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Abstract  
The Markov order is a crucial measure of the memory of a process and its information is essential for 

appropriate simulation of aspects of the process. In this paper, we suggest a robust and straightforward 

exact significance test based on generating surrogate data to assess the Markov order of a time series. This 

method is valid for any sample size and certifies a uniform sampling from the set of sequences that 

definitely have the nth order characteristics of the observed data. The Markov property and order of 

IEEE802.11a errors are investigated using this test. 
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Introduction  

An evolution in time of a random phenomenon is a process which can be described by a 

stochastic process. A stochastic process is a set of random variables indexed by a variable 

t, mostly indicating time. Markov chains are a crucial mathematical tool in stochastic 

processes. A Markov chain satisfies the Markov property, which means that future 

behavior is independent of past behavior when the present is known. It provides 

powerful, efficient and flexible means for analyzing the dynamic system properties. The 

Markov chain is a robust statistical modeling method (Davis, 1973) (Krumbein, W. 

C.,Dacey, M. F., 1969) which can explain complicated behavior of different stochastic 

systems; Moreover, it has a full-grown mathematical mechanism. Markov chains are 

applied widely in many different fields such as wireless network (Xianda C., Kyung T. 

K., Hee Y. Y., 2016) (Hlavičková I, 2015) finance (Huang J., Huang W., Chu P., Lee W., 

Pai H., Chuang C., Wu Y., 2017)  (Mostafaei Hr., Kordnoori Sh., Kordnoori Sh., 

2016),biology (Ivan, 2015), computer science (Bolch G., Greiner S., Meer H., Trivedi K., 

2006), business (Jónás T.,Kalló N., Eszter Tóth Z., 2014) , Chemical engineering (Tamir, 

1998), diagnoses of disease (Jackson C. H.,Sharples L. D. and Thompson S. G., Duffy S. 

W.,Couto E., 2003), industry (Oviedo-Trespalacios O.,baena R. P., Mantilla M., 

Lacouture C., 2014) ,etc. Many textbooks such as (Feller, 1968) (Howard, 1971) (Cinlar, 

1975)provide comprehensive introductions into the elements of stochastic and Markov 

processes. 
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 The Markov order is a substantial measure of the "memory" of a process, and its 

information is essential for the accurate simulation of the aspects of the process. There 

are several Markov chain order estimator recommended in the literature. The Akaike 

Information Criterion (AIC) and the Bayesian Information Criterion (BIC) are two well-

known order estimators according to the Maximum Likelihood (Ding J.,Tarokh V.,Yang 

Y., 2017) (Katz, 1981). These methods are only valid in the limit of large samples and 

their efficiency can not be assured in small sample cases. The success of the AIC is 

chiefly a result of its better fulfillment when compared with the generally known 

consistent alternatives. Order estimation strategies include the method of Global 

Dependency Level (GDL) or relative entropy, the method of (Menendez M., Pardo L., 

Pardo M., Zografos K., 2011) which employs the φ-divergence measures (Pardo, 2006) 

and the efficient determination criterion(EDC) (Zhao L., Dorea C., Goncalves C., 2001). 

The (EDC) generalizes the AIC and BIC criteria and yields a class of consistent 

estimators for the order of a Markov chain with finite state space. The Markov order 

estimators AIC, BIC and EDC were compared in (Dorea C. C. Y., Angelo P., Gonçalves 

C. , 2015). In (Papapetron M., Kugiumtzis D., 2016) parametric significance tests of 

Conditional Mutual Information (CMI) was proposed for the order estimation. The 

relative entropy can be used for estimating an order of the Markov chain (Baigorri A. R., 

Gonçalves C., Angelo P., 2009). In (Merhav N., Gutman M., Ziv J., 1989)  the order of a 

finite Markov source was estimated based on empirically observed statistics. The order of 

the chain indicates the number of time steps in the past impacting the probability 

distribution of the present state, which could be greater than one. It was proved that the 

order more than one gave the best result for assured conditions. For example in (Deni, S. 

M., Jemain, A. A., Ibrahim K., 2009)  it was showed that the first order of the Markov 

chain model is the best order for the rainfall occurrence during the northwestern and 

eastern regions of peninsula, while a higher order is fit for the rainfall occurrence during 

the northeast monsoon season. Hypotheses related to the proper order Markov chain 

model can be evaluated statistically applying Chi-Square statistic (𝜒2) to contrast 

expected and observed transition frequencies. The usage of a limiting distribution is 

imprecise because it is only achieved for infinite data sets and hence it is an inadequate 

approximation for small data sets. In this case, the method based on p-values developed 

in this paper used which give the exact test statistics even for small data sets. The exact 

significance test is employed for any sample size. According to this method, the test 

statistic distribution is explored by sampling from the set of sequences (named as 

surrogates) that corresponds exactly to the nth order characteristics of the observed time 

series. The surrogate data procedure has some perfect features as follows: One sample is 

generated per shot, for each sample surrogate as the observed sequence, computation time 

increases linearly with the length of the sequence, samples are chosen uniformly from the 

set of all available surrogate sequences and any order can be contained. It is now easy to 

calculate the p-value of a Markov order null hypothesis exactly for any size data set 

according to this novel method. The p-value is the probability, assuming the null 

hypothesis, of the test statistic achieving its observed value or one more extreme. It is not 

the probability of correctness of the null hypothesis. In the time that a very small p-value 

leads one to reject the null hypothesis, a large p-value only implies that the data is 

consistent with the null hypothesis, not that the null hypothesis should be accepted; 

Moreover, the significance threshold for rejection is perfectly up to the user to determine. 
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In this paper, we first describe briefly the testing Markov order using the 𝜒2 statistics for 

the large sample limit. Next, the exact significance test is explained according to 

surrogate data generation and Whittle's formula for any sample size. Finally, this exact 

significance test is applied for the error data of IEEE802.11a based OFDM system to test 

the Markov property and find the order of the Markov model. 

 

 

The Mathematical Model 

 

Markov Order Test for Large Sample 

 

  Suppose P be a 𝑁 × 𝑁 matrix with elements {𝑃𝑖𝑗: 𝑖, 𝑗 = 1, … , 𝑁} a random process 

(𝑋0, 𝑋1, … ) with finite state space 𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑁} is said to be a (homogenous) 

Markov chain with transition matrix P if for all n,∀𝑖, 𝑗 ∈ {1, … , 𝑁} and ∀𝑖0, … , 𝑖𝑛−1 ∈
{1, … , 𝑁} we have Eq. 1: 

 

𝑃(𝑋𝑛+1 = 𝑆𝑗|𝑋0 = 𝑖0, 𝑋1 = 𝑖1, … , 𝑋𝑛−1 = 𝑖𝑛−1, 𝑋𝑛 = 𝑖) 

                                             = 𝑃(𝑋𝑛+1 = 𝑆𝑗|𝑋𝑛 = 𝑖) = 𝑃𝑖,𝑗                                            (1) 

Which implies that the future depends on the past only through the present and not on 

prior states. 

   Goodness-of-fit tests play a crucial role in applied and theoretical statistics. They are 

helpful in evaluating whether a statistical model is consistent with available data. The 

goodness-of-fit test for the Markov assumption is another pivotal issue. The exact 

goodness-of-fit tests for first and higher order Markov chains is presented in (Besag J., 

Mondal D., 2013) . Testing the Markov assumption is equivalent to test whether the 

sojourn time in each state follows an exponential distribution. Some usually applied 

methods testing whether random variables follow an exponential distribution are 

according to the empirical distribution function (EDF). Following the theory of 

(Billingsley, 1961) and the suggestions of (Hoel, 1954), we offer the following method 

for different types of modeling and testing Markov chains. Suppose 𝐸𝑤 be the expected 

frequency where ∑ 𝐸𝑤=N-2 and w indicate the set of all frequencies which the expected 

frequency is greater than zero; Furthermore, let 𝑂𝑤 ≥ 0 be the corresponding frequency 

from the observed data. The asymptotic 𝜒2 test statistic is defined as Eq.2 

                                               𝜒2 = ∑
(𝐸𝑤 − 𝑂𝑤)2

𝐸𝑤
𝑤

                                                            (2) 

Given the degrees of freedom d, The distribution 𝑓(𝜒2; 𝑑)is known when 𝑁 → ∞ and the 

p-value can be achieved by integrating 𝑓(𝜒2) over 𝜒2 ≥ 𝜒2
𝑜𝑏𝑠

. The degrees of freedom 

is considered as N(N-1). 

 

Markov Order Test for any Sample Size 

  The described hypothesis test depends on the 𝜒2 distribution allowed in the asymptotic 

limit of infinite data, therefore it is not exact. Evaluating 𝜒2 for all admissible sequences 

that satisfy the null hypothesis is vital to find the exact distribution for finite data. 

Suppose a sequence of observations 𝒙 = {𝑥1, … , 𝑥𝑁} constitutes a Markov chain of order 

n and let 𝐹𝑖𝑗 be the number of times the state i transit to state j in x; Moreover, suppose 
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that 𝛤(𝒙) indicate the set of sequences with the same F and the same beginning and end 

states as the observed sequence x. 

The number of sequences with the word transition count F and start with state k and 

end with state l is determined by Whittle's formula, Eq.3: 

                                            𝑁𝑘𝑙(𝐹) =
∏ 𝐹𝑖.!𝑖

∏ 𝐹𝑖𝑗!𝑖,𝑗
𝐶𝑘𝑙                                                       (3) 

Where 𝐹𝑖. is the sum of row i and 𝐶𝑘𝑙 is the (k,l)th cofactor of the matrix 

                                        𝐹𝑘𝑙
∗ = {             𝑖𝑓 𝐹𝑖.=0

𝑖𝑓 𝐹𝑖.>0 

𝛿𝑖𝑗

𝛿𝑖𝑗−
𝐹𝑖𝑗

𝐹𝑖.
⁄

                                                 (4) 

The value of (1) is so large that can not be calculated using fixed accuracy. Therefore, we 

instead calculate the algorithm of (3) applying a Stirling series for the factorial terms 

Eq.5: 

                   ln 𝑥! ~𝑥𝑙𝑛 𝑥 − 𝑥 +
1

2
ln(2𝜋𝑥) +

1

12𝑥
−

1

360𝑥3 +
1

1260𝑥5 −
1

1680𝑥7                  (5) 

When 𝑥 > 16. 
The fraction of sequences in 𝛤(𝒙) that have 𝜒2 values greater than or equal to 𝜒2

𝑜𝑏𝑠
 

yields the p-value. The p-value can be estimated to any desired accuracy provided one 

has a technique of producing uniform random samples from the set 𝛤 even if |𝛤| is too 

large to enumerate all sequences. The previous techniques for generating samples from 𝛤 

are not feasible, specifically for higher order testing. We give a practical method in the 

next part. 

 

 The Algorithm of Surrogate Generation 

  The Whittle formula is used for generating a sample subset of 𝛤 in a way that the 

sample is uniform. Given a transition matrix, a Whittle surrogate is a random sequence 

which is produced with exactly the same transition count and the beginning and end 

words are the same as the original sequence. This property assures that the transition 

probabilities are exactly the same as the original sequence. We consecutively extend a 

surrogate sequence, starting with a first state until all transitions are utilized. At each step 

the next state is selected according to the number of remaining sequences calculated by 

Whittle's formula, Moreover, in order to show the reduced transition count resulting from 

the selection, F is updated. The algorithm is certified to result in an acceptable surrogate 

since states are selected probabilistically weighted by the number of available sequences 

and the states that result in zero valid sequences are never selected. 

  Let the sequence 𝑧 = {𝑧1, … , 𝑧𝑁} be the member of 𝛤 beginning with 𝑧1 = 𝑘, ending 

with 𝑧𝑁 = 𝑙, and having the transition count matrix F. The nominees for the second 

element 𝑧2 are the set {𝑤|𝐹𝑧1𝑤>0}. For each nominee w we calculate 𝑁𝑤𝑙(𝐹′), the 

number of sequences left. Here 𝐹𝑖𝑗
′ = 𝐹𝑖𝑗 − 𝛿𝑧1𝑤 is the original transition count matrix 

minus the candidate transition. A nominee is chosen arbitrarily in proportion to the 

number of remaining sequences. Therefore 

                                         𝑃(𝑧2 = 𝑤) =
𝑁𝑤𝑙(𝐹′)

𝑁𝑧1𝑙(𝐹)
                                                         (6) 

Once 𝑧2 is selected, F is reset to the relevant 𝐹′ and the process is repeated for 𝑧3 and so 

on until 𝑧𝑁−1 is reached; Moreover, if the beginning and end of the observed sequence 

are identical symbols (𝑥1 = 𝑥𝑁), then each surrogate should start and end with an 

identical symbols, but it requires not be the same symbol as observed in the data. The 

initial state is chosen randomly according to the relative probabilities with Eq.3 for every 
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alternative of 𝑧1 = 𝑧𝑁. For the case (𝑥1 ≠ 𝑥𝑁) then one must select 𝑧1 = 𝑥1 and  𝑧𝑁 =
𝑥𝑁. The advantages of this technique is its ability of generating long surrogates as the 

complication increases only linearly with N. 

(Pethel S. D., Hahs D. W., 2014) proved that the surrogate data statistics behave as 

expected in the asymptotic limit even for a small sample and for this purpose, they 

computed the size and power of asymptotic and the exact 𝜒2 test for different orders of 

Markov processes using 2500 trials with 2500 surrogates. The p-value which is the 

fraction of these surrogate sequences that has 𝜒2 ≥ 𝜒2
𝑜𝑏𝑠

 was calculated. 

The (n+1)th order entropy rate 𝐻𝑠𝑢𝑟𝑔which its computation is easier than the 𝜒2 test is an 

alternative statistic as follow Eq.7.: 

 

      𝐻(𝑥𝑡+1|𝑥𝑡 , … , 𝑥𝑡−𝑛) = 𝐻(𝑥𝑡+1, 𝑥𝑡 , … , 𝑥𝑡−𝑛) − 𝐻(𝑥𝑡, … , 𝑥𝑡−𝑛)                           (7) 
 

A sequence of observations form a Markov chain of order n if  

 

                  𝑃(𝑥𝑡+1|𝑥𝑡 , 𝑥𝑡−1 … ) = P(𝑥𝑡+1|𝑥𝑡 , … , 𝑥𝑡−𝑛+1)                                                  (8) 

or 

                  𝐻(𝑥𝑡+1|𝑥𝑡 , 𝑥𝑡−1 … ) = H(𝑥𝑡+1|𝑥𝑡 , … , 𝑥𝑡−𝑛+1)                                                 (9) 

 

The Application of the Method 

    The field of wireless communications is expanding rapidly, recently. Error modeling in 

communication channels is a favorite approach applied for assessing the channel quality, 

examining the impact of errors, checking and testing the techniques to enhance the 

channel performance. Modeling wireless communication errors is substantial for 

simulation-based performance assessment of network protocols or for utilizing 

information about these error characteristics within a protocol. In this section, we will use 

the error data of the IEEE802.11a OFDM system for investigating the Markov property 

and finding its order by the exact significance test. OFDM is a promising modulation 

scheme for advanced communications networks. This technology is appropriate for high 

data rates with sufficient robustness to channel imperfections and frequency selective 

channels. The IEEE802.11a is an amendment to the 802.11 standard for wireless LANs. 

It is of the requirement that is mostly known as Wi-Fi which enables us easy Internet 

connections. The IEEE802.11a standard can produce a high level of performance. The 

comparison of IEEE802.11a with other IEEE802.11 standards can be found in 

(Abdelrahman R. B. M., Mustafa A. B. A.,Osman A. A., 2015). The specification 

employs a modulation scheme known as Orthogonal Frequency-division multiplexing 

(OFDM) which is robust against the effects of multipath propagation. The multicarrier 

structure, low symbol rate, coding and forward error correction of OFDM make it 

operable in channel conditions degraded by jamming and fading. It is spectrally efficient 

and can combat Inter Symbol Interference (ISI) and reduce Inter Carrier Interference 

(ICI); Moreover, the orthogonality preservation methods in this model are much simpler 

than CDMA or TDMA. The block diagram for Markov modeling of the generated burst 

errors from the simulation of an OFDM link is given in Figure 1. The serial to parallel/ 

parallel to serial, modulation, demodulation, Inverse Fast Fourier Transform and Fast 

Fourier Transform (IFFT and FTT) are included in OFDM block, Moreover, to 

circularize the channel effect a redundancy known as a cyclic prefix is considered. The 

impact of both Multipath-fading and AWGN has been incorporated. The error sequence 
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as a consequence of imperfections in the transmitter, channel and receiver is achieved by 

comparing the transmitted and received signal. 

 
Figure 1: Block diagram for computing error vector and Markov modeling for OFDM. 

 

In our application, the FFT size is 64 and the number of data subcarriers is 52. A 22 

MIMO OFDM system in Rayleigh fading channel with zero force receiver and BPSK 

modulation is considered. For the 5200 and 7280 binary error data, 400 and 300 surrogate 

data were produced, respectively to perform the exact significant test. This test is 

conducted and the p-values were computed for the zero to fourth order Markov test 

applying the same technique explained above with the block entropy as the 

discriminating statistic. The alternative hypothesis is one order higher than the order of 

the null hypothesis. To test the nth-order null hypothesis with the generated surrogate 

data, we compare the (n+1)th order block entropy of the data with the distribution 

produced by the surrogates. Block entropy histograms of the surrogate data for each order 

of two examples are shown in Figures 2 and 3, with a solid vertical bar indicating the 

corresponding block entropy of the error Wi-Fi data. The p-value is shown next to the 

solid bar which indicates the fraction of surrogate data entropies equal to or less than the 

entropy of observed data. In both figures, the p-values of order zero admit the existence 

of the Markov property of Wi-Fi error data at significance level α=0.05; Moreover, the p-

values of order one (p=0.473 and p=0.302 for 300 and 400 surrogate data, respectively) 

are consistent with data and certify that Markov model with order one is the best model 

for modeling the IEEE802.11a error data. 
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Figure 2: Block entropy histograms of the surrogate data for Markov orders zero through 

four, respectively. Solid vertical bars show the corresponding block entropy of the errors 

of the IEEE 802.11a OFDM system with 5200 binary error data and 400 surrogate data. 

 

 

 
 

Figure 3: Block entropy histograms of the surrogate data for Markov orders zero through 

four, respectively. Solid vertical bars show the corresponding block entropy of the errors 

of the IEEE 802.11a OFDM system with 7280 binary error data and 300 surrogate data. 

Conclusions 

In this paper, we have explained the asymptotic chi square and new exact test of the null 

hypothesis that a Markov chain is from nth order. The exact test algorithm is more 

precise for small data than the asymptotic chi square test. This algorithm is according to 

Whittle's formula which generates the surrogate data sets with the same word transition 

1.9984 1.9986 1.9988 1.999 1.9992 1.9994 1.9996 1.9998 2
0

200

400
 p = 0.0375

2.9972 2.9974 2.9976 2.9978 2.998 2.9982 2.9984 2.9986 2.9988
0

50

100
 p = 0.302

3.995 3.9955 3.996 3.9965 3.997 3.9975 3.998 3.9985
0

50

100
 p = 0.265

4.9905 4.991 4.9915 4.992 4.9925 4.993 4.9935 4.994 4.9945 4.995 4.9955
0

50

100
 p = 0.875

5.987 5.988 5.989 5.99 5.991 5.992 5.993 5.994
0

50

100
 p = 0.2

1.9982 1.9984 1.9986 1.9988 1.999 1.9992 1.9994 1.9996
0

100

200
 p = 0.01

2.997 2.9972 2.9974 2.9976 2.9978 2.998
0

50

100
 p = 0.473

3.9945 3.995 3.9955 3.996 3.9965 3.997
0

50

100
 p = 0.427

4.9925 4.993 4.9935 4.994 4.9945 4.995 4.9955
0

50
 p = 0.81

5.988 5.9885 5.989 5.9895 5.99 5.9905 5.991 5.9915 5.992 5.9925 5.993
0

50
 p = 0.587



Shaghayegh Kordnoori,Hamidreza Mostafaei,Mohammad Hassan Behzadi 

Pak.j.stat.oper.res.  Vol.XV  No.III 2019  pp617-625 624 

counts as the observed sequence. We have applied the Whittle's algorithm together with 

the entropy rate statistics for the IEEE802.11a (Wi-Fi) standard errors based on OFDM 

modulation to test the Markov property and the proper order. We have concluded that 

these errors have Markov property and their proper order is one. This approach is simple 

and there is no need for calculating the degrees of freedom or correcting for the small 

sample size. 
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