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Abstract 

In this paper, we introduce a new three-parameter lifetime model called the extended half-logistic (EHL) 

distribution. We derive various of its structural properties including moments, quantile and generating 

functions, mixture representation for probability density function, and reliability curves. The maximum 

likelihood, ordinary and weighted least square methods are used to estimate the model parameters. 
Simulation results to assess the performance of the estimation methods are discussed. We conclude that the 

maximum likelihood is the most suitable method to estimate model parameters for the small sample size. 

While the weighted least square method is the best for the large sample size. Finally, we prove empirically 

the importance and flexibility of the new model in modeling a real lifetime dataset. 
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1.   Introduction 

The statistical analysis and modeling of lifetime data are essential in almost all applied 

sciences including, biomedical science, engineering, finance, and insurance, among 

others. Many continuous distributions for the modeling lifetime data has been introduced 

in statistical literature including exponential, Lindley, gamma, log normal, half logistic, 

and Weibull. The half-logistic (HL) distribution has been used quite extensively in 

reliability and lifetime data analysis. The cumulative distribution function (cdf) of the HL 

distributed random variable 𝑋, with scale parameter (𝛽) is given by  

𝐺(𝑥) =
1 − e−𝛽𝑥

1 + e−𝛽𝑥
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The HL distribution does not provide enough flexibility for analyzing different types of 

lifetime data. Hence, it will be useful to consider other alternatives to this distribution for 

modelling purposes. Hence, our purpose is to provide a generalization that may be useful 

to  more complex situations. Once the proposed distribution is quite flexible in terms of 

probability density function (pdf) and hazard rate function (hrf), it may provide an 

interesting alternative to describe income distributions and can also be applied in 

actuarial science, finance, bioscience, telecommunications and modelling lifetime data, 

for example. We introduce extended half-logistic (EHL) distribution using the HL 

distribution as the baseline distribution. The cdf and the pdf of the EHL distribution are, 

respectively, given by  

𝐹(𝑥) =
1−e−𝛽𝑥−𝜆𝑥𝛾

1+e−𝛽𝑥−𝜆𝑥𝛾  ,    𝑥 > 0 ,       (1) 

𝑓(𝑥) =
2(𝛽+𝛾𝜆𝑥𝛾−1)e−𝛽𝑥−𝜆𝑥𝛾

(1+e−𝛽𝑥−𝜆𝑥𝛾
)

2 ,       (2) 

where 𝛼, 𝛽 > 0 and 𝛾 ∈ (0, ∞)\{1}. A random variable 𝑋 with pdf (2) is denoted by 

𝑋~ 𝐸𝐻𝐿 (𝛽, 𝜆, 𝛾). The EHL distribution is much more flexible than the HL distribution 

and allows for greater flexibility of the tails. 

 

In reliability studies, the hrf is an important characteristic and fundamental to the design 

of safe systems in a wide variety of applications. The corresponding hrf of the EHL 

distribution is obtained as  

ℎ(𝑥) =
(𝛽+𝜆 𝛾 𝑥𝛾−1) 

1+e−𝛽 𝑥−𝜆 𝑥𝛾 .        (3) 

 

Figures 1 and 2 represents the pdf and hrf plots of the EHL distribution, respectively. As 

seen in Figure 1, the density function can take various forms depending on the parameter 

values. Figure 2 shows that the hrf of the EHL distribution has very flexible shapes, such 

as increasing, decreasing, upside-down bathtub. It is evident that the EHL distribution is 

much more flexible than the HL distribution. This attractive flexibility makes the hrf of 

the EHL useful and suitable for non-monotone empirical hazard behaviour which are 

more likely to be encountered or observed in real life situations.  

 

Figure  1: Plots of the pdf of the EHL distribution for the selected parameter values. 
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Figure  2: Plots of the hrf of the EHL distribution for the selected parameter values. 

 

 

For simulation from the EHL distribution, let U be a uniform variable on the unit interval 

(0, 1). Thus, by means of the inverse transformation method, we easily simulate data 

from the EHL by following equation: 

𝛽 𝑥 + 𝜆 𝑥𝛾 + log (
1−𝑈

1+𝑈
) = 0.       (4) 

Theorem 1 provides a relation of the EHL distribution with HL distribution.  

 

Theorem 1  Let 𝑋~EHL(𝛽, 𝜆, 𝛾, 𝑥).  

If 𝑌 = 𝛽𝑥 + 𝜆𝑥𝛾, then 𝑌~𝐻𝐿 with 𝑠𝑐𝑎𝑙𝑒 = 1  

 

The rest of the paper is outlined as follows. In Section 2, we discuss the distributional 

properties of the proposed distribution, including mixture representation for pdf, 

moments, moment generating function, and reliability curves. The asymptotic and shapes 

of the density and hazard rate functions are also investigated. In Section 3, maximum 

likelihood, ordinary and weighted least square methods are used to estimate model 

parameters. Section 4 presents a simulation study. Application with real lifetime data is 

considered in Section 5. Finally, Section 6 offers some concluding remarks. 

2.   Main properties 

2.1  Asymptotic and Shapes 

The asymptotics of equations (1), (2) and (3) as 𝑥 → 0 are given by  

𝐹(𝑥)~
1

2
 (𝛽 𝑥 + 𝜆 𝑥𝛾)                    as    𝑥 → 0, 
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𝑓(𝑥)~
1

2
 (𝛽 + 𝜆 𝛾 𝑥𝛾−1)                as    𝑥 → 0, 

ℎ(𝑥)~
1

2
 (𝛽 + 𝜆 𝛾 𝑥𝛾−1)                as    𝑥 → 0, 

 

The asymptotics of equations (1), (2) and (3) as 𝑥 → ∞ are given by  

1 − 𝐹(𝑥)~2 e−𝛽 𝑥−𝜆 𝑥𝛾
                                      as    𝑥 → ∞, 

𝑓(𝑥)~2(𝛽 + 𝜆 𝛾 𝑥𝛾−1) e−𝛽 𝑥−𝜆 𝑥𝛾
                  as    𝑥 → ∞, 

ℎ(𝑥)~2(𝛽 + 𝜆 𝛾 𝑥𝛾−1)                                      as    𝑥 → ∞. 

2.2  Mixture for pdf 

In this subsection, we provide alternative mixture representation for the pdf of the EHL 

distribution. Despite the fact that the pdf of the EHL require mathematical functions that 

are widely available in modern statistical packages, frequently analytical and numerical 

derivations take advantage of power series for the pdf. Some useful expansions for (2) 

can be derived by using the concept of power series. Using generalized binomial 

expansion, we obtain the pdf of the EHL as  

𝑓(𝑥) = 2 ∑

∞

𝑚=0

(
−2
𝑚

) (𝛽 + 𝜆 𝛾 𝑥𝛾−1) e−𝛽(𝑚+1) 𝑥−𝜆 (𝑚+1) 𝑥𝛾
 

         = ∑∞
𝑚=0 𝑉𝑚(𝛽 + 𝜆 𝛾 𝑥𝛾−1) e−𝛽(𝑚+1) 𝑥−𝜆 (𝑚+1) 𝑥𝛾

,   (5) 

where 𝑉𝑚 = 2 (−1)𝑚 (𝑚 + 1). 
 

It is clear from (5) that 𝑓(𝑥) can be expressed as infinite linear combinations of the 

modified Weibull (MW) distributions and hence many properties of the EHL distribution 

can be deduced from the corresponding ones of the MW distribution. In what follows, we 

discuss some properties of the EHL distribution and consider several associated statistical 

functions. 

2.3  Moments and moment generating function 

We now obtain representations of the moments and moment generating function (mgf) of 

the EHL random variable on the basis of the following result developed in Saboor et al. 

(2012).  

∫
∞

0

𝑥𝜂−1e−𝜃 𝑥𝑘
e𝑠 𝑥𝑑𝑥 =

(2𝜋)1−(q+p)/2 q1/2p 𝜂−1/2

(−s)𝜂
  

      × 𝐺𝑝,𝑞
𝑞,𝑝

((−
𝑝

𝑠
)

𝑝

 (
𝜃

𝑞
)

𝑞

 |
1 −

𝑖+𝜂

𝑝

𝑗/𝑞  ,

, 𝑖 = 0,1, . . . . , 𝑝 − 1

𝑗 = 0,1, . . . . , 𝑞 − 1
),  (6) 

where ℜ(𝜂), ℜ(𝜃), ℜ(𝑠) < 0 and 𝑘 is a rational number such that 𝑘 = 𝑝/𝑞, where 𝑝 and 

𝑞 ≠ 0 are integers. 
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Using (6), the 𝑟𝑡ℎ  order moment and mgf of the EHL distribution can be expressed in 

terms of Meijer’s 𝐺–functions as 

𝐸(𝑋𝑟) = 𝛽 ∑

∞

𝑚=0

𝑉𝑚  
(2𝜋)1−(𝑞+𝑝)/2𝑞1/2𝑝𝑟+1/2

(𝛽(𝑚 + 1))𝑟+1
 

  × 𝐺𝑝,𝑞
𝑞,𝑝 ((

𝑝

𝛽(𝑚 + 1)
)

𝑝

(
𝜆(𝑚 + 1)

𝑞
)

𝑞

|
1 −

𝑖 + 𝑟 + 1

𝑝
,

𝑗/𝑞,

𝑖 = 0,1, … , 𝑝 − 1

𝑗 = 0,1, … , 𝑞 − 1
) 

  +𝜆 𝛾 ∑

∞

𝑚=0

𝑉𝑚  
(2𝜋)1−(𝑞+𝑝)/2𝑞1/2𝑝𝑟+𝛾−1/2

(𝛽(𝑚 + 1))𝑟+𝛾
 

  × 𝐺𝑝,𝑞
𝑞,𝑝

((
𝑝

𝛽(𝑚+1)
)

𝑝

(
𝜆(𝑚+1)

𝑞
)

𝑞

|
1 −

𝑖+𝑟+𝛾

𝑝
,

𝑗/𝑞,

𝑖 = 0,1, … , 𝑝 − 1

𝑗 = 0,1, … , 𝑞 − 1
),  (7) 

 

The ℎ𝑡ℎ order negative moment can readily be determined by replacing 𝑟 with −ℎ in (7). 

The mgf of the EHL distribution is given by 

𝑀(𝑡) = 𝛽 ∑

∞

𝑚=0

𝑉𝑚  
(2𝜋)1−(𝑞+𝑝)/2 𝑞1/2𝑝 1/2

𝛽(𝑚 + 1) − 𝑡
    

  × 𝐺𝑝,𝑞
𝑞,𝑝 ((

𝑝

𝛽(𝑚 + 1) − 𝑡
)

𝑝

(
𝜆(𝑚 + 1)

𝑞
)

𝑞

|
1 −

𝑖 + 1

𝑝
,

𝑗/𝑞,

𝑖 = 0,1, … , 𝑝 − 1

𝑗 = 0,1, … , 𝑞 − 1
) 

  +𝜆 𝛾 ∑

∞

𝑚=0

𝑉𝑚  
(2𝜋)1−(𝑞+𝑝)/2 𝑞1/2𝑝 𝛾−1/2

(𝛽(𝑚 + 1) − 𝑡)𝛾
 

  × 𝐺𝑝,𝑞
𝑞,𝑝

((
𝑝

𝛽(𝑚+1)−𝑡
)

𝑝

(
𝜆(𝑚+1)

𝑞
)

𝑞

|
1 −

𝑖+𝛾

𝑝
,

𝑗/𝑞,

𝑖 = 0,1, … , 𝑝 − 1

𝑗 = 0,1, … , 𝑞 − 1
).  (8) 

 

The skewness and kurtosis measures can be obtained from the ordinary moment using 

well-known relationships. Figure 3 displays the mean, variance, skewness and kurtosis of 

the EHL distribution for 𝛽 = 2. Based on the plots given in Figure 3, we conclude:   

1. if 𝜆 increases, mean decreases; if 𝛾 increases, mean increases  

2. if 𝜆 increases, variance decreases; if 𝛾 increases, variance increases  

3.  𝛾 parameter has more significant effect on skewness and kurtosis measures than 𝜆 

parameter, 

 

Figure  3: Mean, variance skewness and kurtosis plots of the EHL distribution for 𝛽 = 2 
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In the rest of this section, we use the following lemma:  

Lemma 1 Let  

𝐽(𝑥; 𝑟, 𝜃) = ∫
𝑥

0

𝑦 𝑟𝑓(𝑦) d𝑦 = ∑

∞

𝑚,s=0

𝑉𝑚

(−1)𝑠

𝑠!
{𝛽(𝑚 + 1)}𝑠 

  × ∫
𝑥

0

𝑦𝑠+𝑟  (𝛽 + 𝜆 𝛾 𝑦𝛾−1) e−𝜆(𝑚+1) 𝑦𝛾
 d𝑦,      𝑟 = 1,2, … , 

where 𝜃 = (𝛽, 𝜆, 𝛾). Then, we have  

𝐽(𝑥; 𝑟, 𝜃) = ∑

∞

𝑚,s=0

𝑉𝑚

(−1)𝑠

𝑠!
{𝛽(𝑚 + 1)}𝑠 

  ×  { 
𝛽 𝑞 𝑥𝑝 (𝑗+𝑟+1)

𝑝 (2 𝜋)(𝑞−1)/2
 

  × 𝐺𝑝,𝑝+𝑞
𝑞,𝑝 (

(𝜆(𝑚+1))𝑞 𝑥𝑝

𝑞𝑞 |

−𝑗−𝑟

𝑝
 ,

1−𝑗−𝑟

𝑝
 , … ,

𝑝−𝑗−𝑟−1

𝑝
 , −

0 ,
−𝑗−𝑟−1

𝑝
 ,

𝑗+𝑟

𝑝
 , … ,

𝑝−𝑗−𝑟−2

𝑝

) 

  +
𝜆 𝑥𝑝 (𝑗+𝑟+𝛾)

(2𝜋)(𝑞−1)/2
 

   ×  𝐺𝑝,𝑝+𝑞
𝑞,𝑝 (

(𝜆(𝑚+1))𝑞 𝑥𝑝

𝑞𝑞 |

−𝑗−𝑟−𝛾+1

𝑝
 ,

2−𝑗−𝑟−𝛾

𝑝
 , … ,

𝑝−𝑗−𝑟−𝛾

𝑝
 , −

0 ,
−𝑗−𝑟−𝛾

𝑝
 ,

𝑗+𝑟+𝛾−1

𝑝
 , … ,

𝑝−𝑗−𝑟−𝛾−1

𝑝

)}. 

 

Proof 1 The proof can be obtained by noting that the arbitrary function 𝑒−𝑔(𝑥) =

𝐺0,1
1,0 (𝑔(𝑥) |

−
0 ), letting 𝑘 = 𝑝/𝑞 where 𝑝 ≥ 1 , 𝑞 ≥ 1 are natural co-prime numbers, and 

making use of the identity  

∫
𝑥

0

𝑦𝑡 𝐺0,1
1,0 (𝜆(𝑚 + 1)𝑦

𝑝

𝑞|0)  d𝑦 

  =
𝑞 𝑥𝑝 (𝑡+1)

𝑝(2𝜋)(𝑞−1)/2
 𝐺𝑝,𝑝+𝑞

𝑞,𝑝 (
(𝜆(𝑚+1))𝑞 𝑥𝑝

𝑞𝑞 |

−𝑡

𝑝
 ,

1−𝑡

𝑝
 , … ,

𝑝−𝑡−1

𝑝
 , −

0 ,
−𝑡−1

𝑝
 ,

𝑡

𝑝
 , … ,

𝑝−𝑡−2

𝑝

) , 

which results from Equation (13) of Cordeiro et al. (2014).  

2.4   Conditional moments and mean deviations 

In connection with lifetime distributions, it is important to determine the conditional 

moments 𝐸(𝑋𝑟|𝑋 > 𝑡), 𝑟 = 1,2, ⋯, which are of interest in predictive inference. The 𝑟𝑡ℎ  

conditional moment of the EHL distribution can be obtained as  

𝐸(𝑋𝑟|𝑋 > 𝑡) =
1

𝑆(𝑡)
[𝐸(𝑋𝑟) − ∫

𝑡

0

𝑥 𝑟𝑓(𝑥) d𝑥] 

 =
1+e−𝛽 𝑥−𝜆 𝑥𝛾

2 e−𝛽 𝑥−𝜆 𝑥𝛾 {𝐸(𝑋𝑟) − 𝐽(𝑡; 𝑟, 𝜃)}.    (9) 

The mean deviations provide useful information about the characteristics of a population 

and it can be calculated from the first incomplete moment. Indeed, the amount of 

dispersion in a population may be measured to some extent by all the deviations from the 
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mean and median. The mean deviations of 𝑋 about the mean 𝜇 = 𝐸(𝑋) and about the 

median 𝑀 can be expressed as 𝛿 = 2𝜇𝐹(𝜇) − 2𝑚(𝜇) and 𝜂 = 𝜇 − 2𝑚(𝑀), where 𝐹(𝜇) 

is calculated from (1) and  

𝑚(𝑧) = ∫
𝑧

0
𝑥 𝑓(𝑥)𝑑𝑥 = 𝐽(𝑧; 1, 𝜃).      (10) 

2.5  Reliability curves 

The Bonferroni and Lorenz curves have various applications in economics, reliability, 

insurance and medicine. The Bonferroni curve 𝐵𝐹[𝐹(𝑥)] for the EHL distribution is 

given as  

𝐵𝐹[𝐹(𝑥)] =
1

𝐸(𝑋). 𝐹(𝑥)
∫

𝑥

0

𝑦𝑓(𝑦)d𝑦 =
𝐽(𝑥; 1, 𝜃)

𝐸(𝑋). 𝐹(𝑥)
. 

 

Then, the Lorenz curve of 𝐹 is obtained as  

𝐿𝐹[𝐹(𝑥)] =
𝐽(𝑥;1,𝜃)

𝐸(𝑋)
.        (11) 

 

The scaled total time on test transform of a distribution function 𝐹 (Pundir et al. (2005)) 

is defined by 𝑆𝐹[𝐹(𝑡)] =
1

𝐸(𝑋)
∫

𝑡

0
𝐹̅(𝑦)𝑑𝑦, and it is important for the ageing properties of 

the underlying distribution and can be applied to solve geometrically some stochastic 

maintenance problems. 

3.   Estimation and inference 

In this section, we obtain the maximum likelihood (ML), least square (LS) and weighted 

least square (WLS) estimates of the parameters of the EHL distribution taken a random 

sample with inference on those parameters. Further, some goodness-of-fit statistics are 

given to compare the density estimates and selection of the models. 

3.1  Maximum Likelihood Estimation 

Using the log-likelihood of the sample in conjunction with the NMaximize command in 

the symbolic computational package Mathematica, we can estimate the unknown 

parameters of a distribution. Given the observed values 𝑥𝑖, 𝑖 = 1, … , 𝑛 of the taken 

sample from the EHL distribution, then the maximum likelihood estimators (MLEs) of 

the parameters are obtained by maximization of the log-likelihood function given by 

ℓ(𝑥𝑖; 𝜃) = ℓ(𝑥𝑖, 𝛽, 𝜆, 𝛾) = 𝑛log(2) + ∑𝑛
𝑖=1 log(𝛽 + 𝛾𝜆𝑥𝑖

𝛾−1) − ∑𝑛
𝑖=1 (𝛽𝑥𝑖 +

𝜆𝑥𝑖
𝛾)  − 2 ∑𝑛

𝑖=1 log(1 + e−𝛽𝑥𝑖−𝜆𝑥𝑖
𝛾
) ,      (12) 

and the associated nonlinear log-likehood system 
∂ℓ(𝜃)

∂𝜃
= 0, where  

∂ℓ(𝜃)

∂𝛽
= − ∑

𝑛

𝑖=1

𝑥𝑖 − 2 ∑

𝑛

𝑖=1

−
e−𝛽𝑥𝑖−𝜆𝑥𝑖

𝛾

𝑥𝑖

1 + e−𝛽𝑥𝑖−𝜆𝑥
𝑖
𝛾 + ∑

𝑛

𝑖=1

1

𝛽 + 𝛾𝜆𝑥𝑖
−1+𝛾 = 0, 

∂ℓ(𝜃)

∂𝜆
= − ∑

𝑛

𝑖=1

𝑥𝑖
𝛾

− 2 ∑

𝑛

𝑖=1

−
e−𝛽𝑥𝑖−𝜆𝑥𝑖

𝛾

𝑥𝑖
𝛾

1 + e−𝛽𝑥𝑖−𝜆𝑥
𝑖
𝛾 + ∑

𝑛

𝑖=1

𝛾𝑥𝑖
−1+𝛾

𝛽 + 𝛾𝜆𝑥𝑖
−1+𝛾 = 0, 

∂ℓ(𝜃)

∂𝛾
= − ∑

𝑛

𝑖=1

𝜆log[𝑥𝑖]𝑥𝑖
𝛾

− 2 ∑

𝑛

𝑖=1

−
e−𝛽𝑥𝑖−𝜆𝑥𝑖

𝛾

𝜆log[𝑥𝑖]𝑥𝑖
𝛾

1 + e−𝛽𝑥𝑖−𝜆𝑥
𝑖
𝛾  
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+ ∑

𝑛

𝑖=1

𝜆𝑥𝑖
−1+𝛾

+ 𝛾𝜆log[𝑥𝑖]𝑥𝑖
−1+𝛾

𝛽 + 𝛾𝜆𝑥𝑖
−1+𝛾 = 0. 

 

By solving equations above simultaneously, we obtain the MLEs of the parameters. The 

numerical iterative techniques may be used for estimating the parameters and the global 

maxima of the log-likelihood is possible to investigate by putting different starting values 

for the parameters. The information matrix will be required for interval estimation. The 

elements of the 3 × 3 total observed information matrix 𝐽(𝜃) = 𝐽𝑟𝑠(𝜃) for 𝑟, 𝑠 = 𝛽, 𝜆, 𝛾, 

can be obtained from authors upon request. 

3.2  Ordinary and Weighted Least-Square Estimators: 

Let 𝑥1, 𝑥2, 𝑥3, ⋯, 𝑥𝑛 denotes the ordered sample of the random sample of size n from the 

EHL distribution function F(⋅). The least square estimators (LSEs) can be obtained by 

minimizing  

𝐿(Θ) = ∑𝑛
𝑖=1 (

1−e−𝛽𝑥𝑖−𝜆𝑥𝑖
𝛾

1+e−𝛽𝑥𝑖−𝜆𝑥𝑖
𝛾 −

𝑖

𝑛+1
)

2

 ,      (13) 

with respect to the unknown parameters. The associated nonlinear equations 
∂𝐿(Θ)

∂Θ
= 0 

are given by  

∂𝐿(Θ)

∂𝛽
= ∑𝑛

𝑖=1 2 (
1−e

−𝛽𝑥𝑖−𝜆𝑥
𝑖
𝛾

1+e
−𝛽𝑥𝑖−𝜆𝑥

𝑖
𝛾 −

𝑖

1+𝑛
) (

e
−𝛽𝑥𝑖−𝜆𝑥

𝑖
𝛾

(1−e
−𝛽𝑥𝑖−𝜆𝑥

𝑖
𝛾

)𝑥𝑖

(1+e
−𝛽𝑥𝑖−𝜆𝑥

𝑖
𝛾

)

2 +
e

−𝛽𝑥𝑖−𝜆𝑥
𝑖
𝛾

𝑥𝑖

1+e
−𝛽𝑥𝑖−𝜆𝑥

𝑖
𝛾) = 0,  

∂𝐿(Θ)

∂𝜆
= ∑𝑛

𝑖=1 2 (
1−e

−𝛽𝑥𝑖−𝜆𝑥
𝑖
𝛾

1+e
−𝛽𝑥𝑖−𝜆𝑥

𝑖
𝛾 −

𝑖

1+𝑛
) (

e
−𝛽𝑥𝑖−𝜆𝑥

𝑖
𝛾

(1−e
−𝛽𝑥𝑖−𝜆𝑥

𝑖
𝛾

)𝑥𝑖
𝛾

(1+e
−𝛽𝑥𝑖−𝜆𝑥

𝑖
𝛾

)

2 +
e

−𝛽𝑥𝑖−𝜆𝑥
𝑖
𝛾

𝑥𝑖
𝛾

1+e
−𝛽𝑥𝑖−𝜆𝑥

𝑖
𝛾) = 0,  

∂𝐿(Θ)

∂𝛾
= ∑

𝑛

𝑖=1

2 (
1 − e−𝛽𝑥𝑖−𝜆𝑥𝑖

𝛾

1 + e−𝛽𝑥𝑖−𝜆𝑥
𝑖
𝛾 −

𝑖

1 + 𝑛
) 

      × (
e−𝛽𝑥𝑖−𝜆𝑥𝑖

𝛾

(1 − e−𝛽𝑥𝑖−𝜆𝑥𝑖
𝛾

) 𝜆log[𝑥𝑖]𝑥𝑖
𝛾

(1 + e−𝛽𝑥𝑖−𝜆𝑥
𝑖
𝛾

)
2 +

e−𝛽𝑥𝑖−𝜆𝑥𝑖
𝛾

𝜆log[𝑥𝑖]𝑥𝑖
𝛾

1 + e−𝛽𝑥𝑖−𝜆𝑥
𝑖
𝛾 ) = 0. 

 

Solving this nonlinear equations system simultaneously, we obtain the LSEs of the 

parameters. 
 

The weighted least square estimators (WLSEs) can be obtained by minimizing  

𝐿(Θ) = ∑𝑛
𝑖=1

(𝑛+1)2(𝑛+2)

𝑖(𝑛−𝑖+1)
(

1−e−𝛽𝑥𝑖−𝜆𝑥𝑖
𝛾

1+e−𝛽𝑥𝑖−𝜆𝑥𝑖
𝛾 −

𝑖

𝑛+1
)

2

 ,    (14) 

with respect to the unknown parameters. The associated nonlinear equations 
∂𝐿(Θ)

∂Θ
= 0 

are given by  

∂𝐿(Θ)

∂𝛽
= ∑

𝑛

𝑖=1

2(𝑛 + 1)2(𝑛 + 2)

𝑖(𝑛 − 𝑖 + 1)
(

1 − e−𝛽𝑥𝑖−𝜆𝑥𝑖
𝛾

1 + e−𝛽𝑥𝑖−𝜆𝑥
𝑖
𝛾 −

𝑖

1 + 𝑛
) 
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      × (
e−𝛽𝑥𝑖−𝜆𝑥𝑖

𝛾

(1 − e−𝛽𝑥𝑖−𝜆𝑥𝑖
𝛾

) 𝑥𝑖

(1 + e−𝛽𝑥𝑖−𝜆𝑥
𝑖
𝛾

)
2 +

e−𝛽𝑥𝑖−𝜆𝑥𝑖
𝛾

𝑥𝑖

1 + e−𝛽𝑥𝑖−𝜆𝑥
𝑖
𝛾) = 0, 

∂𝐿(Θ)

∂𝜆
= ∑

𝑛

𝑖=1

2(𝑛 + 1)2(𝑛 + 2)

𝑖(𝑛 − 𝑖 + 1)
(

1 − e−𝛽𝑥𝑖−𝜆𝑥𝑖
𝛾

1 + e−𝛽𝑥𝑖−𝜆𝑥
𝑖
𝛾 −

𝑖

1 + 𝑛
) 

      × (
e−𝛽𝑥𝑖−𝜆𝑥𝑖

𝛾

(1 − e−𝛽𝑥𝑖−𝜆𝑥𝑖
𝛾

) 𝑥𝑖
𝛾

(1 + e−𝛽𝑥𝑖−𝜆𝑥
𝑖
𝛾

)
2 +

e−𝛽𝑥𝑖−𝜆𝑥𝑖
𝛾

𝑥𝑖
𝛾

1 + e−𝛽𝑥𝑖−𝜆𝑥
𝑖
𝛾) = 0, 

∂𝐿(Θ)

∂𝛾
= ∑

𝑛

𝑖=1

2(𝑛 + 1)2(𝑛 + 2)

𝑖(𝑛 − 𝑖 + 1)
(

1 − e−𝛽𝑥𝑖−𝜆𝑥𝑖
𝛾

1 + e−𝛽𝑥𝑖−𝜆𝑥
𝑖
𝛾 −

𝑖

1 + 𝑛
) 

     × (
e−𝛽𝑥𝑖−𝜆𝑥𝑖

𝛾

(1 − e−𝛽𝑥𝑖−𝜆𝑥𝑖
𝛾

) 𝜆log[𝑥𝑖]𝑥𝑖
𝛾

(1 + e−𝛽𝑥𝑖−𝜆𝑥
𝑖
𝛾

)
2 +

e−𝛽𝑥𝑖−𝜆𝑥𝑖
𝛾

𝜆log[𝑥𝑖]𝑥𝑖
𝛾

1 + e−𝛽𝑥𝑖−𝜆𝑥
𝑖
𝛾 ) = 0. 

 

Then, the WLSEs of the parameters are obtained by solving this nonlinear equations 

system simultaneously. 

 

To check the goodness-of-fit of some statistical models defined in Section 5, we use 

Kolmogorov-Smirnov (K-S) test with their p-values to compare the fitted models. These 

statistics are used to evaluate how closely a specific distribution with cdf(⋅) fits the 

corresponding empirical distribution for a given data set. The distribution with better fit 

than the others will be the one having the smallest statistics and largest 𝑝-value. 

4.   Simulation Study 

In this section, we consider MLE, LSE and WLSE methods for estimating unknown 

parameters of EHL distribution. We compare the parameter estimation efficiency of 

MLE, LSE and WLSE methods for the parameters of EHL distribution by means of 

Monte Carlo simulation. The following simulation procedure is implemented: 

1.   Set the sample size 𝑛 and the vector of parameters 𝜽 = (𝛽, 𝜆, 𝛾), 

2.   Generate random observations from the 𝐸𝐻𝐿(𝛽, 𝜆, 𝛾) distribution with size 𝑛, 

3.   Using the generated random observations in Step 2, estimate 𝜽̂ by means of MLE 

and LSE methods, 

4.   Repeat the steps 2 and 3 𝑁 times, 

5.   Using 𝜽̂ and 𝜽 compute the mean relative estimates (MREs) and mean square errors 

(MSEs) with the following equations:  

 
𝑀𝑅𝐸 = ∑𝑁

𝑗=1

𝜽̂𝑖,𝑗/𝜽𝐢

𝑁
,

𝑀𝑆𝐸 = ∑𝑁
𝑗=1

(𝜽̂𝐢,𝐣−𝜽𝐢)
2

𝑁
, 𝑖 = 1,2,3
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The simulation results are computed with software R. The chosen parameters of 

simulation study are 𝜽 = (𝜆 = 0.5, 𝛽 = 3, 𝛾 = 2), 𝑁 = 1.000 and 𝑛 =
(50,55,60, . . . ,500). We expect that MREs are closer to one when the MSEs are near 

zero. Figures 3 and 4 represents estimated MSEs and MREs by means of the MLE and 

LSE methods, respectively. Based on Figures 3 and 4, the MSE of all estimates tend to 

zero for large 𝑛 and also as expected, the values MREs tend to one. It is clear that the 

estimates of parameters are asymptotically unbiased. The MLE and WLSE methods 

approach to nominal values of the MSEs and MREs faster than the LSE method. The 

MLE method exhibits better performance than the WLSE method for small sample size. 

Therefore, the MLE is more suitable method than others for estimating parameters of the 

EHL distribution for small sample size. While the WLSE method is the best to estimate 

EHL parameters for large sample size. 

 

 

Figure  4: Estimated MSEs of the selected parameters for the MLE, LSE  

and WLSE methods.  

 

 

Figure  5: Estimated MREs of the selected parameters for the MLE, LSE  

and WLSE methods 
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5.   Application 

In this section, we analyze a real data set to demonstrate the performance of the EHL 

distribution in practice. The data used here are the lifetime failure data of an electronic 

device analyzed by Wang (2000). Using three different estimation methods given in 

Section 3, we fit the following distributions to the data: the Weibull distribution, a 

lifetime model with increasing failure rate (LMIFR) (Bakouch et al. 2014) and the 

exponentiated half-logistic (ExpHL) distribution (Gui (2015)). The MLEs, LSEs and 

WLSEs are listed in Table 1, respectively, with Kolmogorov-Smirnov (K-S) test and 

corresponding 𝑝-value for the fitted models. It is clear that the EHL model is the best 

among the fitted models since it corresponds to the smallest values of the statistics with 

larger 𝑝-value for all the three estimation methods. Further, it can be observed that the 

MLEs and WLSEs perform better than LSEs. This conclusion is again confirmed by a 

visual comparison of the histogram of the data for the fitted pdf of EHL distribution using 

the estimates given in Table 1 with three methods. The plots of the fitted EHL are shown 

in Figure 6 for the lifetime failure of an electronic device data. As seen from Figure 5, the 

EHL distribution appears to provide a closer fit to the histogram with the MLEs and 

WLSEs than the LSEs. 

 

 

  

Figure  6:   The fitted EHL density superimposed on the histogram 
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Table 1:  Comparison of fit of EHL using different methods of estimation for 

device failure data 

 MLE’s  

Distributions Estimates   K-S 𝑝-value 

Weibull(𝑘, 𝜆) 1.145844 383.0348  0.113206 0.975172 

LMIFR(𝜆, 𝜃) 0.008749 0.671934  0.10834 0.984125 

ExpHL(𝛼, 𝜆) 1.004888 0.008893  0.147827 0.826388 

EHL(𝛽, 𝜆, 𝛾) 0.007562 0.002495 0.656714 0.100597 0.993278 

 LSE’s  

Distributions Estimates   K-S 𝑝-value 

Weibull(𝑘, 𝜆) 0.961885 202.918  0.133561 0.905127 

LMIFR(𝜆, 𝜃) 0.006225 0.387186  0.119144 0.960327 

ExpHL(𝛼, 𝜆) 0.735472 0.005784  0.121942 0.951745 

EHL(𝛽, 𝜆, 𝛾) 0.006265 0.128888 0.063105 0.113944 0.97357 

 WLSE’s  

Distributions Estimates   K-S 𝑝-value 

Weibull(𝑘, 𝜆) 0.994649 190.360  0.111134 0.97932 

LMIFR(𝜆, 𝜃) 0.007088 0.494453  0.100751 0.993148 

ExpHL(𝛼, 𝜆) 0.757213 0.006246  0.104211 0.989705 

EHL(𝛽, 𝜆, 𝛾) 0.006695 0.097236 0.082549 0.0973834 0.995592 

6.   Conclusion 

A new three parameter lifetime distribution named, “extended half-logistic distribution” 

has been suggested for modeling lifetime data sets from engineering and medical science. 

Its important mathematical and statistical properties including shape, moments, hazard 

rate function, mixture representation of density function have been discussed. The 

maximum likelihood, ordinary and weighted least square methods ehave also been 

discussed for estimating its parameter. Finally, the goodness of fit test for the real lifetime 

dataset have been presented to demonstrate the applicability and comparability of 

Weibull, lifetime model with increasing failure rate, exponentiated half-logistic 

distributions and proposed extended half-logistic distribution for modeling lifetime 

datasets. 
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