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Abstract 

The new distributions are very useful in describing real data sets, because these distributions are 

more flexible to model real data that present a high degree of skewness and kurtosis. The choice of the 

best-suited statistical distribution for modeling data is very important. In this paper, A new class of 

distributions called the  New odd log-logistic generalized half-normal (NOLL-GHN) family with four 

parameters is introduced and studied. This model contains sub-models such as half-normal (HN), 

generalized half-normal (GHN )and odd log-logistic generalized half-normal (OLL-GHN) distributions. 

some statistical properties such as moments and moment generating function have been calculated. The 

Biases and MSE’s of estimator methods such as maximum likelihood estimators , least squares estimators, 

weighted least squares estimators, Cramer-von-Mises estimators, Anderson-Darling estimators and right 

tailed Anderson-Darling estimators are calculated. The fitness capability of this model has been 

investigated by fitting this model and others based on real data sets. The maximum likelihood estimators 

are assessed with simulated real data from proposed model. We present the simulation in order to test 

validity of maximum likelihood estimators.  

Keywords: Generalized half-normal distribution, Moments, Maximum likelihood 

estimator, Odd log-logistic generalized family, Mean square error.  

1  Introduction 

Fatigue is considered one of the most common causes of failures of mechanical 

components. The fatigue process starts with an imperceptible fissure, the initiation, 

growth and propagation of which produces a dominant crack in the specimen due to 
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cyclic patterns of stress, whose ultimate extension causes the rupture or failure of this 

specimen (Pescim  et al., 2014). From experimental investigation, the fatigue process 

appears as a random process. In this sense, the extension of a crack produced by fatigue 

in each cycle is modeled by a random variable which depends on the magnitude of the 

stress, the type of material, the number of previous cycles, etc. In the literature, there is a 

large number of statistical models which allow to study the random variation of the 

failure times associated to materials exposed to fatigue as a result of different cyclic 

patterns. The most widely used models to describe the lifetime under fatigue process are 

the half-normal (HN) and Birnbaum-Saunders (BS) distributions. For fitting monotone 

hazard rates, the HN distribution may be initial choices because of their negatively and 

positively skewed density shapes. However, in some practical situations, it does not 

provide a reasonable parametric fit for modeling phenomenon with non-monotone failure 

rates such as the bathtub shaped and the unimodal failure rates, which are common in 

reliability and biological studies. To deal with part of this problem, Cooray and Ananda 

(2008) proposed the  generalized half-normal (GHN) distribution derived from a model 

for static fatigue. They demonstrated that the GHN distribution modeling monotone 

failure rates (increasing and decreasing) and non-monotone failure rate (bathtub shaped) 

for certain values of its shape parameter, thus providing its greater applicability. 

The GHN density function with shape parameter > 0  and scale parameter 

> 0  (Cooray and Ananda, 2008) is given by (for > 0x )  
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 Its cumulative distribution function (cdf) depends on the error function  
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where ( )   is the gamma function. The HN distribution is a sub-model when =1 . 

Although this type of density function is asymmetric, the degrees of skewness 

and/or kurtosis in some cases are outside the distributional range defined by the GHN 

distribution. Moreover, this distribution is not suitable in situations where the hazard rate 

function (hrf) is unimodal. Hence, a more suitable distribution for adjusting such 

unexpected deviations is an important issue. Thus, a great number of extended 

distributions has been proposed in survival analysis in order to provide a greater 

flexibility for extended distributions and to allow that the hrf may describe monotone 

(increasing and decreasing) and non-monotone (bathtub shaped and unimodal) forms. 

Further, the extended distribution can be used to discriminate models, since it has as a 

special case, the distribution that generated it. 
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The GHN distribution has been widely modified and studied in recent years and 

various authors developed new generalizations from this lifetime model. Pescim et al. 

(2010) introduced the beta generalized half-Normal (BGHN) distribution with 

applications to myelogenous leukemia data. Cordeiro et al. (2012) defined the 

Kumaraswamy generalized half-normal (KwGHN) distribution for censored data. 

Recently, Pescim et al. (2013) proposed a log-linear regression model based on the 

BGHN distribution, while Ramires et al. (2013) defined the beta generalized half-normal 

geometric (BGHNG) distribution in order to achieve wider diversity among the density 

and failure rate functions. 

Corderio  et al. (2016) introduced and studied a three-parameter extension of the 

GHN distribution based on the OLL-G family refereed to as the odd log-logistic 

generalized half-normal (OLLGHN) distribution, which contains as sub-models the HN 

and GHN distributions. 

In this paper, we introduce and study a four-parameter extension of the GHN 

distribution based on the T-X idea by Alzaatreh et.al, (2013), which contains as sub-

models the HN, GHN and OLLGHN distributions. The new distribution due to its 

flexibility in accommodating bathtub and unimodal shape forms of the hrf could be an 

important model in a variety of problems in survival analysis. It is also suitable for testing 

goodness-of-fit of the special cases. 

The cdf and pdf of new family are given by 

 
( ; , )

( ; , )
20

( ; , )
( ; , , , ) = =

(1 ) ( ; , ) ( ,; , )

G x

G x
dt G x

F x
t G x G x

  
 

 

 
   

   + +
          

              

2 1

= ,

2 1 2 2

x

x x




 
 



 

    
 −   

     

            
 − + −          

               

                                (3)               (3) 

 and  
1 1

2

( ; , ) ( ; , ) ( ; , )
( ; , , , ) = [ ( ) ( ; , )]

( ; , ) ( ; , )

g x G x G x
f x G x

G x G x

 

 

     
        

   

− −

 + −
 +
 

 

                      

1 12
1

2

2

2
2 1 2 2

=

2 1 2 2

x
x x x

e
x

x x

 
  



 
 



   

 

− −
 

−  
 

               
 − −             

                  

              
 − + −           

                 

 

                ( ) 2 1
x



  


    
   + −  −         

                           (4) 

 where , > 0   are two shape parameters. These parameters can provide great flexibility 

to model the skewness and kurtosis of the generated distribution. 
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Henceforth, we denote by ( , , , )X NOLLGHN      a random variable having 

pdf (4). The new model contains some important sub-models. For = =1  , it gives the 

GHN distribution. For =  , it gives the OLLGHN distribution. If =1  and =   it 

yields the odd log-logistic half-normal (OLLHN) distribution. 

Further, if = =1  , in addition to =1 , it reduces to the HN distribution. The 

hrf corresponding to (4) is given by 
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 respectively. Plots of density functions and hazard rate functions for selected parameter 

values, are displayed in Figures 1, 2, 3 and 4, respectively. It is evident that the new 

distribution is much more flexible than the GHN and OLLGHN distribution. Further, it 

allows four major hazard shapes: increasing, bathtub and unimodal hazard rates.  

  
Figure  1: Plots of the NOLLGHN pdf for some parameter values. 
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Figure  2: Plots of the NOLLGHN pdf for some parameter values.  

 

2  Useful expansions 

Useful expansions for equations (3) and (4) can be derived using the idea of the 

exponentiated-G (“EG” for short) family of distributions. Its properties have been 

reported by several authors in recent years, see Mudholkar and Srivastava (1993) and 

Mudholkar  et al. (1995) for exponentiated Weibull, Gupta  et al. (1998) for 

exponentiated Pareto, Gupta and Kundu (2001) for exponentiated exponential, Nadarajah 

(2005) for exponentiated Gumbel, Kakade and Shirke (2006) for exponentiated log-

normal, Nadarajah and Gupta (2007) for exponentiated gamma and Cordeiro  et al. 

(2011) for exponentiated generalized gamma distributions. 
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Figure  3: Plots of the NOLLGHN hazard rate for some parameter values.  

 

 
        

Figure  4: Plots of the NOLLGHN hazard rate for some parameter values. 
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First, we define the EG family for an arbitrary parent distribution ( )G x , say 

( )Y EG  , > 0 , if its cdf and pdf (for > 0 ) are given by  

 
1( ) = ( ) and ( ) = ( ) ( ) ,H x G x h x g x G x 

   −
 

 respectively. This transformed model is also called the Lehmann type I distribution, say 

( )EG  . 

Next, we obtain an expansion for ( )F x . First, we use a power series for 

{2 [( ) ] 1}
x  


 − , for > 0  real, given by  

 
=0

2 1 = 2 1 ,

k

k

k

x x
a


 

 

            
 −  −         

               
  (6) 

 where  

 
=

= ( ) = ( 1) .k j

k k

j k

j
a a

j k





+   

−   
  

  

 

For any real > 0 , we consider the generalized binomial expansion  

 
=0

2 2 = ( 1) 2 1 .

k

k

k

x x

k


 



 

             
−  −  −          

                
  (7) 

 Inserting (6) and (7) in equation (3), we obtain  
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The ratio of the two power series can be expressed as  
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By differentiating (8), the pdf of X  can be expressed as  
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is the  exponentiated generalized half-normal (EGHN) density function with power 

parameter ( 1)k + . Equation (9) reveals that the density function of X  is a linear 

combination of EGHN densities. Thus, some structural properties of the NOLLGHN 

distribution such as the ordinary and incomplete moments and generating function can be 

determined from well-established properties of the EGHN distribution. Equations (8) and 

(9) are the main results of this section. 

 

3  Statistical properties 

 In this section some statistical properties of the proposed distribution are 

investigated.  

3.1  Moments 

 

By setting = ( / )u x   and considering the error function as the cdf of the GHN 

distribution, the n th moment of X  can be obtained from equation (9) as  
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Inserting the power series for the error function  
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 Further, for the very special case when 
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 can be 

expressed in terms of the Lauricella function of type A (Exton, 1978; Aarts, 2000) 

defined by  
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0( ) =1a ). Numerical routines for the direct computation of the Lauricella function of type 
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expressed in terms of the Lauricella functions of type A  

 
( )

=0

1
2 1 1 3 3

( ) = ; , , ; , , ; 1, , 1 ,
2 2 2 2 2

n n k

k A

k

n
k

E X B F 




 
+ + 

− − 
 
 

  

 where  

 

1
2

2 22
1

1

= 2 .
2

nk
k

k k

n
k

B c 
+ −−

+

 
+ + 

 
 
 

 

The p th descending factorial moment of X  is  
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of moments may also be obtained in closed-form, but we consider only the previous 

moments for reasons of space. 

The measures of skewness and kurtosis of the NOLLGHN distribution can be 

obtained as follows:  

 

( )

3

3 2 1 1 3

3 (3/2)
2 22

2 1

3 2( )
( ) = = ,

( )

' ' ' '

' '

Skewness X
    


 

− +

−

 (12) 

 and  

 
2 4

4 1 3 1 3 1

2

4 6( ) 3( )
( ) = ,

' ' ' ' ' '

Kurtosis X
     



− + −
 (13) 

 

Plots of skewness and kurtosis of the NOLLGHN distribution are displayed in 

Figure 5.  
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Figure  5: Skewness and Kurtosis for NOLLGHN. 

   

   

3.2  Generating Function 

By setting =
x

u





 
 
 

, the moment generating function (mgf) of X  can be 

obtained from (9) as  

 2

1
0

=0 =0

2 1
( ) = ( 1) exp ,

! 2 2

kmm m

k

k m

t u
M t k c u u erf du
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
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

  

+

   
+ −     

    
    

 ( )M t  can be reduced to  
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 where  

 
1
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2
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
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 and ,
m

I k


 
 
 

 is defined by (11). 

 

4  Estimation and inference 

 

In this section, we determine the maximum likelihood estimates (MLE’s) of the 

model parameters of the new family from complete samples only. Let 1, , nx x  be 

observed values from the NOLLGHN family with parameters  ,  ,   and  . Let 

= ( , , , )     
 be the 1r  parameter vector. The total log-likelihood function for   is 

given by  
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The MLE   of   is obtained by solving the nonlinear likelihood equations ( ) = 0U  , 

( ) = 0U  , ( ) = 0U   and ( ) = 0U  . These equations cannot be solved analytically and 

statistical software can be used to solve them numerically. We can use iterative 

techniques such as a Newton-Raphson type algorithm to obtain the estimate  . We 

employ the numerical procedures in R. 

For interval estimation and hypothesis tests on the parameters in  , we obtain the 

observed information matrix since the expected information matrix is very complicated 

and requires numerical integration. The 4 4  observed information matrix ( )J  , 

becomes as follows:  

 

.

( ) = .. .

. . .

L L L L

L L L

J L L

L

   
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 





 
 
 
 −
 
 
 
 

 

 

Under conditions that are fulfilled for parameters in the interior of the parameter 

space but not on the boundary, the estimated approximate multivariate normal 
1 1

4(0, ( ) )N n J − −  can be used to construct approximate confidence intervals for the 

model parameters. 
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The likelihood ratio (LR) statistics are useful for comparing the new distribution 

with some special models. For example, we may use the LR statistic to check if the fit 

using the NOLLGHN distribution is statistically “superior” to a fit using the GHN and 

OLLGHN distribution for a given data set. In any case, considering the partition 

1 2= ( , )     , tests of hypotheses of the type (0)

0 1 1: =H    versus (0)

1 1:AH    can be 

performed using the LR statistic = 2{ ( ) ( )}w  − , where   and   are the estimates of 

  under AH  and 0H , respectively. Under the null hypothesis 0H , 
2

d

qw → , where q  is 

the dimension of the parameter vector 1  of interest. The LR test rejects 0H  if >w  , 

where   denotes the upper 100 % point of the 
2

q  distribution.  

 

 

5  Simulation study 

5.1  The Maximum Likelihood Estimator 

 In this section, the Maximum likelihood estimators of parameters of purpose 

density function has been assessed by simulating: ( , , , ) = (4,4,2,0.5)    . The density 

function has been indicated in Figure 6. 

To verify the validity of the maximum likelihood estimator, the bias of MLE and 

the mean square error of MLE have been used. For example, as described in Section 4, 

for ( , , , ) = (4,4,2,0.5)    , =1000r  times have been simulated samples of 

=10,11,...,70n  of NOLLGHN (4,4,2,0.5) . To estimate the numerical value of the 

maximum likelihood, the optim  function (in the stat  package) and Nelder Mead−  

method in R software has been used. If q = ( , , , )    , for any simulation by n  volume 

and =1,2,...,i r , the maximum likelihood estimates are obtained as q = ( , , , )i i i ii
    . 

 

 

   
  

Figure  6: The density function for simulation study. 



M. Abdi, M. Afshari, H. Karamikabir, M. Mozafari, M. Alizadeh 

Pak.j.stat.oper.res.  Vol.XV  No.2 2019  pp277-302 290 

   

  

To examine the performance of the MLE’s for the NOLLGHN distribution, we 

perform a simulation study:   

    1.  Generate r  samples of size n  from equation (4).  

    2.  Compute the MLE’s for the r  samples, say ( , , , )i i i i     for =1,2, ,i r .  

    3.  Compute the standard errors of the MLE’s for r  samples, say ˆ ˆ ˆ ˆ( , , , )s s s s  
                   

for =1,2, ,i r .  

    4.  Compute the biases and mean squared errors given by  

 
q

=1

1
( ) = (q q ),

r

ii

i

Bias n
r

−  

 

 2

q
=1

1
( ) = (q q ) ,

r

ii

i

MSE n
r

−  

for = ( , , , )     .  

 We repeat these steps for =1000r  and 
*=10,11,n n  ( *n  is different in each 

issue) with different values of ( , , , )    , so computing 
q
( )Bias n , 

q
( )MSE n .  

Figure 7, 8 respectively reveals how the four biases, mean squared errors vary 

with respect to n . As expected, the Biases and MSEs of estimated parameters converges 

to zero while n  growing.  

 

 

5.2  The other estimation methods 

 There are several approaches to estimate the parameters of distributions that each 

of them has its characteristic features and benefits. In this subsection five of those 

methods are briefly introduced and will be numerically investigated in the simulation 

study Figure 6. A useful summary of these methods can be seen in Dey et al., (2017). 

Here { ; =1,2,..., }it i n  is the associated order statistics and F  is the distribution function 

of NOLLGHN. 

 

5.2.1  Least squares and weighted least squares estimators 

 The Least Squares (LSE) and weighted Least Squares Estimators (WLSE) are 

introduced by Swain et al., (1988). The LSE’s and WLSE’s are obtained by minimizing 

the following functions:  

 

2
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( , , , ) = ( ; , , , ) ,
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i
S F t

n
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Figure  7: Bias of ˆ ˆ ˆˆ, , ,     versus n  when ( , , , ) = (4,4,2,0.5)    . 

   

   

5.2.2  Cramér– von– Mises estimator 

 Cramér– von– Mises Estimator (CME) is introduced by Choi and Bulgren 

(1968). The CMEs is obtained by minimizing the following function:  

 

2

CME

=1

1 2 1
( , , , ) = ( ; , , , ) .

12 2

n

i

i

i
S F t

n n
       

− 
+ − 

 
  

 

5.2.3  Anderson– Darling and right-tailed Anderson– Darling 

 The Anderson–Darling (ADE) and Right-Tailed Anderson–Darling Estimators 

(RTADE) are introduced by Anderson and Darling (1952). The ADE’s and RTADE’s are 

obtained by minimizing the following functions:  
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ADE 1
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S n i F t F t
n
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RTADE 1

=1 =1

1
( , , , ) = 2 ( ; , , , ) (2 1) log ( ; , , , )
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i n i
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S F t i F t
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where ( ) ( )=1F F −  . 

   
  

Figure  8: MSE of ˆ ˆ ˆˆ, , ,     versus n  when ( , , , ) = (4,4,2,0.5)    . 

   

 

In order to explore the estimators introduced above we consider the one model 

that have been used in this section , and investigate MSE of those estimators for different 

samples. For instance according to what has been mentioned above, for 

( , , , ) = (4,4,2,0.5)    . we have simulated r = 1000 times with sample size of the 

= 50,55,60, 600n  and then the MSE formula that are mentioned in the subsection 5.1 

are calculated for them. To obtain the value of the estimators, we have used the optima 

function and Nelder Mead−  method in R. 
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The result of the simulations of this subsection is shown in Figure 9. As it is clear 

from the MSE plot for two parameters with the increase in the volume of the sample all 

methods will approach to zero and this verifies the validity of the these estimation 

methods and numerical calculations for the distribution parameters NOLLGHN.  

 

   
  

Figure  9: MSE of ˆ ˆ ˆˆ, , ,     versus n  when ( , , , ) = (4,4,2,0.5)    . 

   

   

6  Application 

 Here, for the purpose of illustration, we analyze four data sets. We choose these 

data because they really show in different fields that it is necessary to have non-negative 

support. 

Description of the data sets. 

 Data Set 1:   Survival times: The data analyzed by Kundu et al. (2008) and 

Leiva et al. (2009) correspond to 72 survival times of guinea pigs injected with different 

doses of tubercle bacilli. 
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 Data Set 2:   OTIS IQ Scores: The data set concerns OTIS IQ Scores for 52 

minority (non-white) males hired by the company. One of the key questions of the study 

was the predictability of job performance when the OTIS test was applied. 

This data were given by Sharfi and Behboodian (2008), which were compiled in 

1971 by a large insurance company in order to investigate its selection procedures for 

claims adjusters. 

 Data Set 3:    USS Halfbeak Diesel Engine: The data set presented by Ascher 

and Feingold (1984) from a USS Halfbeak (submarine) diesel engine. The data denote 73 

failure times (in hours) of unscheduled maintenance actions for the USS Halfbeak 

number 4 main propulsion diesel engine over 25.518 operating hours. 

 Data Set 4:    failure times: 

The data set relates to one hundred and one data points subjected to constant 

sustained pressure at the ninety percent stress level until all had failed, so the data are 

complete. The failure times are in hours are shown in Andrews and Herzberg (1985). 

Table 1 gives a descriptive summary for these data showing different degrees of 

skewness and kurtosis. 

   

Table  1:   Descriptive statistics for six data set. 

   
Data Set  Mean Median SD Skewnes

s 

Kurtosis Min. Max. 

Survival times 99.8194 70 81.1179 1.8347 2.8937 12 376 

OTIS IQ Scores  106.6538 105 8.3099 0.3861 -0.5039 91 123 

USS Halfbeak Diesel Engine 19.3997 21.461 5.8165 -1.5764 1.6525 1.382 25.518 

failure times  1.0248 0.8 1.1194 3.0472 14.4745 0.01 7.89 

 

  

In the following, we compare the proposed model with some other lifetime 

distributions, namely: 

 (i) Generalized half-normal distribution (GHN) (Cooray and Ananda (2008)). 

The GHN density function is given by  
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 where > 0x , > 0  and > 0  . 

 (ii) Odd log-logistic generalized half-normal distribution (OLLGHN) (Cordeiro 

et al. (2016)). 

The OLLGHN density function is given by  
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 where > 0x , > 0 , > 0  and > 0 , and 
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 (iii) Exponentiated generalized half-normal distribution (EGHN). 

The EGHN density function is given by  
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 where > 0x , > 0 , > 0  and > 0 . 

 (iv) Kumaraswamy generalized half-normal lifetime distribution (KWGHN) 

(Cordeiro et al. (2012)). 

The KWGHN density function is given by  
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 where > 0x , > 0 , > 0 , > 0a  and > 0b . 

 (v) Beta generalized half-normal lifetime distribution (betaGHN) (Pescim et al. 

(2010)). 

The betaGHN density function is given by  
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 (vi) Beta Marshal-Olkin generalized half-normal lifetime distribution 

(betaMOGHN) (Alizadeh et al. (2015)). 

The betaMOGHN density function is given by  
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 where > 0x , > 0 , > 0 , > 0a , > 0b  and > 0c . 

 (vii) Extended generalized half-normal lifetime distribution (EXGHN) (Sanchez 

et al. (2016)). 

The EXGHN density function is given by  
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 where > 0x , > 0 , > 0 , > 0a  and > 0b . 

We fit the above models to the current data sets and compute the MLEs, their 

standard errors (given in parentheses) and the following statistics: negative log-likelihood 

( log L− ) value, Kolmogorov-Smirnov statistic (K-S) and their p-values, Crámer-von 

Mises ( *W ) and Anderson–Darling ( *A ). The computations are performed using the 

AdequacyModel script in R package. Tables 2-5 lists the above values. 

In all four tables, the better the fit of the model, the smaller the values of the 

corresponding statistics. The results indicate that the NOLLGHN model has the smallest 

values of these statistics and largest p-values among all fitted models. So, it could be 

chosen as the more suitable model. 

In order to assess if the model is appropriate, we show in Figures 9-12 the 

histograms of the data sets, the plots of the fitted NOLLGHN, GHN, OLLGHN, EGHN, 

KWGHN, betaGHN betaMOGHN and EXGHN density functions and their estimated 

survival functions and the plots of the empirical distributions. We can conclude that the 

new distribution is a very suitable model to fit the four data sets. 

 

Table  2:   MLEs , their standard errors, and some statistics for the fitted models to 

data set 1. 
 

Model Parameter Estimation -log(L) *W  
*A  K-S p-value 

        c  

NOLLGHN 39.174 

(11.374) 

 

0.641 

(0.161 

5.809 

(2.349) 

0.394 

(0.177) 

 388.132 0.102 0.561 0.086 0.666 

OLLGHN 232.222 

(86.853) 

0.353 

(0.121) 

4.047 

(1.512) 

 

 

 391.393 0.193 1.061 0.094 0.552 

GHN 129.196 

(11.894) 

1.0161 

(0.091) 

 

 

 

 

 401.738 0.580 3.197 0.168 0.035 

EGHN 2.398 

(5.072) 

0.250 

(0.093) 

39.677 

(53.075) 

 

 

 390.107 0.141 0.768 0.099 0.487 

KWGHN 4.348 

(12.003) 

0.3033 

(0.290) 

28.449 

(51.911) 

0.735 

(1.178) 

 390.094 0.144 0.782 0.099 0.484 

betaGHN 4.796 

(6.731) 

0.338 

( 0.199) 

23.857 

(29.464) 

0.536 

(0.665) 

 390.035 0.143 0.780 0.099 0.471 

betaMOGHN 0.576 

( 0.002) 

0.324 

(0.002) 

1.043 

(0.339) 

0.066 

(0.008) 

0.940 

(0.448) 

429.795 0.273 1.484 0.354 2.927e-

08 
EXGHN 0.788 

(0.003) 

0.339 

(0.004) 

0.198 

(0.023) 

9.179 

(2.384) 

 390.558 0.188 1.015 0.105 0.4081 
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Figure  10: Estimated densities and Estimated cdf for data set 1.  

  

Table  3:   MLEs , their standard errors, and some statistics for the fitted models to 

data set 2. 
   

Model Parameter Estimation -log(L) *W  
*A  K-S p-

value         c  

NOLLGHN 99.288 

(3.051) 

8.114 

(2.059) 

4.767 

(2.253) 

0.193 

(0.099) 

 179.886  0.049  0.313 0.093  0.762  

OLLGHN 257.370 

(129.184) 

0.444 

(0.251) 

29.511 

(17.073) 

 

 

 183.949 0.109  0.679  0.106 0.609  

GHN 112.426 

(1.238) 

9.957 

(1.096) 

147.926 

(427.261) 

 

 

 189.704  0.382 2.151 0.176  0.081  

EGHN 57.808 

(32.373) 

1.719 

(1.044) 

37.712 

(55.246) 

 

 

 182.396  0.069  0.453  0.094  0.746  

KWGHN 78.940 

(9.108) 

3.962 

(1.531) 

33.793 

(64.621) 

0.228 

(0.237) 

 181.942 0.077 0.481 0.096 0.726 

betaGHN 77.743 

(12.827) 

3.906 

(2.145) 

0.973 

(0.515) 

0.214 

(0.234) 

 181.921 0.075  0.470 0.096 0.728 

betaMOGHN 0.638 

(0.001) 

0.399 

(0.001) 

77.367 

(586.665) 

0.030 

(0.004) 

0.6742 

(0.547) 

309.076 0.121 0.749 0.581 1.11e

-15 
EXGHN 246.979 

(553.123) 

3.040 

(2.250) 

4.767 

(2.253) 

87.686 

(285.52) 

 182.393 0.070 0.456 0.095 0.738 
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Figure  11: Estimated densities and Estimated cdf for data set 2. 
 

 

 

Table  4:   MLEs , their standard errors, and some statistics for the fitted models to 

data set 3. 

   
Model Parameter Estimation -log(L) *W  

*A  K-S p-

value         c  

NOLLGHN 37.960 

(0.031) 

9.211 

(0.031) 

0.166 

(0.026) 

233.860 

(26.835) 

 194.778 0.095 0.551 0.081 0.707 

OLLGHN 20.516 

(0.573) 

7.244 

(0.963) 

0.319 

(0.065) 

 

 

 204.069 0.328 1.644 0.243 0.001 

GHN 21.884 
(0.497) 

3.821 
(0.415) 

 
 

 
 

 217.232 0.797 4.206 0.218 0.002 

EGHN 24.487 

(0.004) 

12.141 

(0.004) 

0.240 

(0.029) 

 

 

 206.734 0.486 2.481 0.218 0.002 

KWGHN 17.459 

(0.005) 

5.490 

(0.005) 

0.150 

(0.008) 

0.099 

(0.012) 

 195.821 0.107 0.621 0.116 0.273 

betaGHN 17.902 
(0.003) 

5.935 
(0.003) 

0.262 
(0.049) 

0.092 
(0.012) 

 195.775 0.136 0.729 0.114 0.289 

betaMOGHN 0.498 

(0.003) 

0.534 

(0.002) 

1.051 

(0.456) 

0.035 

(0.004) 

0.650 

(0.420) 

281.348 1.589 8.105 0.381 8.7e-

10 
EXGHN 25.945 

(0.003) 

12.076 

(0.003) 

2.249 

(0.007) 

0.243 

(0.029) 

 207.913 0.545 2.813 0.226 0.001 
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Figure  12: Estimated densities and Estimated cdf for data set 3.  

  

   

Table  5:   MLEs , their standard errors, and some statistics for the fitted models to 

data set 4. 

   
Model Parameter Estimation -log(L) *W  

*A  K-S p-

value         c  

NOLLGHN 2.913 

(3.418) 

0.599 

(0.117) 

1.040 

(0.319) 

2.769 

(3.031) 

 102.225 0.114 0.728 0.068 0.743 

OLLGHN 1.319 

(0.178) 

0.614 

(0.106) 

1.241 

(0.255) 

  102.697 0.156 0.917 0.077 0.584 

GHN 1.224 
( 0.132) 

0.711 
(0.055) 

   103.335 0.125 0.804 0.080 0.544 

EGHN 0.861 

(0.332) 

0.572 

(0.127) 

1.447 

(0.511) 

  102.721 0.161 0.938 0.083 0.492 

KWGHN 0.719 

(1.606) 

0.570 

(0.120) 

1.436 

(0.516) 

0.839 

(1.797) 

 102.718 0.159 0.929 0.082 0.503 

betaGHN 0.697 
(1.194) 

0.568 
(0.122) 

1.426 
(0.517) 

0.823 
(1.278) 

 102.713 0.158 0.924 0.082 0.512 

betaMOGHN 0.090 

(0.002) 

0.470 

(0.002) 

4.033 

(1.500) 

0.171 

(0.0189) 

0.203 

(0.092) 

102.874 0.617 4.130 0.124 0.090 

EXGHN 0.447 

(1.104) 

0.541 

(0.152) 

0.605 

(1.127) 

1.430 

(0.503) 

 102.685 0.153 0.902 0.080 0.543 
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Figure  13: Estimated densities and Estimated cdf for data set 4.  

  

 

7  Conclusions 

 

In this paper, A new class of distributions called the  odd log-logistic generalized 

half-normal (NOLL-GHN) family with four parameters is introduced and studied. Some 

of its various properties including explicit expansions, moment of residual life, reversed 

residual life, incomplete moments, order statistics, maximum likelihood estimator, are 

provided. The parameters of this model are estimated by the maximum likelihood 

estimators, least squares estimators, weighted least squares estimators, Cramer-von-Mises 

estimators, Anderson-Darling estimators and right tailed Anderson-Darling estimators. 

The NOLL-GHN is applied to fit four real data sets. applications demonstrate the 

importance of the NOLL-GHN family and show that the NOLL-GHN has the ability to 

fit the current data and it was always one of the best models. The results of tables and 

figures illustrate the importance of the new distribution to analyze of real data with 

respect to another well-known models. 
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