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Abstract 
In the literature, there are a well-developed estimation techniques for the reliability assessment in 

multicomponent stress-strength models when the information about all the experimental units are available. 

However, in real applications, only observations that exceed (or fall below) the current value may be 

recorded. In this paper, assuming that the components of the system follow bathtub-shaped distribution, we 

investigate Bayesian estimation of the reliability of a multicomponent stress-strength system when the 

available data are reported in terms of record values. Considering squared error, linex and entropy loss 

functions, various Bayes estimates of the reliability are derived. Because there are not closed forms for the 

Bayes estimates, we will use Lindley’s method to calculate the approximate Bayes estimates. Further, for 

comparison purposes, the maximum likelihood estimate of the reliability parameter is obtained. Finally, 

simulation studies are conducted in order to evaluate the performances of the proposed procedures and 

analysis of real data sets is provided. 

 

Keywords: Bathtub-shaped model, Maximum likelihood technique, Bayesian viewpoint, 

Stress-strength model.  

 

1  Introduction 

The bathtub-shaped model specified by the probability density function (pdf)  

 0,>, 0,> ,=),;( )(11 


 zeezzf
zez −−  (1) 

and survival function  

 0,>, 0,> ,=),;( )(1 


 zezS
ze−  (2) 

was investigated by Chen (2000) as a new distribution useful to analyze lifetime data. 

Several authors discussed on inferential techniques for this model based on different 

complete and censored samples; see for example Ahmed (2014) and Wu et al. (2005). 

From now on bathtub-shaped model will be denoted as ),( BSH . 

For many years, stress-strength models are well used in diverse areas such as 

quality control, engineering and medicine. In reliability engineering the parameter 

)>(= YXPR  with the stress Y  and strength component X , shows the reliability of a 

system (Kotz et al. (2003)). Also, these models are used for comparison of two random 

variables. For example, comparison of capability of two workers, performances of two 
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new products, treatment effects of two drugs. Several authors have used different 

inference techniques to estimate the reliability parameter R  based on various approaches 

and distributional assumptions on ),( YX . Among others, Pak et al. (2014) studied non-

Bayesian and Bayesian estimation of the stress-strength parameter R  based on fuzzy 

observations. Estimation of )>( YXP  in the models with correlated stress and strength is 

studied by Balakrishnan and Lai (2009). Inference for the stress-strength systems with 

bivariate Pareto model is studied by Hanagal (1997). Abd Elfattah and Marwa (2011) 

considered Bayesian estimation of stress-strength exponential model by using different 

loss functions. Makhdoom et al. (2016) derived Bayesian estimates of the reliability in 

stress-strength models with power Lindley components. Akgul and Senoglu (2017) have 

used ranked set sampling to derive Weibull sress-strength parameter. 

Recently, several researchers pay attention to estimating the reliability in 

multicomponent stress-strength (MSS) models. In the MSS system there are m  identical 

and independent strength components and a common stress that functions when at least 

)(1 mrr   of the components survive. This MSS model is denoted as r -out-of- m : G  

system. For example, consider an automobile with a V-8 engine that works if four 

cylinders are firing. So, it can be represented as 4-out-of-8: G  system. Another example 

may be a suspension bridge with m  pairs of vertical cables such that the bridge  survives 

when at least r  number of vertical cables work. Inference on the reliability in MSS 

models when the stress and strength follow Weibull distribution is considered by 

Kizilaslan and Nadar (2015). Rao et al. (2012,2014)  conducted a series of studies to 

estimate the reliability of MSS models by assuming generalized exponential and Burr XII 

distributions for the components. They have used classical approaches to compute the 

reliability estimation in r -out-of- m : G  models. Nadar and Kizilaslan (2016) considered 

Marshal-Olkin bivariate Weibull distribution and provided some inference procedures for 

MSS models. Dey et al. (2016) addressed MSS models consisting of Kumaraswamy 

distributed random variables. 

The above inference for MSS models are derived when the complete information 

about all the involved units are available. However, in practice, we may deal with a 

record breaking data set in which only values larger (or smaller) than the current extreme 

value are reported. Using this type of data, we can save a lot in terms of cost and time. 

So, record data holds value in everyday life in the areas  such as hydrology, sports, 

weather forecast, meteorological analysis, economics and lifetests. Due to the wide 

applications, there is vast literature on inference based on record data. An account on this 

topic is available in the excellent book of Arnold et al. (1998). Asgharzadeh et al. (2018) 

studied inference based on Lindley record data. Raqab et al. (2018) considered estimation 

of the two-parameter bathtub-shaped distribution based on record data. Pak and Dey 

(2019) discussed on statistical inference for the power Lindley model based on record 

values and inter-record times. Selim (2018) considered estimation and prediction for 

Nadarajah-Haghighi distribution based on record values. Dasylva (2018) developed 

Design-Based estimation with record-linked administrative files.   

The objective of this paper is to provide Bayesian inferences on the reliability of 

r -out-of- m : G  models by using upper record values. Such inferences are important in 

comparing two record processes. For example, we can use it to compare extreme 

environmental conditions in different months and check whether there are significant 

seasonal effects. Other examples include comparisons of extreme events in different areas 

and comparison of athletic abilities of men and women. Here, we assume that the strength 
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and stress components are independent random variables distributed as bathtub-shaped 

model. First, maximum likelihood estimate (MLE) of the reliability parameter is derived. 

Then, considering various symmetric and asymmetric loss functions, some expressions 

are provided as the Bayes estimates of the reliability parameter. Since these expressions 

can not be simplified to nice closed forms, we employ Lindley’s technique to obtain  

approximate Bayes estimates of the reliability. 

 

The layout of this paper is as follows. Section 2 concerns ML estimation of the 

reliability parameter. Assuming squared error, linex and entropy loss functions, different 

Bayes estimates of the reliability are derived in Section 3. Simulation studies are 

conducted in Section 4 to assess the accuracy of the proposed methods and analysis of 

two real data sets is presented for illustrative purposes. 

 

2  Maximum likelihood estimation 

Suppose that the m  strength components of a MSS system are independent random 

variables (r.v.s) with the common cumulative distribution function (cdf) )(xG  and let 

)(yF  be the cdf of the stress r.v. Y . When the strength and stress components of the 

system follow ),( 1 BSH  and ),( 2 BSH , respectively, the reliability of MSS model 

can be obtained as 
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After simplification, the expression in (3) is expressed as 
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For simplicity, the reliability parameter mrR ,  is hereafter referred to as R . Let 

1,2,...}=,{ nZn  be a sequence of identical and independent random variables. An 

observation jZ  is called an upper record value if ij ZZ >  for all ji < . Considering this 

fact, the sequence 1},{ nSn  defined as: 1=1S  and }>:{min=
1−n

Sjn ZZjS , 2n  is 

called record time. Then, the sequence of upper record values is 1,2,...}=,={ nZX
n

Sn .  

Now assume that ),...,(=u 1 nuu  and ),...,(=v 1 kvv  be two sets of upper record 

values from ),( 1 BSH  and ),( 2 BSH , respectively. Then, the observed data 

likelihood function of 1 , 2  and   becomes 
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and the corresponding log-likelihood function is 
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The ML estimate of the parameters 1 , 2  and  , say 1̂ , 2̂  and ̂ , can be obtained 

using the following system of equations: 
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 Then, by using the invariance property of the MLEs, the ML estimate of R  can be 

computed as 
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3  Bayesian analyses 

In the Bayesian setting, the observer combines subjective opinion based on insight or 

experience with the available observations to get balanced values and to update the 

estimates as more information and data become accessible. The parameters of interest are 

assumed to be random variables with speified prior probability distributions. Then, in 

order to conduct a Bayesian analysis, usually quadratic loss function is considered. A 

very popular quadratic loss is the squared error (SE) loss function given by 
2))(ˆ)((=))(ˆ),((  ggggLSE −  where )(ˆ g  is an estimate of the parametric function 

)(g . It is well known that, under this loss function, the Bayes estimate of )(g , say 

)(ˆ SEg , is the posterior mean. 

Using SE loss function in the Bayesian approach leads to the equal penalization 

for underestimation and overestimation which is inappropriate in some practical 

situations. For instance, in estimating the reliability characteristics overestimation is more 

serious than the underestimation. Therefore, different asymmetric loss functions are 

considered by researchers such as Linex and general entropy (GE) loss functions for 

implementing Bayesian method in various field of reliability inference (see for example 

Ahmed (2014), Nadar and Kizilaslan (2016) and Tarvirdizade and Ahmadpour (2016)). 

The Linex loss function given by  
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 0, 1,))(ˆ)(())](ˆ)(([exp=))(ˆ),(( −−−−  ggggggLLE  (11) 

is a popular asymmetric loss function that penalizes underestimation and overestimation 

for negative and positive  , respectively. Under this loss function, the Bayesian estimate 

of )(g  is given by 
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Another important asymmetric loss is the GE loss function defined as  
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 Based on this loss function, the Bayes estimate of )(g  is given by  

 .])|))([((=)(ˆ 1/ww

GE datagEg −−   

      In this section we derive different Bayes estimates of the reliability R  by using the 

above mentioned loss functions. We assume that 1 , 2  and   are independent r.v.s and 

follow the gamma prior distributions as  
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respectively, where the hyperparameters ii ba , , 1,2,3=i  are positive. By combining (5) 

with (13), the joint density function of 1 , 2 ,   and the data  can be written as 
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Thus, we can write the posterior density function of 1 , 2  and   as 
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in which  
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In the following, by using the loss functions SEL , LEL  and ENL , we obtain the Bayes 

estimates of reliability parameter. First, assuming squared error loss function SEL , the 

estimates of R  becomes 
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1

=)v,u|(=ˆ
2121

000

 ddddataR
C

RERSE 


 (16) 

Next, against the loss LEL , the Bayes estimate of reliability R  can be obtained as 
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 Similarly, considering the entropy loss function ENL , we obtain the Bayes estimate of 

the parameter R  as 
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in which the required conditional expectation is computed as 
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 It is easily seen that all the above estimators are involved the ratio of two 

integrals for which simplified closed forms can not be obtained. Therefore, in the 

following, we employ an approximation procedure, namely Lindley’s approximation, to 

calculate the Bayes estimates. 

Let ),,( 21 h  be any function of the parameters and consider 
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in which ))()()((log=),,( 3221121   and )v,u;,,( 21 L  is the log-likelihood 

function of the parameters given by expression (6). Applying Lindley’s procedure (1980), 

)v,u|),,(( 21 hE  are approximated by 

 )(2
2

1

2

1

2

1
),,( 211112211221 VVLVLVhh iiiiiijjijij  +++++   

 )}2()2()2({
2

1
  223322223313133133212122122 VVLVVLVVL  ++++++  

 )},2()2(2)2({
2

1
 113311113312123123323233233 VVLVVLVVL  ++++++  (21) 

where rjj

j

r hV =  with ij  being the ),( ji th elements of the matrix   12 /
−

− jiL   and 

each suffix of variables h ,   or L  denotes differentiation once with respect to the 

variable having that suffix. Calculating all the expressions in (21) at the ML estimates 1̂ , 

2̂  and ̂ , the approximate Bayes estimate of R  is obtained. Several have used the 

above approximation in situations where the explicit forms of Bayes estimators are 

unavailable; see for example Nadar and Kizilaslan (2016), Tarvirdizade and Ahmadpour 

(2016) and Ahmed (2014).   

In our case, the required quantities in expression (21) are derived as  
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Now, for computing the approximate Bayes estimate of R  based on SE loss function, let 

Rh =),,( 21  . Hence, 0====== 33322331133 hhhhhh  and we have  
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Next, under LE loss function, the approximate Bayes estimate of reliability is 

obtained by choosing Reh  −=),,( 21 . Then, it is easily seen that 11 = Reh R −− , 

22 = Reh gR−− , ][= 11

2

111 RReh R −−   , ][= 22

2

222 RReh R −−    and ][= 122112 RRReh R −−    

where 1R , 2R , 11R , 22R , 12R  are given by (23)-(27), respectively. So, we have 
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Finally, considering wRh −=),,( 21  , the approximate Bayes estimate of 

reliability under GE loss function is derived as 
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4  Numerical Comparisons 

4.1  Simulation study 

In order to investigate the behaviour of the different methods, Monte Carlo simulations 

are performed in this section. The performances of the classical and Bayesian estimates 

of the reliability parameter are compared based on their mean squared errors (MSE) and 

average values (AV). R 2.14.0 is used for all the computation of the different procedures. 

We have considered two sets of parameter values as 

(2,4,0.5)(3,1,0.5),=),,( 21   and different choices of sample sizes as 

(15,15)(10,10),(8,8),(5,5),=),( kn . With these choices of the parameter values, the true 

value of reliability mrR ,  for (1,3)=),( mr  becomes, respectively, 0.421428 and 0.9 and 

for (2,4)=),( mr  becomes 0.287912 and 0.8. In each case, different random samples are 

generated from BSH model and the ML estimates of the unknown parameters 1 , 2  and 

  are obtained from the system of equations in (7)-(9). Then, the ML estimates of the 
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reliability mrR ,  are computed from relation (10). The AVs and MSEs of the MLEs 

obtained from 10000 replications are presented in Table 1. 

To evaluate the Bayes estimates, we take two different sets of hyper-parameter values as 

Prior I: 1=ia , 2=ib , 1,2,3=i  and Prior II: 3=ia , 1=ib , 1,2,3=i . 

For the above cases, the approximate Bayes estimates of the reliability parameter against 

squared error, linex and entropy loss functions are computed using Lindley 

approximation. To this end, we have considered three different choices of   and w  as 

0.5,1,1.5−  for both linex and entropy loss functions. Tables 2-5 present the AVs and 

MSEs of the estimates obtained from 10000 replications. The following points are 

observed from the tabulated values. 

 (1) The ML estimates obtained based on larger sample size n  have smaller MSEs 

as we expected. Similar improvements are observed for the Bayes estimates evaluated 

from different loss functions. 

 (2) The Bayes estimates of the reliability R  based on SE, linex and GE loss 

functions give better performances than the MLEs in terms of minimum MSEs. The 

choice 1.5=  for the linex loss seems to be reasonable while for the GE loss function, 

0.5= −w  provides better performances. Moreover, among different Bayes estimators of 

R , LER̂  with 1.5=  is superior than their respective competitors. 

 

Table  1: ML estimate of the reliability mrR ,  for various sample sizes. 

),( mr  

 

),( kn  (3,1,0.5)=),,( 21   (2,4,0.5)=),,( 21   

R̂  R̂  

   AV  MSE  AV MSE 

(1,3)  (5,5)  0.293642 0.032005  0.934008 0.0149181 

(8,8)  0.339948 0.026195   0.923687 0.005268 

(10,10) 0.353079 0.020056   0.920232 0.002911 

(15,15) 0.377698 0.012042  0.913427 0.002278  

(2,4)  (5,5) 0.198313 0.021789  0.864787 0.017536  

(8,8) 0.226007 0.014046  0.844653 0.008193  

(10,10) 0.239544 0.011037   0.837603 0.005903 

(15,15) 0.256809 0.006831   0.824692 0.003709 

 

 

 

 

Table  2: Avs and MSEs of the Bayes estimates of the reliability mrR ,  based on prior I 

when (3,1,0.5)=),,( 21  . 

),( mr  ),( kn  
SER̂  

LER̂  GER̂  

   0.5= −  1=  1.5=  0.5= −w  1=  1.5=  

(1,3)  (5,5) 0.483273 0.491411 0.467279 0.459231 0.463877 0.468145 0.494912 

0.017259 0.018275 0.015548 0.014821 0.016439 0.019653 0.023246 

(8,8) 0.429573 0.435377 0.418220 0.412680 0.411148 0.411925 0.414721 

0.012687 0.012874 0.012450 0.012437 0.013310 0.014891 0.015227 

(10,10) 0.415727 0.420572 0.406244 0.401619 0.402768 0.403171 0.405270 
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0.010788 0.010897 0.010817 0.010761 0.011510 0.012841 0.013450 

(15,15) 0.401261 0.404653 0.394599 0.391329 0.355239 0.364273 0.392407 

0.007903 0.008257 0.008122 0.007820 0.008344 0.008559 0.008736 

(2,4)  (5,5) 0.318644 0.325357 0.315817 0.308699 0.317020 0.321571 0.323262 

0.014731 0.015884 0.012736 0.011883 0.011935 0.012814 0.013024 

(8,8) 0.308099 0.312399 0.299853 0.295896 0.293941 0.294875 0.298119 

0.008812 0.009153 0.008248 0.008019 0.008618 0.009072 0.009225 

(10,10) 0.294431 0.297899 0.287751 0.284582 0.281197 0.282605 0.284724 

0.007046 0.007217 0.006776 0.006675 0.007131 0.007284 0.007335 

(15,15) 0.279314 0.281599 0.274867 0.272704 0.267782 0.270343 0.271193 

0.004767 0.004792 0.004674 0.004631 0.005006 0.005227 0.005314 

 

 

Table  3: Avs and MSEs of the Bayes estimates of the reliability mrR ,  based on prior I 

when (2,4,0.5)=),,( 21  . 

),( mr  ),( kn  
SER̂  

LER̂  GER̂  

   0.5= −  1=  1.5=  0.5= −w  1=  1.5=  

(1,3)  (5,5) 0.825742 0.829608 0.817510 0.813109 0.820296 0.833427 0.837241 

0.008816 0.009345 0.007861 0.007227 0.010176 0.011855 0.012976 

(8,8) 0.862979 0.865149 0.858402 0.855957 0.860149 0.870506 0.873205 

0.003492 0.004256 0.003981 0.003275 0.003801 0.004178 0.004496 

(10,10) 0.877564 0.879183 0.874172 0.872394 0.875522 0.881733 0.882219 

0.002328 0.002735 0.002589 0.002212 0.002488 0.002695 0.002782 

(15,15) 0.895825 0.896781 0.893745 0.892422 0.894678 0.896993 0.897607 

0.001198 0.001304 0.001236 0.001169 0.001239 0.001391 0.001453 

(2,4)  (5,5) 0.716446 0.722540 0.703742 0.0.697141 0.706634 0.718588 0.726193 

0.011236 0.011527 0.011091 0.010422 0.010491 0.011822 0.013196 

(8,8) 0.762071 0.766073 0.753894 0.749629 0.756235 0.757033 0.757791 

0.006046 0.007427 0.006920 0.005668 0.006709 0.007365 0.007421 

(10,10) 0.780721 0.783855 0.774218 0.770850 0.776259 0.779630 0.780197 

0.004538 0.005258 0.004993 0.004347 0.004881 0.005324 0.005580 

(15,15) 0.803978 0.806053 0.799724 0.797543 0.801198 0.803917 0.804235 

0.002896 0.003023 0.002931 0.002871 0.002959 0.003273 0.003428 

 

 

 

 

 

 

Table  4: Avs and MSEs of the Bayes estimates of the reliability mrR ,  based on prior II 

when (3,1,0.5)=),,( 21  . 

),( mr  ),( kn  
SER̂  

LER̂  GER̂  

   0.5= −  1=  1.5=  0.5= −w  1=w  1.5=w  

(1,3)  (5,5) 0.459806 0.466306 0.447041 0.440802 0.444319 0.461559 0.475058 

0.008998 0.009516 0.008191 0.007897 0.008534 0.010855 0.013167 

(8,8) 0.453824 0.458068 0.445372 0.441360 0.443907 0.465036 0.473550 

0.006925 0.007219 0.006440 0.006235 0.006631 0.007051 0.007714 

(10,10) 0.456322 0.460738 0.448129 0.441007 0.446623 0.469503 0.473036 

0.006438 0.006853 0.006409 0.006193 0.006588 0.006813 0.007426 

(15,15) 0.451069 0.453173 0.443920 0.440897 0.442850 0.447931 0.451852 
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0.005672 0.005863 0.005346 0.005210 0.005439 0.005478 0.005735 

(2,4)  (5,5) 0.332754 0.337762 0.323151 0.318552 0.317432 0.346150 0.352719 

0.007351 0.007903 0.006421 0.006034 0.006431 0.006985 0.007612 

(8,8) 0.323085 0.326199 0.317086 0.314099 0.313372 0.332491 0.378116 

0.005271 0.005547 0.004787 0.004621 0.004857 0.004934 0.005762 

(10,10) 0.325283 0.328417 0.319195 0.316240 0.315577 0.318205 0.331719 

0.005336 0.005625 0.004826 0.004503 0.004647 0.004981 0.005183 

(15,15) 0.317691 0.319914 0.313579 0.311205 0.310662 0.316567 0.321297 

0.004175 0.004356 0.003885 0.003741 0.003855 0.004371 0.004462 

 

 

Table  5: Avs and MSEs of the Bayes estimates of the reliability mrR ,  based on prior II 

when (2,4,0.5)=),,( 21  . 

),( mr  ),( kn  
SER̂  

LER̂  GER̂  

   0.5= −  1=  1.5=  0.5= −w  1=w  1.5=w  

(1,3)  (5,5) 0.863276 0.865451 0.858244 0.855573 0.860148 0.864369 0.867108 

  0.003216 0.004028 0.003733 0.002990 0.003542 0.004836 0.005408 

 (8,8) 0.879105 0.880726 0.875766 0.874014 0.877112 0.886479 0.887916 

  0.001815 0.002057 0.001933 0.001676 0.001848 0.002353 0.002565 

 (10,10) 0.8818705 0.883034 0.878925 0.877492 0.880067 0.889157 0.890622 

  0.001440 0.001689 0.001408 0.001368 0.001536 0.001893 0.002039 

 (15,15) 0.887041 0.887962 0.885146 0.884561 0.885937 0.887240 0.887932 

  0.001066 0.001139 0.001094 0.001012 0.001067 0.001134 0.001202 

(2,4)  (5,5) 0.764241 0.767528 0.754290 0.749622 0.756880 0.769067 0.771215 

  0.005341 0.006763 0.006239 0.004962 0.006021 0.009018 0.010452 

 (8,8) 0.781913 0.785510 0.775439 0.772026 0.777483 0.781044 0.783216 

  0.003221 0.003833 0.003604 0.003065 0.003502 0.004732 0.005307 

 (10,10) 0.783870 0.786544 0.778325 0.775462 0.780140 784160 0.785535 

  0.002795 0.003261 0.003088 0.002674 0.003007 0.003291 0.003312 

 (15,15) 0.788651 0.790816 0.784852 0.782801 0.786213 0.792511 0.793365 

  0.002104 0.002351 0.002260 0.002039 0.002215 0.002668 0.002771 

4.2  Data Analysis 

To understand how the proposed methods can be used in practice, let us consider the two 

data sets that were discussed by Tarvirdizade and Ahmadpour (2016) for BSH reliability 

analysis. They checked the validity of the model for data sets 1 and 2 and showed that 

BSH distribution fits both data sets very well. Their results about stress-strength 

reliability can be derived from mrR ,  by setting 1=m . For easy reference, the data sets are 

presented in Tables 6 and 7. 

Table  6: Data set 1 

 8.18  4.85  18.79  8.38  7.93  13.68  20.44  22.00  16.58  27.47 

.74 12.32  7.17  21.26  14.92  14.35  7.21  12.30  33.44  19.67 

.98  8.96  10.71  31.28  10.43 

Table  7: Data set 2 

 12.82  17.86  7.66  2.48 8.08  7.35  11.99  21.00  7.36  8.11 
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.35 12.44  12.40  31.01  9.09  11.57  17.94  4.42  16.42  9.25 

.96  13.19  3.21  13.53  9.08 

Here, assuming three different choices of ),( mr  for the MSS system, we compute the 

estimates of reliability parameter mrR ,  by using ML and Bayesian procedures developed 

in this paper. From Tables 6-7, the upper record values are obtained as follows: 

33.44).00,27.47,9,20.44,22(8.18,18.7=u , 

,37.96)4.35,31.0186,21.00,2(12.82,17.=v . 

Using the above record values, the ML estimates of the parameters are computed as 

0.050539=1̂ , 0.038180=ˆ
2  and 0.446047=̂ . So, the MLEs of the reliability mrR ,  

for (3,5)(2,4),(1,3),=),( mr  become 0.699700, 0.512286 and 0.416261, respectively. 

To analyze the data from the Bayesian perspective, three different sets of values 

for the hyper-parameters are considered as 0.0001== ii ba  (prior I), 2=ia , 3=ib  (prior 

II) and 4=ia , 2=ib  (prior III). Table 8 reports different Bayes estimates of mrR ,  

obtained from squared error, linex and entropy loss functions. It is observed that the 

Bayes estimates obtained based on prior I are close to the MLEs while employing prior II 

and III leads to estimates that are greater than the MLEs in most of the cases. 

 

Table  8: Bayes estimates of mrR ,  against various loss functions. 

),( mr  Prior  
SER̂  

LER̂  GER̂  

   0.5= −  1=  1.5=  0.5= −w  1=w  1.5=w  

(1,3)  I 0.663362 0.669881  0.649958 0.643027 0.652404 0.640443 0.626814  

  II 0.669456 0.703876 0.690546 0.686022  0.692812 0.670951 0.663072  

  III 0.709589 0.713609 0.701370 0.697157 0.703498 0.689070 0.675424  

(2,4)   I 0.523565 0.530741 0.509322 0.502287 0.508991 0.502493 0.497842  

  II 0.557182 0.562459 0.546710 0.541528 0.547363 0.536039 0.531117  

  III 0.567287 0.572155 0.557329 0.552669 0.558250 0.541683 0.539918  

(3,5)   I 0.435973 0.442589 0.423094  .416848 0.4200263 0.411514 0.409686  

  II 0.465745 0.780801 0.455827 0.451064 0.454778 0.420676 0.417136  

  III 0.474991 0.479696 0.465748 0.461216 0.464856 0.455481 0.452007  

 

 

5  Conclusions 

In this paper, by using upper record values, we have discussed on Bayesian estimation of 

stress-stregth reliability in multicomponent stress-strength bathtub-shaped model. 

Considering squared error, linex and general entropy loss functions, all the Bayes 

estimates were computed by assuming gamma priors on the parameters. Since the Bayes 

estimates of the interested reliability parameter could not be obtained analytically, we 

have provided Lindley’s approach to calculate the approximate Bayes estimates. 

Moreover, for comparison, the maximum likelihood estimate of the reliability is derived. 

In order to assess the accuracy of the different estimators, Monte Carlo simulations are 

conducted. It is observed that the performances of the Bayes estimators based on different 

loss functions are superior than the corresponding ML estimators. The choice 1.5=  for 

the Linex loss function and 0.5= −w  for the GE loss function provide Bayes estimators 
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with minimum mean squared error. Moreover, we found that informative priors (prior II 

and III) have better performaces compared to the non-informative prior I. From Tables 1-

5, it is observed that by increasing sample size n , expected improvements are observed 

in the performances of all estimators. 
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