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Abstract 
In this paper, we propose a new distribution, namely alpha-beta-skew generalized t distribution. The proposed 

distribution is really flexible and includes as special models some important distributions like Normal, t-

student, Cauchy and etc as its marginal component distributions. It features a probability density function 

with up to three modes. The moment generating function as well as the main moments are provided. Inference 

is based on a usual maximum-likelihood estimation approach and a small Monte Carlo simulation is 

conducted for studying the asymptotic properties of the maximum-likelihood estimate. The usefulness of the 

new model is illustrated in a real data.  

 

Keywords:   𝑡 distribution, Maximum likelihood, Moments method, Skew distribution. 

 

Introduction  

Traditionally, the normality assumption is one of the conditions in statistical procedures. 

However, in most cases of real-life problems, the normality assumption has not established 

and non-normal distributions for modeling data sets having skewness and/or kurtosis are 

more prevalent, see for example (Tiku and eatl,2011) and (Celik and eatl , 2015). 

Therefore, the construction of the non-normal distributions has been an enormous interest 

and attracted the attention of researchers. 

The Generalized t distribution was defined by (McDonald and Newey,1998) to develop a 

partially adaptive M-regression procedure. The procedure includes many other estimation 

methods such as least squares, least absolute deviation and 𝐿𝑝. It has been followed up 

more recently by (Theodossiou,1998) and (Arslan and Genç,2003). 

Suppose the random variable X have the generalized t distribution, then the probability 

density function (pdf) is,  

 𝑓𝐺𝑇(𝑥, 𝜎, 𝑝, 𝑞) =
𝑝

2𝜎𝑞1/2𝐵(1/𝑝,𝑞)
(1 +

|𝑥|𝑝

𝑞𝜎𝑝)
−(𝑞+1/𝑝)

,   𝑥 ∈ 𝑅,                     (1) 
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 where 𝜎,  𝑝,  𝑞 are distributional parameters, 𝜎 corresponds to the standard deviation, 𝑝 

and 𝑞 are parameters corresponding to the shape of distribution, 𝐵(⋅,⋅)is the Beta function 

and denoted by 𝑋 ∼ 𝐺𝑇(𝜎, 𝑝, 𝑞). The shape parameters 𝑝 and 𝑞 control the tails of the 

distribution. Larger values of 𝑝 and 𝑞 are associated with thinner tails of the distribution. 

Similarly, smaller values of the shape parameters correspond to thicker tails. Thus, the GT 

distribution is useful in accommodating both leptokurtic and platykurtic symmetric 

unimodal distributions. 

The GT distribution has several important subdistributions as special or limiting cases of 

the shape parameters. For example, for 𝑝 = 2, we get the usual t distribution with 2𝑞 

degrees of freedom, and for 𝑝 → ∞ and 𝑞 → ∞, we get the uniform and power exponential 

distributions, respectively. Figure 0 shows the distribution tree of the GT distribution 

family. 

 

 

  
Figure  1: Distribution tree of the GT distribution family 

Skew symmetric distributions is a rapidly growing and they have attracted significant 

attention in climatology, economics, finance and other areas of the sciences. A random 

variable 𝑌 is said to have the skew symmetric distribution if its pdf is given by  

                                 𝑔(𝑦) = 2𝑓(𝑦)𝐹(𝛾𝑦),                                                                 (2) 

 where −∞ < 𝛾 < ∞ and 𝑓 and 𝐹 are valid pdf and cdf (respectively) of a distribution 

symmetric around 0 (see, for example, (Gupta and eatl,2002) ). If one takes 𝑓 in Equation 

(2) to be given as Equation (1) then one would have the skew generalized t distribution. 

The calculation of the mathematical properties of this distribution and their applications 

could be find in (Theodossiou,1998) and (Nadarajah,2008). 

Recently (Acitas,2015), introduced a new class of skew generalized t distributions called 

alpha-skew generalized t distribution, with the pdf,  

      𝑔𝐴𝑆𝐺𝑇(𝑥; 𝛼, 𝑝, 𝑞) =
(1−𝛼𝑥)2+1

2+𝛼2𝑐(𝑝,𝑞)
𝑓𝐺𝑇(𝑥; 𝑝, 𝑞),   𝑥 ∈ 𝑅, 𝑝𝑞 > 2                 (3) 

where, 



The Alpha-Beta Skew Generalized t Distribution: Properties and Applications 

Pak.j.stat.oper.res.  Vol.XV  No. III 2019  pp605-616 607 

𝑐(𝑝, 𝑞) =
𝑞

2

𝑝𝛤 (
3

𝑝
) 𝛤 (𝑞 −

2

𝑝
)

𝛤 (
1

𝑝
) 𝛤(𝑞)

 

The aim of this paper is to introduce a new family of distributions as an extension of alpha 

skew generalized t distribution with the pdf (3). The rest of this paper is organized as 

follows: In Section 2, the new family of distributions is defined and studied in details. In 

Section 3, the random variable generating method has been investigated. The usual 

maximum-likelihood estimation approach are derived in in Section 4 and the simulation 

study is performed using Monte Carlo method. Finally, in Section 5, to illustrate the 

applicability of the proposed model, two real data sets are analysed.  

Alpha-Beta-Skew Generalized t Distribution 

Hazarika and Chakraborty(2014) defined the alpha skew logistic distribution and Shafaei 

et.al (2016) defined alpha beta skew normal distribution. In this Section, the new family of 

distributions is introduced. This new family of skew distributions include alpha beta skew 

normal distribution as especial case. it can use also for modeling heavy tailed data. 

Definition 2.1 (ABSGT distribution)  The random variable 𝑍 follows the alpha-beta-skew 

generalized t distribution, denoted by 𝐴𝐵𝑆𝐺𝑇(𝛼, 𝛽, 𝑝, 𝑞), if it has the pdf,  

𝑔𝐴𝐵𝑆𝐺𝑇(𝑧; 𝛼, 𝛽, 𝑝, 𝑞) =
(1 − 𝛼𝑧 − 𝛽𝑧3)2 + 1

2 + 𝑑(𝛼, 𝛽, 𝑝, 𝑞)
 

                                 ×
𝑝

2𝜎𝑞1/2𝐵(1/𝑝,𝑞)
(1 +

|𝑧|𝑝

𝑞𝜎𝑝)
−(𝑞+1/𝑝)

,                                            (4) 

 where,  

𝑑(𝛼, 𝛽, 𝑝, 𝑞) = 𝛼2
𝑞2/𝑝𝛤(

3

𝑝
)𝛤(𝑞 −

2

𝑝
)

𝛤(
1

𝑝
)𝛤(𝑞)

+ 2𝛼𝛽 (
𝑞4/𝑝𝛤(

5

𝑝
)𝛤(𝑞 −

4

𝑝
)

𝛤(
1

𝑝
)𝛤(𝑞)

) 

 +𝛽2
𝑞6/2𝛤(

7

𝑝
)𝛤(𝑞−

6

𝑝
)

𝛤(
1

𝑝
)𝛤(𝑞)

. 

Theorem 2.2 The presented density function in definition 2.1, is a proper probability 

density function.  

  

Proof. Let,  

 𝑓𝐺𝑇(𝑥; 𝑝, 𝑞) =
𝑝

2𝜎𝑞1/2𝐵(1/𝑝,𝑞)
(1 +

|𝑧|𝑝

𝑞𝜎𝑝)
−(𝑞+1/𝑝)

, 

So we have,  

 
( )( ) (

2
3 2 3 21 1 ( ; , ) = (1 ) 1 2 (1 ) 1GTx x f x p q dx x x x       − − + − + − − +    

 
 +(2𝛽𝑥3 + 2𝛽𝛼2𝑥5 + 𝛽2𝑥6))𝑓𝐺𝑇(𝑥; 𝑝, 𝑞)𝑑𝑥 

 = 𝑐(𝑝, 𝑞) ∫ 𝑔𝐴𝑆𝐺𝑇(𝑥; 𝑝, 𝑞)𝑑𝑥 − 2𝛽𝐸𝐴𝑆𝐺𝑇(𝑋3) 

 +2𝛽𝐸𝐺𝑇(𝑋3) + 2𝛽𝛼2𝐸𝐺𝑇(𝑋5) + 𝛽2𝐸𝐺𝑇(𝑋6) 

 Where 𝑐(𝑝, 𝑞) is defined by equation (3). 

and because of symmetry of GT distribution, for odd values of 𝑛 we have 𝐸𝐺𝑇(𝑋𝑛) = 0, 

and for even values of 𝑛,  

𝐸𝐺𝑇(𝑋𝑛) =
𝑞𝑛/2𝛤(

𝑛+1

𝑝
)𝛤(𝑞 −

𝑛

𝑝
)

𝛤(
1

𝑝
)𝛤(𝑞)

, 
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Also,  

 𝐸𝐴𝑆𝐺𝑇(𝑋𝑛) = {

𝑞𝑛/2𝛤(
𝑛+1

𝑝
)𝛤(𝑞−

𝑛

𝑝
)

𝛤(
1

𝑝
)𝛤(𝑞)

,  nisodd,

0,  niseven.

 

And by some simple computation, the proof is completed.  

Definition 2.3 If 𝑍 ∼ 𝐴𝐵𝑆𝐿𝐺(𝛼, 𝛽, 𝑝, 𝑞), then 𝑌 = 𝜇 + 𝜎𝑍 is said to be the location (𝜇) 

and scale extension (𝜎) of 𝑍 and has the pdf,  

 𝑓𝑍(𝑧; 𝛼, 𝛽, 𝑝, 𝑞, 𝜇, 𝜎) =
(1−𝛼(

𝑦−𝜇

𝜎
)−𝛽(

𝑦−𝜇

𝜎
)

3
)

2

+1

2+𝑑(𝛼,𝛽,𝑝,𝑞)
 

 ×
𝑝

2𝜎𝑞1/2𝐵(1/𝑝,𝑞)
(1 +

|
𝑦−𝜇

𝜎
|𝑝

𝑞𝜎𝑝
)

−(𝑞+1/𝑝)

. 

This fact is denoted by 𝑌 ∼ 𝐴𝐵𝑆𝐺𝑇(𝛼, 𝛽, 𝑝, 𝑞, 𝜇, 𝜎).  

 In the following, without loss of generality, we assume 𝜇 and 𝜎 equals 0 and 1 respectively. 

When 𝛼 tends to ±∞ in equation (4), the pdf becomes  

 𝑔𝐵𝐺𝑇(𝑧; 𝑝, 𝑞) = 𝑧2𝑓𝐺𝑇(𝑧; 𝑝, 𝑞),   −∞ < 𝑧 < ∞,  𝑝𝑞 > 2.                             

(5) 

 It is easy to see that the function given in equation (5) is also a pdf. Thus, this limiting case 

of ABSGT is called a bimodal generalized t (BGT) distribution. BGT is symmetric and 

bimodal distribution. It can be seen as an extension of Elal-Olivero’s bimodal normal 

distribution. 

Proposition 2.4 expresses the cdf of Eqution 4 in terms of the incomplete beta function 

ratio. The cdf of generalized t distribution is obtained by (Nadarajah,2008) and 

(Acitas,2015) by following the lines of (Nadarajah,2008), obtained the cdf of ASGT 

distribution. In the proposition 2.4 we get the cdf of ABSGT by following the similar lines. 

 

Proposition 2.4  Let 𝑍 ∼ 𝐴𝐵𝑆𝐺𝑇(𝛼, 𝛽, 𝑝, 𝑞) then the cdf of random variable Z is given as,  

𝐺𝐴𝐵𝑆𝐺𝑇(𝑧) =
1

2 + 𝑑(𝛼, 𝛽, 𝑝, 𝑞)
{2𝐹𝐺𝑇(𝑧) − 2𝛼𝐺1(𝑧) + 𝛼2𝐺2(𝑧) 

 −2𝛽𝐺3(𝑧) + 2𝛼𝛽𝐺4(𝑧) + 𝛽2𝐺6(𝑧)} 

 Such that,  

 𝐹𝐺𝑇(𝑧) = {

1

2
−

1

2
𝐼

(1−
1

1+(−𝑧)𝑝/𝑞)
(

1

𝑝
, 𝑞) , 𝑧 < 0,

1

2
+

1

2
𝐼

(1−
1

1+𝑧𝑝/𝑞)
(

1

𝑝
, 𝑞) , 𝑧 ≥ 0.

 

and,  

 𝐺𝑖(𝑧) =
𝑞𝑖/𝑝𝛤(

𝑖+1

𝑝
)𝛤(𝑞−

𝑖

𝑝
)

𝛤(
1

𝑝
)𝛤(𝑞)

{

1

2
−

1

2
𝐼

(1−
1

1+(−𝑧)𝑝/𝑞)
(

𝑖+1

𝑝
, 𝑞 −

𝑖

𝑝
) , 𝑧 < 0,

1

2
+

1

2
𝐼

(1−
1

1+𝑧𝑝/𝑞)
(

𝑖+1

𝑝
, 𝑞 −

𝑖

𝑝
) , 𝑧 ≥ 0.

 

where 𝐼𝑦(𝑎, 𝑏) denotes the incomplete beta function.  

 Proof. The cdf of ABSGT is obtained as shown below.  

 𝐺𝐴𝐵𝑆𝐺𝑇(𝑧) = ∫
𝑧

−∞
𝑔𝐴𝐵𝑆𝐺𝑇(𝑡)𝑑𝑡 = ∫

𝑧

−∞

(1−𝛼𝑡−𝛽𝑡3)
2

+1

2+𝑑(𝛼,𝛽,𝑝,𝑞)
𝑓𝐺𝑇(𝑡; 𝑝, 𝑞)𝑑𝑡 

 =
1

2+𝑑(𝛼,𝛽,𝑝,𝑞)
∫

𝑧

−∞
(2 − 2𝛼𝑡 + 𝛼2𝑡2 − 2𝛽𝑡3 + 2𝛼𝛽𝑡4 + 𝛽2𝑡6)𝑓𝐺𝑇(𝑡; 𝑝, 𝑞)𝑑𝑡 

 =
1

2+𝑑(𝛼,𝛽,𝑝,𝑞)
(2 ∫

𝑧

−∞
𝑓𝐺𝑇(𝑡; 𝑝, 𝑞)𝑑𝑡 − 2𝛼 ∫

𝑧

−∞
𝑡𝑓𝐺𝑇(𝑡; 𝑝, 𝑞)𝑑𝑡 



The Alpha-Beta Skew Generalized t Distribution: Properties and Applications 

Pak.j.stat.oper.res.  Vol.XV  No. III 2019  pp605-616 609 

 +𝛼2 ∫
𝑧

−∞
𝑡2𝑓𝐺𝑇(𝑡; 𝑝, 𝑞)𝑑𝑡 − 2𝛽 ∫

𝑧

−∞
𝑡3𝑓𝐺𝑇(𝑡; 𝑝, 𝑞)𝑑𝑡 

 +2𝛼𝛽 ∫
𝑧

−∞
𝑡4𝑓𝐺𝑇(𝑡; 𝑝, 𝑞)𝑑𝑡 + 𝛽2 ∫

𝑧

−∞
𝑡6𝑓𝐺𝑇(𝑡; 𝑝, 𝑞)𝑑𝑡. 

 Let  

 𝐹𝐺𝑇(𝑧) = ∫
𝑧

−∞
𝑓𝐺𝑇(𝑡; 𝑝, 𝑞)𝑑𝑡,  𝐺𝑖(𝑧) = ∫

𝑧

−∞
𝑡𝑖𝑓𝐺𝑇(𝑡; 𝑝, 𝑞)𝑑𝑡, 

then the main idea for obtaining 𝐹𝐺𝑇(⋅)and 𝐺𝑖(⋅)is 𝑢 = 1 −
1

1−
𝑡𝑝

𝑞

 transformation for 𝑝 > 0, 

see (Nadarajah,2008) and (Acitas,2015) for details.  

Some basic properties of the ABSGT distribution are stated next.  

Proposition 2.5 Let 𝑍 ∼ 𝐴𝐵𝑆𝐺𝑇(𝛼, 𝛽, 𝑝, 𝑞) then,   

    1.  if 𝛽 = 0, then 𝑍 ∼ 𝐴𝑆𝐺𝑇(𝛼, 𝑝, 𝑞),  

    2.  if 𝛼 = 0, the pdf (4) is simplified as the following:  

 𝑓(𝑧; 𝛽, 𝑝, 𝑞) =
(1−𝛽𝑧3)+1

2+
𝑞6/2𝛤(

7
𝑝

)𝛤(𝑞−
6
𝑝

)

𝛤(
1
𝑝

)𝛤(𝑞)
𝛽2

× 𝑓𝐺𝑇(𝑧; 𝑝, 𝑞),   𝑧 ∈ 𝑅. 

The above equation is referred to as the beta skew generalized t distribution.  

    3.  if 𝛼 = 0,  𝛽 = 0, 𝑍 ∼ 𝐺𝑇(𝑝, 𝑞) ,  

    4.  𝛽 = 0 and 𝑝 = 2, we get the pdf of alpha-Skew Student’s t distribution,  

    5.  if 𝛽 = 0, 𝑝 = 2 and 𝑞 → ∞, we get the pdf of alpha skew normal distribution,  

    6.  if 𝑝 = 2 and 𝑞 → ∞, we get the pdf of alpha beta normal distribution,  

    7.  if 𝛽 = 0 and 𝑞 → ∞, we get the pdf of alpha-skew power exponentialdistribution,  

    8.  if 𝛽 = 0, 𝑝 = 1 and 𝑞 → ∞, we get the pdf of alpha-skew Laplace distribution  

 Proposition 2.6 Let 𝑍 ∼ 𝐴𝐵𝑆𝐺𝑇(𝛼, 𝛽, 𝑝, 𝑞) then,   

    1.  if 𝑍 ∼ 𝐴𝐵𝑆𝐺𝑇(𝛼, 𝛽, 𝑝, 𝑞), then −𝑍 ∼ 𝐴𝐵𝑆𝐺𝑇(−𝛼, −𝛽, 𝑝, 𝑞),  

    2.  if 𝑍 ∼ 𝐴𝐵𝑆𝐺𝑇(𝛼, 𝛽, 𝑝, 𝑞), then 𝑎𝑍 ∼ 𝐴𝐵𝑆𝐺𝑇(𝑎𝛼, 𝑎𝛽, 𝑝, 𝑞),  

Figure 5.1 presents the ABSGT pdf for different choices of the parameters 𝛼 and 𝛽. It can 

be seen from Figure 5.1 that the proposed model has at most three modes, also the effects 

on the skewness can be seen. 
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Figure  2:  The pdf of the 𝐴𝐵𝑆𝐺𝑇(𝛼, 𝛽) distribution for some selected values of the 

parameters. 

 Moments 

 In this subsection, moments of ABSGT distribution are derived. As a result, the skewness 

and the kurtosis measures are given. Here, it should be realized that the even and the odd 

moments of ABSGT distribution can be obtained by using the moments of GT distribution. 

This is because of the fact that the pdf of ABSGT distribution includes the pdf of GT 

distribution. The following proposition gives for both even and odd n values of 𝐸(𝑍𝑛) 

based on this phenomena where 𝑍 ∼ 𝐴𝐵𝑆𝐺𝑇(𝛼, 𝛽, 𝑝, 𝑞). 

Proposition 3.1 Let 𝑍 ∼ 𝐴𝐵𝑆𝐺𝑇(𝛼, 𝛽, 𝑝, 𝑞) then for 𝑘 ∈ 𝑁,  

 𝜇2𝑘 = 𝐸(𝑍2𝑘) =
1

2+𝑑(𝛼,𝛽,𝑝,𝑞)
[

2𝑞2𝑘/𝑝𝛤(
2𝑘+1

𝑝
)𝛤(𝑞−

2𝑘

𝑝
)

𝛤(
1

𝑝
)𝛤(𝑞)

+ 

 
𝛼2𝑞2(𝑘+1)/𝑝𝛤(

2𝑘+3

𝑝
)𝛤(𝑞−

2𝑘+2

𝑝
)

𝛤(
1

𝑝
)𝛤(𝑞)

] 

 +
2𝛽

2+𝑑(𝛼,𝛽,𝑝,𝑞)
[

𝛼2𝑞2(𝑘+1)+1/𝑝𝛤(
2(𝑘+1)+1

𝑝
)𝛤(𝑞−

2𝑘

𝑝
)

𝛤(
1

𝑝
)𝛤(𝑞)

] 

 +𝛽2 1

2+𝑑(𝛼,𝛽,𝑝,𝑞)
[

2𝑞2(𝑘+3)/𝑝𝛤(
2𝑘+7

𝑝
)𝛤(𝑞−

2(𝑘+3)

𝑝
)

𝛤(
1

𝑝
)𝛤(𝑞)

 

 +
𝛼2𝑞2(𝑘+4)/𝑝𝛤(

2𝑘+9

𝑝
)𝛤(𝑞−

2(𝑘+4)

𝑝
)

𝛤(
1

𝑝
)𝛤(𝑞)

],                                                      (6) 

 and  

 𝜇2𝑘−1 = 𝐸(𝑍2𝑘−1) = −
1

2+𝑑(𝛼,𝛽,𝑝,𝑞)
[

2𝛼2𝑞2𝑘/𝑝𝛤(
2𝑘+1

𝑝
)𝛤(𝑞−

2𝑘

𝑝
)

𝛤(
1

𝑝
)𝛤(𝑞)

] 

 −2𝛽
1

2+𝑑(𝛼,𝛽,𝑝,𝑞)
[

2𝑞2(𝑘+1)/𝑝𝛤(
2𝑘+3

𝑝
)𝛤(𝑞−

2(𝑘+1)

𝑝
)

𝛤(
1

𝑝
)𝛤(𝑞)

 

 +
𝛼2𝑞2(𝑘+1)/𝑝𝛤(

2𝑘+3

𝑝
)𝛤(𝑞−

2𝑘+2

𝑝
)

𝛤(
1

𝑝
)𝛤(𝑞)

] 
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 +2𝛽
1

2+𝑑(𝛼,𝛽,𝑝,𝑞)
[

2𝑞2(𝑘+1)/𝑝𝛤(
2𝑘+3

𝑝
)𝛤(𝑞−

2(𝑘+1)

𝑝
)

𝛤(
1

𝑝
)𝛤(𝑞)

] 

 +2𝛼2𝛽
1

2+𝑑(𝛼,𝛽,𝑝,𝑞)
[

2𝑞2(𝑘+2)/𝑝𝛤(
2𝑘+5

𝑝
)𝛤(𝑞−

2(𝑘+2)

𝑝
)

𝛤(
1

𝑝
)𝛤(𝑞)

].                      (7) 

 Proof. We have,  

 𝜇2𝑘−1 = 𝐸(𝑍2𝑘−1) = ∫ 𝑧2𝑘−1𝑓𝐴𝐵𝑆𝐺𝑇(𝑧; 𝛼, 𝛽, 𝑝, 𝑞)𝑑𝑧 

 = ∫ 𝑧2𝑘−1 (1−𝛼𝑧−𝛽𝑧3)
2

+1

𝑑(𝛼,𝛽,𝑝,𝑞)
𝑓𝐺𝑇(𝑧; 𝑝, 𝑞)𝑑𝑧 

 =
1

2+𝑑(𝛼,𝛽,𝑝,𝑞)
∫ (2𝑧2𝑘−1 − 2𝛼𝑧2𝑘+1 + 𝛼2𝑧2𝑘+1 

 −2𝛽𝑧2𝑘+2 + 2𝛼𝛽𝑧2𝑘+3 + 𝛽2𝑧2𝑘+5)𝑓𝐺𝑇(𝑧; 𝑝, 𝑞)𝑑𝑧 

 =
1

2+𝑑(𝛼,𝛽,𝑝,𝑞)
(𝐸𝐴𝑆𝐺𝑇(𝑍2𝑘−1) − 2𝛽𝐸𝐴𝑆𝐺𝑇(𝑍2𝑘+2) 

 +2𝛽𝐸𝐺𝑇(𝑍2𝑘+2) + 2𝛼2𝛽𝐸𝐺𝑇(𝑍2𝑘+4) + 𝛽2𝐸𝐺𝑇(𝑍2𝑘+5)) 

 According to (Acitas,2015), results are obtained. Similarly,  

 𝜇2𝑘 = 𝐸(𝑍2𝑘) =
1

2+𝑑(𝛼,𝛽,𝑝,𝑞)
(𝐸𝐴𝑆𝐺𝑇(𝑍2𝑘) − 2𝛽𝐸𝐴𝑆𝐺𝑇(𝑍2𝑘+3) 

 +2𝛽𝐸𝐺𝑇(𝑍2𝑘+3) + 2𝛼2𝛽𝐸𝐺𝑇(𝑍2𝑘+5) + 𝛽2𝐸𝐺𝑇(𝑍2𝑘+6)) 

 By some simple computation, results are obtained.  

 

In Table 1, we give the skewness and the kurtosis values of ABSGT distribution for some 

selected values of the shape parameters. It is obvious that Table 1 provides extra 

information for modeling performance of ABSGT distribution. 

  

Table  1:  The skewness and the kurtosis values of the ABSGT distribution based on 

some selected values of the shape parameters 𝜶, 𝜷, 𝒑 and 𝒒. 

𝛼 𝛽 p q skewness √𝛽1 kurtosis 𝛽2 

.1 0 10 0.5 0 3.5 

1 0 4 8 0.4 2.7 

1 0 10 2 0.6 2.5 

3 0 2 5 0.6 3.9 

.01 0.25 10 5 -0.012 14.11 

-0.1 0.1 10 5 -28.07 74.84 

.05 -1 6 10 -0.42 62.37 
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Figure  3: The kurtosis function of 𝐴𝐵𝑆𝐺𝑇 distribution function with p = 2 and q = 10. 

 

 
Figure  4: The skewness function of 𝐴𝐵𝑆𝐺𝑇 distribution function with p = 4 and q = 25. 

   

As shown in fihures 3 ,4, onecan see that this model is useful for modeling various type of 

data(right skew, symmetric and left skew) with wide range of skewness and kurtosis. 

 

Parameter Estimation 

Let the data set 𝒙 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) be modelled by the 𝐴𝐵𝑆𝐺𝑇(𝛼, 𝛽, 𝑝, 𝑞) distribution. In 

this section, the problem of estimating the parameters 𝛼, 𝛽, 𝑝 and 𝑞 based on 𝒙 is studied. 

From Equation 4, the associated log-likelihood function (LLF) reads 

 

 ℓ = 𝑙𝑛 𝐿 (𝛼, 𝛽, 𝑝, 𝑞; 𝒙) = −𝑛(𝑙𝑛( 2 + 𝛼2 + 40𝛽2 + 8𝛼𝛽) 

 − 𝑙𝑛( 𝑝) + 𝑙𝑛( 2𝜎𝑞1/2𝐵(1/𝑝, 𝑞))) (8) 

 + ∑𝑛
𝑖=1 𝑙𝑛( (1 − 𝛼𝑥𝑖 − 𝛽𝑥𝑖

3)2 + 1) − (𝑞 + 1/𝑝) 𝑙𝑛 (1 +
|𝑥𝑖|𝑝

𝑞𝜎𝑝 ) 

 

We will refer to a maximum-likelihood estimate as any point in the parameter space at 

which the likelihood function has the global maximum. Taking the derivatives of equation 

(8) with respect to the parameters and setting them to zero yield the following likelihood 

equations:  

 
𝜕ℓ

𝜕𝛼
= −

𝑛(2𝛼+8𝛽)

𝛼2+8𝛽𝛼+40𝛽2+2
− ∑𝑛

𝑖=1
2𝑥𝑖(−𝑥𝑖𝛼−𝛽𝑥𝑖

3+1)

(−𝑥𝑖𝛼−𝛽𝑥𝑖
3+1)

2
+1

= 0 

 
𝜕ℓ

𝜕𝛽
= −

𝑛(80𝛽+8𝛼)

40𝛽2+8𝛼𝛽+𝛼2+2
− ∑𝑛

𝑖=1
2𝑥𝑖

3(−𝑥𝑖
3𝛽−𝛼𝑥𝑖+1)

(−𝑥𝑖
3𝛽−𝛼𝑥𝑖+1)

2
+1

= 0 

 
𝜕ℓ

𝜕𝑝
= −

𝑛

𝑝
−

𝛹0(
1

𝑝
+𝑞)

𝑝2 +
𝛹0(

1

𝑝
)

𝑝2  

 + ∑𝑛
𝑖=1

𝑙𝑛(
|𝑥𝑖|

𝑝

𝑞𝜎𝑝 +1)

𝑝2
−

(
|𝑥𝑖|

𝑝
𝑙𝑛(|𝑥𝑖|)

𝑞𝜎𝑝 −
𝑙𝑛(𝜎)|𝑥𝑖|

𝑝

𝑞𝜎𝑝 )(
1

𝑝
+𝑞)

|𝑥𝑖|
𝑝

𝑞𝜎𝑝 +1

= 0 

 
𝜕ℓ

𝜕𝑞
= 𝛹0 (𝑞 +

1

𝑝
) − 𝛹0(𝑞) +

1

2𝑞
 

 + ∑𝑛
𝑖=1

|𝑥𝑖|𝑝(𝑞+
1

𝑝
)

𝜎𝑝(
|𝑥𝑖|

𝑝

𝜎𝑝𝑞
+1)𝑞2

− 𝑙𝑛 (
|𝑥𝑖|𝑝

𝜎𝑝𝑞
+ 1) = 0 
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 Note that the likelihood equations are not in a simple closed form. Therefore, the 

maximumlikelihood estimators have to be calculated through some numerical procedures, 

for example, the Newton–Raphson and the L-BFGS-B (limited memory Broyden-Fletcher-

Goldfarb-Shanno method to solve the bound constrained optimization problem) methods. 

The programs such as R provide computing routines for solving such nonlinear 

optimization problems. A few words can be said about the initial guesses of the parameters 

by visual inspection as follows. We first draw the histogram of the data set under study and 

then draw some pdfs over it. We then search the best, that is, the most likelihood, 

superimposed fit since it is important to choose near values to the true values. The 

parameter values in the best fit can be chosen as the initial guesses. 

In the rest of this section, a small Monte Carlo simulation experiment is conducted to 

evaluate the maximum likelihood estimation of the 𝐴𝐵𝑆𝐺𝑇(𝛼, 𝛽, 𝑝, 𝑞) distribution 

parameters. The sample sizes and true values of the parameters considered were 𝑛 =
20,40,70,100, 140,200,270,350,450,600 , 𝛼 = −1,0,1, and 𝛽 = −0.5,0,0.5, 𝑝 = 2 and 

𝑞 = 5 while the location and the scale parameters were set to 𝜇 = 0 and 𝜎 = 1. 

All results are obtained from 5000 Monte Carlo replications and the simulations were 

carried out using the package ’HI’ and ’stats’ in statistical software R. 

 

 
Figure  5: The mean square error of �̂� and �̂� vesus 𝑛. 

   Figures 5 represents the MSE of the parameters 𝛼 and 𝛽 for fixed values of another 

parameters in the model. As can be seen in the Figures  5 , by increasing the sample size, 

the MSE of estimated parameters decreases. 

 

Real Data 

 In this section, we consider two real data sets to model with the ABSGT distribution. The 

first data set is an example of unimodal data called Roller data. Faithful geyser data is the 

second one which is bimodal. All data analyses were conducted in R program. The 

maximum-likelihood estimators for all the parameters were calculated using the optim 

function with the L-BFGS-B method in R program. Then, we find the inverse of the 

resulting Hessian matrix using the solve function. The square roots of the diagonal 
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elements of this inverse matrix give the standard errors of the estimates. We compared the 

proposed distribution 𝐴𝐵𝑆𝐺𝑇 with alpha-skew generalized t distribution of (Wahed and 

ali,2001) and 𝐴𝑆𝑁 of (Elal-Olivero,2010). Akaike Information Criterion (AIC) is used for 

model comparison. Further, since are nested models the likelihood ratio (LR) test is used 

to discriminate between them. The LR test is carried out to test the following hypothesis: 

𝐻0: 𝛽 = 0, that is the sample is drawn from 𝐴𝑆𝐺𝑇(𝛼, 𝑝, 𝑞, 𝜇, 𝜎) 

against the alternative 

𝐻1: 𝛽 ≠ 0, that is the sample is drawn from 𝐴𝐵𝑆𝐺𝑇(𝛼, 𝛽, 𝑝, 𝑞, 𝜇, 𝜎). 

 

Aplication 5.1 In this study, we model roller data by using ABSGT distribution. This data 

set has 1,150 observations which are available at http://lib.stat.cmu.edu/jasadata/laslett 

website, see also (Gómez,2011) and (Acitas,2015) who analyzed the same data. ML 

estimates of the parameters and AIC values are given in Table 2. By comparing the AICs, 

one can see the ABSLG distribution is the best among the fitted models. 

 

Table  2:  Estimates of the parameters and AIC for fitted model for real data. 

 𝛼 𝛽 𝜇 𝜎 𝑝 𝑞 AIC BIC 

ASN 0.0025 — 3.5363 0.6497 — — 2277.73 2292.87 

ASGT 0.3877 — 3.7838 0.6210 1.5208 5.8424 2154.36 2179.60 

ASLG 0.2291 — 3.802 0.331 — — 2165.062 2180.20 

ABSN -0.8117 0.1437 3.3337 0.6298 — — 2129.778 2149.96 

ABSGT 0.3642 0.1421 3.5171 0.6321 1.5321 4.8710 2032.65 2062.94 

 

AIC values suggest that ABSGT distribution is more reliable than ASN and ASGT 

distributions for roller data. It is also obvious from Figure 3 that ASGT provides a 

substantially good fitting than ASGT distribution. 

 
Figure  6:  The histogram and the fitted 𝐴𝑆𝐺𝑇 and 𝐴𝐵𝑆𝐺𝑇 densities for Roller data. 

  

 Results obtained from AIC are also supported by the following likelihood ratio test (LRT) 

given below. The value of LR test statistics is 42.1 which exceed the 95% critical value. 

Thus there is evidence in favors of the alternative hypothesis that the sampled data comes 
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from 𝐴𝐵𝑆𝐿𝐺 not from 𝐴𝑆𝐺𝑇. Note that (Acitas,2015) conclude that the ASGT distribution 

yields a better than the ASN. 

Aplication 5.2 Faithful geyser data includes 272 observations which denote the waiting-

time between eruptions and the duration-time of these eruptions for Old Faithful geyser in 

Yellow National Park, Wyoming, USA. This popular data is available at Rsystem and see 

also (Arellano-Valle,2010) in which it is indicated that data is negatively skewed and 

bimodal. In this study, we use ABSGT distribution to model this popular data and compare 

results with ASGT distribution. ML estimates of the parameters and AIC values for 

ABSGT, ASGT and ASN distributions are given in Table 3. The histogram and the fitted 

density for Faithful geyser data are given in Figure 4. 

   

Table  3:  Estimates of the parameters and AIC for fitted model for real data.  

   𝛼  𝛽  𝜇  𝜎 𝑝  𝑞   AIC  BIC 

ASN  -6.0772   —  3.2344  0.6857   —   —  633.90  644.71 

ASGT -7.7342   —   .2586  1.5169  16.2196  1.5262  549.31  567.34  

ASLG 1000 — 3.1687 0.3461 — — 719.60 730.42 

ABSN 1534.5479 762.3240 3.1643 0.4954 — — 617.99 632.41 

ABSGT -10.9143 -3.2509  3.2541 1.3427  12.2041  1.9124 509.87  531.50  

 

  The value of LR test statistics is 13.61 which exceed the 95% critical value. Thus, there 

is evidence in favors of the alternative hypothesis that the sampled data comes from 𝐴𝐵𝑆𝐺𝑇 

not from 𝐴𝑆𝐺𝑇. 

 
Figure  7:  The histogram and the fitted 𝐴𝑆𝐺𝑇 and 𝐴𝐵𝑆𝐺𝑇 densities for Eruption data. 

 

Conclusion 

 In this paper, we proposed a new family of distributions with one extra generator 

parameters, which includes as special cases of GT, ASGT, BSLG and BLG distributions 

and some of its basic properties are investigated which include moments, Skewness and 

Kurtosis functions, mean deviations. Also the below zero truncated version of the proposed 

distribution was presented as a potential life time distribution. The application of the new 

family is straightforward. The model parameters are estimated by maximum likelihood and 

two real examples are used for illustration, where the new family does fit well both data 

sets. 
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