑝2

𝑗2 (𝑒−𝛼1𝑦𝑠
𝜃1

)
𝛿1

(1 + 𝜃2𝑦𝑠)−𝛼2𝑗2  

𝑚−𝑙+𝑗1

𝑗2=0

                                                                                   

where       𝛿1 = 𝑚 − 𝑙 + 𝑗1 − 𝑗2 

Therefore, 

𝐹𝑌𝑠
(𝑝, 𝛼1, 𝛼2) = ∑ ∑ ∑ (

𝑚

𝑙
) (

𝑙

𝑗1

)

𝑚−𝑙+𝑗1

𝑗2=0

𝑙

𝑗1=0

𝑚

𝑙=𝑠

(
𝑚 − 𝑙 + 𝑗1

𝑗2

) (−1)𝑗1𝑝1
𝛿1𝑝2

𝑗2 (𝑒−𝛼1𝑦𝑠
𝜃1

)
𝛿1

(1

+ 𝜃2𝑦𝑠)−𝛼2𝑗2                         (17) 

The Bayes predictive pdf of 𝑦𝑠 given 𝑥 is defined by: 

 

𝑓∗(𝑦𝑠|𝑥)

= ∫ ∫ ∫ 𝑓

∞

0

(𝑦𝑠|𝑝, 𝛼1, 𝛼2)𝑃(𝑝, 𝛼1, 𝛼2|𝑥)𝑑𝛼1𝑑𝛼2𝑑𝑝

∞

0

                                                                                      

1

0

     (18) 

where  𝑃(𝑝, 𝛼1, 𝛼2|𝑥) is the joint posterior density function for parameters 𝛼1, 𝛼2 and 𝑝 and 𝑓(𝑦𝑠|𝑝, 𝛼1, 𝛼2) is the 

pdf of 𝑠𝑡ℎ component in a future sample. 

Therefore, using the Bayesian predictive density of  𝑦𝑠, for a given value 𝜈, we obtain 
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𝑃𝑟[𝑦𝑠 ≥ 𝜈|𝑥] = ∫ 𝑓∗

∞

𝜈

(𝑦𝑠|𝑥)𝑑𝑦𝑠 

= 1

− ∫ ∫ ∫ 𝐹𝑌𝑠
(𝜈|𝑝, 𝛼1, 𝛼2)𝑃(𝑝, 𝛼1, 𝛼2|𝑥)𝑑𝛼1𝑑𝛼2𝑑𝑝

∞

0

∞

0

1

0

                                                                                                        (19) 

where  𝐹𝑌𝑠
(𝜈|𝑝, 𝛼1, 𝛼2) is the cumulative distribution of the 𝑠𝑡ℎ component in a future sample as given by (17). 

This cannot be evaluated analytically. Thus, the MCMC sampling procedure described in Subsection 5.1 is 

applied. 

Based on importance samples {(𝑝𝑖 , 𝛼1𝑖, 𝛼2𝑖), 𝑖 = 1, … , 𝑁}. A simulator of the predictive distribution of  𝑦𝑠, as 

𝑃𝑟[𝑦𝑠 ≥ 𝜈|𝑥]

= 1 − ∑ 𝐹𝑌𝑠
(𝜈|𝑝, 𝛼1, 𝛼2)𝑤𝑖                                                                                                                                                              (20)

𝑁

𝑖=1

 

where                                                               

𝑤𝑖 =
ℎ(𝛼1𝑖,𝛼2𝑖,𝑝𝑖)

∑ ℎ(𝛼1𝑖,𝛼2𝑖,𝑝𝑖)𝑁
𝑖=1

 , 𝑖 = 1, … , 𝑁 

𝐴 100 𝛾% prediction interval for 𝑦𝑠 is given by  

𝑃[𝐿(𝑥) < 𝑦𝑠 < 𝑈(𝑥)] = 𝛾 

where  𝐿(𝑥) and  𝑈(𝑥) are obtained respectively by solving the following two nonlinear equations: 

𝑃𝑟[𝑦𝑠 > 𝐿(𝑥)|𝑥] =
1 + 𝛾

2
          𝑎𝑛𝑑           𝑃𝑟[𝑦𝑠 > 𝑈(𝑥)|𝑥]

=
1 − 𝛾

2
                                                                                                                 (21) 

These equations cannot be solved analytically, using Mathematica software program. 

7.1. Numerical Example 

This section presents a numerical example to illustrate the methodology for the proposed estimates based on real 

data. The data set is an uncensored data set consisting of 66 observations on breaking stress of carbon fibers (in 

Gba). This data was presented by Al-Babtain et al.(2015) and is as follows: 3.70, 2.74, 2.73, 2.50, 

3.60,3.11,3.27,2.87,1.47,3.11,3.56,4.42,2.41,3.19,3.22,1.69,3.28, 

3.09,1.87,3.15,4.90,1.57,2.67,2.93,3.22,3.39,2.81,4.20,3.33,2.55,3.31,3.31,2.85,1.25,4.38,1.84,0.39,3.68,2.48,0.85

,1.61,2.79,4.70,2.03,1.89,2.88,2.82,2.05,3.65.3.75,2.73,2.95,2.97,3.39,2.96,2.35,2.55,2.59,2.03,1.61,2.12,3.15,1.0

8,2.56,1.80,2.53. Now, we assume that the  observations are randomly grouped into 22 groups with 𝑘 =
3 observations within each group, with ( 𝑚 = 16, 𝑛 = 22, 𝑘 = 3), the grouped data set are as follows 

:{3.70,2.74,2.73},{2.50,3.60,3.11},{3.27,2.87,1.47},{3.11,3.56,4.42},{2.41,3.19,3.22}, 

{1.69,3.28,3.09},{1.87,3.15,4.90},{1.57,2.67,2.93},{3.22,3.39,2.81},{4.20,3.33,2.55},{3.31,3.31,2.85},{1.25,4.3

8,1.84},{0.39,3.68,2.48},{0.85,1.61,2.79},{4.70,2.03,1.89},{2.88,2.82,2.05},{3.65,3.75,2.43},{2.95,2.97,3.39},{

2.96,2.35,2.55},{2.59,2.03,1.61},{2.12,3.15,1.08},{2.56,1.80,2.53}.The assumed censoring scheme 𝑅 =
(1,1,1, 100, 1, 1,1). The following progressive first failure censored data is given by: 

(0.39,1.08,1.47,1.61,1.69,1.80,1.87,1.89,2.05,2.35,2.41, 2.43,2.50,2.55,2.81,2.95). Taking 𝜃1 = 1.5, 𝜃2 = 1.2, 

𝑝 = 0.60, the following progressively first failure censored mixture real life data is 
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0.39, 1.08, 1.61, 1.80, 1.87, 1.89, 2.05, 2.35, 2.43, 2.55, 2.95    (𝑟1 = 11)    

1.47, 1.69, 2.41, 2.50, 2.81                                                                  (𝑟2 = 5) 

Based on these data, we compute predictive interval of future sample. According the algorithm in Subsection 5.1, 

we generate 1000 MCMC samples. The 90%  and  95%  predictive interval for the future observation 𝑌𝑠 are given 

by solving Equation (21) numerically. The results are  presented in Table (9) and Table (10) 

 

 Table 9: Two sample prediction intervals for the future observation 𝑌𝑠 in case informative prior 

90% prediction interval for 𝑌𝑠 

s (Lower, Upper) Length 

1 

2 

3 

4 

5 

6 

(0.01984,0.92570) 

(0.06398,1.20602) 

(0.28126,2.16251) 

(0.46879,3.13421) 

(0.76259,4.29607) 

(1.06686,6.3282) 

0.90586 

1.14204 

1.88125 

2.66542 

3.53348 

5.26134 

95% prediction interval for 𝑌𝑠 

𝑠 (Lower, Upper) Length 

1 

2 

3 

4 

5 

6 

(0.01413,1.06036) 

(0.05280,1.50413) 

(0.26863,2.46712) 

(0.43263,3.13654) 

(0.68720,5.66177) 

(0.95036,7.56534) 

1.04623 

1.45133 

1.89849 

2.70391 

4.97457 

6.61498 

Table 10: Two sample prediction intervals for the future observation 𝑌𝑠 in case non- informative prior 

90% prediction interval for 𝑌𝑠 

s (Lower, Upper) Length 

1 

2 

3 

4 

5 

6 

(0.02533,0.97698) 

(0.08472,1.71576) 

(0.29504,2.34837) 

(0.62261,3.7236) 

(1.03315,5.41041) 

(1.15488,7.61791) 

0.95165 

1.63104 

2.05333 

3.10099 

4.37726 

6.46303 

95% prediction interval for 𝑌𝑠 

s (Lower, Upper) Length 

1 

2 

3 

4 

5 

6 

(0.02160,1.10856) 

(0.07490,1.98037) 

(0.28267,2.82536) 

(0.56385,4.30136) 

(0.89780,6.29315) 

(1.03551,8.91873) 

1.08696 

1.90547 

2.54269 

3.73751 

5.39535 

7.88322 

8. Conclusion 

Based on progressively first-failure censored scheme, in this paper, we have addressed the estimation and 

prediction problems of the mixture of Weibull and Lomax distributions. The Bayes estimates cannot be obtained 

in explicit form so importance samples procedure is used to draw MCMC samples. Also, the same MCMC 

method is used for computing two sample predictive intervals. An example using real data set was used for 

illustration. 
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