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Abstract
In this paper we propose Bayes estimators of the parameters of exponentiated exponential
distribution and reliability functions under general entropy loss function for Type II censored
sample. The proposed estimators have been compared with the corresponding Bayes estimators
obtained under squared error loss function and maximum likelihood estimators for their simulated
risks (average loss over sample space).
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1. Introduction
Two parameter gamma and Weibull distributions are the most popular
distributions for analyzing life time data. These distributions possess both scale
and shape parameters and hence, found to be quite flexible to analyze any
positive real data. These have increasing as well as decreasing failure rates
depending on their shape parameters. On the other hand, a major disadvantage
of the gamma distribution is that its distribution function and survival function can
not be expressed in a nice closed form if the shape parameter is not an integer.
Perhaps, this is the reason for gamma distribution to be less popular than Weibull
distribution. Several applications of Weibull distribution can be found inJohnson
(1968) and for short comings, readers are referred toGorski (1968). One of the
disadvantages that can be pointed out here is that the asymptotic convergence of
the distribution of mles to normality is very slow Bain (1976). As an alternative to
gamma and Weibull distribution, the exponentiated Exponential (EE) distribution
can take place and this distribution has been studied by Gupta & Kundu (1999),
Gupta & Kundu (2001a), Gupta & Kundu (2001b), Gupta & Kundu (2002),
Jaheen (2004), Raquab & Ahsanullah (2001), Raquab & Madi (2005), Sarhan
(2007) and Zheng (2002) etc. Gupta & Kundu (2001a) and Gupta & Kundu
(2003), noted that the two-parameter EE distribution provides a better fit than the
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two-parameter Weibull distribution for some specific data. In fact EE distribution
is a special case of a distribution that was used by Gompertz (1825).

The probability density function (pdf) of EE distribution is given below,
0>0,>0,>;)(1=),;( 1   xeexf xx  (1)

where  is the shape parameter and  is the scale parameter of considered
distribution. Its cumulative distribution function and reliability (i.e., survival)
function are given by,

 ][1=)( xexF  (2)
and

 ][11=)( tetR  (3)
respectively.

Gupta & Kundu (2001b) studied different methods of parameter estimation for EE
parameters which include maximum likelihood estimation, moment method of
estimation and probability plot method of estimation based on complete random
sample. An extensive survey of some recent developments for the two-parameter
EE distribution based on complete random sample can be had from Gupta &
Kundu (2007). It may be noted that either no or a very little attention has been
paid to censored sample, although censoring is quite common in life testing and
reliability.

Censoring arises in a life test when exact lifetimes are known for only a portion of
the test units and the remaining lifetimes are known only to exceed or exceeded
by certain value. There are various types of censoring scheme. One of the most
common censoring scheme is Type II censoring in which, a total of n units is
placed on test, but instead of continuing until all n units, the test is terminated at
the time of the thr ( )1 nr  unit failure. For example, in early childhood learning
centers, interest often focuses upon testing children to determine when a child
learns to accomplish certain specified tasks. The age at which a child learns the
task would be considered the time to event. Some children undergoing testing,
may be very slow learner out of the total n children and, therefore, the
experimenter can not wait till all the children learn to accomplish the task and
decides to stop the data collection as soon as observation on thr (predetermined)
child complete the learning to accomplish the task. For the remaining rn
children, it is only known that their learning time is more than the learning time for
thr child. For inferences related to type II censored data, seeLawless (1982).

In this paper, we will consider type II censored data and try to develop estimators
for the shape parameter when scale parameter is known and scale parameter
when shape parameter is known. In both the cases, estimator for the reliability
function will also be obtained.

In parameter estimation problem, the most popular loss function is squared error
loss function (SELF) which can easily be justified on the grounds of minimum
variance unbiased estimation. However, the greatest weakness of this loss
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function is that it is symmetric and gives equal weightage to over estimation and
under estimation of same magnitude. A number of asymmetric loss functions are
available in statistical literature and perhaps most widely used asymmetric loss
function is LINEX loss function originally proposed by Varian (1975)
Error! Reference source not found. and popularized by Zellner (1986). It has
been pointed out by various authors that LINEX loss is not as appropriate for
estimation of scale parameter as it is for location parameter (c.f.Basu et.
al.(1991), Parsian & Sanjari (1993)). Keeping this point in mind Basu et. al.(1991)
defined a modified LINEX loss function. A suitable alternative to the modified
LINEX loss function is the General Entropy loss defined as,
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This loss is a simple generalization of the Entropy loss used by several authors
where the shape parameter 1c is taken equal to 1. The general version ((4))
allows different shapes for the loss function. It may be noted that when 0>1c , a
positive error causes more serious consequences than a negative error. The
Bayes estimator of  under General Entropy loss is given as,

)11/(1 )]([=ˆ cc
G E   (5)

provided that E [.] exists and is finite. It can be noted that, when 1=1c , the
Bayes estimate ((5)) coincides with the Bayes estimate under the weighted
squared-error loss function. Similarly, when 1=1 c , the Bayes estimate (5)
coincides with the Bayes estimate under SELF. It is worthwhile to mention here
that posterior distribution of shape and scale parameter for EE distribution
involves integral expression in the denominator which can not be reduced in a
nice closed form and hence the exact evaluation of posterior expectations for
obtaining Bayes estimator for shape and scale parameters and Reliability
function will not be possible. We have used numerical integration technique to
obtain Bayes estimators under both the loss functions.

In the section 2 we have obtained the maximum likelihood estimators, Bayes
estimators under GELF and SELF of  and )(tR when  is known for type II
censored data. In section 3 we have also obtained the maximum likelihood
estimators, Bayes estimators under GELF and SELF for  and )(tR when  is
known. The estimators, thus obtained, i.e., mle and Bayes estimators under
SELF and GELF have been compared in term of their risks (average loss over
sample space). The comparison is based on Monte-Carlo study of 5000
simulated samples from EE distribution.

2. Maximum Likelihood and Bayes Estimators of  and )(tR when  is
known

Let us consider that n identical items whose life time follow the p.d.f. (1), are put
on test. The test is terminated as soon as we observe r ordered failure times,
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say rxxx <<< 21  . Naturally, rxxx ,,, 21  constitute type II censored sample.
Therefore, the likelihood function is given as,

1

1=

1=
21 )(1

)!(
!=)|,,,(
















 
 




 ix
r

i

ix
r

irr
r ee

rn
nxxxl 

  rn
rxe

  )(11 (6)

2.1  Maximum Likelihood Estimator of  and )(tR

Differentiating the log of likelihood given in (6) with respect to  and equating it
to zero, we get the following normal equation,

0=
)(11

)(1)(
1

1)( 1

1=






 
 rx

rxrx
r

ix

ix
i

r

i e
eexrn

e
exr

















 (7)

Note that this is an implicit equation in  and can not be solved in nice closed
form. Therefore numerical iteration method is to be used for solving it. We
propose the use of Newton- Raphson method and denote the solution (i.e., mle)
by M̂ . Using the invariance property of mle, MR̂ , the mle of )(tR may be
obtained by replacing  by M̂ in ((3)) i.e.,


 )(11=ˆ ˆ

Mt
M eR  (8)

2.2  Bayes Estimators of  and )(tR under General Entropy and Squared
Error Loss Functions

2.2.1  Bayes Estimator of 
Consider gamma prior for  having p.d.f.,
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For prior ((9)), the posterior pdf of  given rxxx ,,, 21  is obtained as,
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The Bayes estimator of  under GELF (4) is, therefore, obtained as,
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where,
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and the Bayes estimator of  denoted by S̂ under SELF for the posterior ((10))
can be obtained as,
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The integrals )(1 cI , 1)(1 cI and )( 11 ccI  are not reducible to nice closed form.
Therefore, we propose to use Gauss - Laguerre quadrature formula for their
evaluation.

2.2.2  Bayes Estimator of )(tR

For given t , from (3), we get,

))(1(1ln1= 1/ R
t



Using this transformation, we find the posterior pdf of R from (10) as given
below,
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and the Bayes estimator of )(tR under GELF is obtained as,
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Similarly, the Bayes estimator SR̂ of )(tR under SELF for the posterior (13) can
be obtained as,
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It may be mentioned here that the integrals involved in the above expressions
are also not reducible in nice closed form. However, these can be evaluated
using Gauss quadrature formula.

3. Maximum Likelihood and Bayes Estimators of  and )(tR when  is
known

3.1  Maximum Likelihood Estimator of  and )(tR

Differentiating the log of likelihood given in (6) with respect to  and equating it
to zero ( is known), we get the following normal equation,
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This is an implicit equation in  . Therefore, as mentioned earlier, it can be
solved by using Newton - Raphson method and denote the solution (i.e., mle) by

M̂ . Hence MR̂ (mle of R(t)) can be obtained as,
Mt

M eR 
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3.2  Bayes Estimators of  and R under General Entropy and Squared
Error Loss Functions

3.2.1  Bayes Estimator of 
We choose improper prior for  as Jeffery's prior with pdf,
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Now, corresponding to this prior of  , the posterior pdf of  given rxxx ,,, 21  is
obtained as,
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If G̂ denote the Bayes estimator of  under GE loss function, then it obtained
as,
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Furthermore, if S̂ be the Bayes estimator of  under SELF, then
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The integrals )(2 rI , 1)(2 rI and )( 12 crI  are not reducible to nice closed form.
Therefore we propose to use Gauss - Laguerre quadrature formula for its
evaluation.

3.2.2  Bayes Estimators of )(tR

For given t , from ((3)), we get,
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By use of this transformation, we find the posterior pdf of R given rxxx ,,, 21 
from posterior (19) of  as,
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Therefore, the Bayes estimator GR̂ of )(tR under GELF is obtained as,
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and hence the Bayes estimator SR̂ of )(tR under SELF is obtained as,
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As mentioned earlier the integrals involved in the above expressions can be
evaluated using Gauss quadrature formula.

4. Simulation Studies

The estimators M̂ and MR̂ are the mle's of the parameter  and reliability )(tR

for a specified t respectively and G̂ , GR̂ and S̂ , SR̂ are the corresponding
Bayes estimators under GELF and SELF respectively, when  is known.
Similarly, the estimators M̂ and MR̂ are the mle's of the parameter  and
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reliability )(tR for a specified t respectively and G̂ , GR̂ and S̂ , SR̂ are the
corresponding Bayes estimators under GELF and SELF respectively when  is
known.

In this section, we shall compare the estimators obtained under GELF with
corresponding Bayes estimators under SELF and their mle's. The comparisons
are based on the simulated risks(average loss over sample space) under
GELF and SELF both. The exact expressions for the risks can not be obtained,
therefore the risks of the estimators are estimated on the basis of Monte-Carlo
simulation study of 5000 samples. It may be noted that the risks of the
estimators will be the function of n , r , m , c ,  ,  , t and 1c . In order to
consider wide variation of these values, we have obtained the simulated risks for

15[3]33=n and 6[2]18=r . The various values of the hyper parameters are taken
as 1[1]7=m and 1[1]7=c . For over estimation case, the variation in 1c
considered here are 1c =0.5[0.5]3 and for under estimation case

0.53.0[0.5]=1 c . The model parameters are considered as 1[1]7= and
1[1]7= and t is arbitrarily taken as 0.5 . From the results thus obtained effect of

variation of various parameters / hyper parameters on the risk of estimators has
been noted for the study of the behavior of the estimators and are summarized
below. It may be mentioned here that graphs of all results are not shown here
due to space restriction.

4.1  For estimation of  and R when  is known

We observed that under GELF, the proposed estimator G̂ performed well (in
sense of having smaller risk) than M̂ and S̂ for all choices of 1c . The risk of
the estimators increases with increase in the value of || 1c for all estimators, but
more increase noted for M̂ as compared to G̂ and S̂ . The least increase in the

risk is observed for G̂ . For 0=1c , all the three estimators have more or less

equal risks (see, figure (1)). Keeping this point in mind, we have included the
graphs for value of 1.5|=| 1c (a moderate value).

On varying r , we saw that our proposed estimator G̂ again perform well for all

choices of r keeping other parameters fixed and risks of all the estimators
decreases with increase in the value of r (see, figure (2)). It further noted that as
the value of n increases, the risk decreases almost all for all estimators provided
that the values of other parameters are kept constant, although the decrease is
very small (see, fig.(3)). Therefore, for showing the behavior of risk of estimators,
we have fixed ),( rn at (15,12) in rest of the graphs.
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In over estimation situation (i.e., for fixed 1.5=1 c ), we observed that G̂ perform
better than other estimators for small values of hyper shape parameter 2m
(see, figure (4)). It may be noted here that as n increases the prior distribution
becomes more and more peaked. Further for large m , the estimator G̂ performs
worst than other estimators. On the other hand as c increases the prior variance
increases. In this situation we noted that proposed estimator perform better than
other estimators (see, figure (5)). Thus we may infer that the choice of the hyper
parameters c and m should be such that the prior variance is not very small and
actual value of  is close to the prior mean. A similar trend can be noted for
under estimation case (when 1c is negative), see figures (8) and (9).

While studying the effect of variation of  on the risk of estimators, it was noted
that as  increases in general risk increases (see, figures (7) and (11)). It may
further be seen that the proposed estimator G̂ has smaller risk for small values
of  which are expected value of parameter under the assumed hyper
parameters. It was also observed that as  increases, the risk decreases (see,
figures (6) and (10)).

The performance of the proposed estimator G̂ under SELF is such that it

performs better than mle in most of the cases. In over estimation situation, the
proposed estimator G̂ performs better than S̂ for lower value of 3m , all c , all
choices of  and lower value of 1= . While in under estimation situation it
perform better for all  and 2 when we choose smaller values of m and c .

In case of estimators of reliability, in over estimation case, under GELF, it is
observed that our proposed estimator GR̂ perform well when 53   with lower
values of  , m and c (see, figure (12)). While in under estimation situation it
perform well for almost all values of m and c , lower values of 1= and 3 .
Further, in some situations, not presented here under SELF, GR̂ also perform

better than SR̂ and MR̂ .

4.2  For estimation of  and R when  is known

As in case of estimators of  , we observe under GELF that the risks of
estimators of  also increases with increase in the value of || 1c where all the
rest parameters were fixed at some values and for all choices of || 1c , risk of our
proposed estimator G̂ is smaller than those of other estimators S̂ and M̂ .

Also, we see that difference in the risk of estimators increases with increase in
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the value of || 1c . Thus, for further study we have again fixed 1.5|=| 1c (a
moderate value).

On varying r in over estimation situation (i.e., for 1.5=1c ), we saw that the
proposed estimator G̂ again perform better for all choices of r keeping other

parameters fixed and as r increase, the risk of the estimators decreases but very
slowly.

It is further noted that, G̂ perform better than all other estimators for all
considered values of n keeping other parameter fixed and risks of the estimators
decreases with increase in the value of n . Therefore, for further study of behavior
of risk of estimators, we have fixed ),( rn at (15,12) as in previous subsection. In
both over and under estimation situations (i.e., for fixed 1.5|=| 1c ) under GELF,
we again get G̂ perform better for all model parameters  and  .

Next, under SELF, in over estimation situation G̂ perform well again for all 
and  , while in under estimation situation, for some choices of  and  , the
proposed estimator G̂ perform better than S̂ and M̂ .

Finally, in some of the situations, the proposed estimator GR̂ of reliability

perform better than SR̂ and MR̂ under both the losses either in over estimation

situation or in under estimation situation.

5. Conclusion

The performance of proposed estimator G̂ in comparison to S̂ and M̂ have

been discussed in the previous section. On the basis of this discussion, we may
conclude that the proposed estimator G̂ performs better (in sense of having

smaller risk) than S̂ and M̂ under both General entropy and Squared error loss

functions, for certain choices of loss parameter and hyper parameters as
discussed in the previous section. Similarly, from previous section we may
conclude that our proposed estimator GR̂ , G̂ and GR̂ perform well in

comparison to the corresponding estimators SR̂ , MR̂ ; S̂ , M̂ and SR̂ , MR̂

respectively even in both the losses for certain choices of loss parameter and
hyper parameters. Thus, the uses of proposed estimators G̂ , GR̂ , G̂ and GR̂

are recommended, even if quadratic loss function seems to be justified loss
function.
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Figure  1: Risks of estimators of  under GE loss function for fixed
1=1,=1,=1,=12,=15,= cmrn

Figure  2: Risks of estimators of  under GE loss function for fixed
1.5=1,=1,=1,=1,=20,= 1 ccmn 
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Figure  3: Risks of estimators of  under GE loss function for fixed
1.5=1,=1,=1,=1,=12,= 1ccmr 

Figure  4: Risks of estimators of  under GE loss function for fixed
1.5=1,=1,=1,=12,=15,= 1ccrn 



Estimation of Parameters and Reliability Function of Exponentiated Exponential Distribution: Bayesian …

Pak.j.stat.oper.res. Vol.VII No.2 2011 pp199-216 211

Figure  5: Risks of estimators of  under GE loss function for fixed
1.5=1,=1,=1,=12,=15,= 1cmrn 

Figure  6: Risks of estimators of  under GE loss function for fixed
1.5=1,=1,=1,=12,=15,= 1ccmrn 
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Figure  7: Risks of estimators of  under GE loss function for fixed
1.5=1,=1,=1,=12,=15,= 1ccmrn 

Figure  8: Risks of estimators of  under GE loss function for fixed
1.5=1,=1,=1,=12,=15,= 1 ccrn 
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Figure  9: Risks of estimators of  under GE loss function for fixed
1.5=1,=1,=1,=12,=15,= 1 cmrn 

Figure  10: Risks of estimators of  under GE loss function for fixed
1.5=1,=1,=1,=12,=15,= 1 ccmrn 
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Figure  11: Risks of estimators of  under GE loss function for fixed
1.5=1,=1,=1,=12,=15,= 1 ccmrn 

Figure  12: Risks of estimators of )(tR under GE loss function for fixed
0.5=1.5,=1,=1,=1,=12,=15,= 1 tccmrn 

Acknowledgment
The authors are thankful to the editor and referees for their valuable comments
and suggestions regarding the improvement of the paper. The authors are also
thankful to DST-CIMS, B.H.U., Varanasi for providing the computational facilities.
The third author (Dinesh Kumar) is grateful to CSIR, New Delhi, India, for
providing financial assistance.



Estimation of Parameters and Reliability Function of Exponentiated Exponential Distribution: Bayesian …

Pak.j.stat.oper.res. Vol.VII No.2 2011 pp199-216 215

References
1. Bain, L. J. (1976). Statistical Analysis of Reliability and Life Testing Model.

Marcel and Dekker Inc., New York.
2. Basu, A. P. and Ebrahimi, N. (1991). Bayesian Approach to Life Testing

and Reliability Estimation Using Asymmetric Loss Function. J. Statist.
Plann. Infer., 29: 21-31.

3. Gompertz, B. (1825). On the Nature of the Function Expressive of the Law
of Human Mortality, and on a New Mode of Determining the Value of Life
Contingencies. Philosophical Transactions of the Royal Society London,
115:513-585.

4. Gorski, A. C. (1968). Beware of the Weibull Euphoria. Transaction of IEEE
- Reliability, 17: 202 - 203.

5. Gupta, R. D. and Kundu, D. (2003). Discriminating Between the Weibull
and the Generalized Exponential Distributions. Computational Statistics
and Data Analysis, 43: 179-196.

6. Gupta, R. D. and Kundu, D. (2001a). Exponentiated Exponential Family :
An Alternative to Gamma and Weibull Distributions. Biometrical journal,
43: 117 - 130.

7. Gupta, R. D. and Kundu, D. (1999). Generalized Exponential Distribution.
Austral. and New Zealand J. of Statistics, 41: 901 - 916.

8. Gupta, R. D. and Kundu, D. (2001b). Generalized Exponential Distribution:
Different Method of Estimations. Journal of Statistical Computations and
Simulations, 69: 315-337.

9. Gupta, R. D. and Kundu, D. (2007). Generalized Exponential Distribution :
Existing Results and Some Recent Developments. Journal of the
Statistical Planning and Inference, 137(11):3537 - 3547.

10. Gupta, R. D. and Kundu, D. (2002). Generalized Exponential Distributions:
Statistical Inferences. J. of Statistical Theory and Applications, 1(2):
101 - 118.

11. Jaheen, Z. F. (2004). Empirical Bayes Inference for Generalized
Exponential Distribution Based on Records. Commun. Statist. Theory
Methods, 33(8): 1851 - 1861.

12. Johnson, L. G. (1968). The Probabilistic Basic of Cumulative Damage.
pages 133 - 140, Transactions of the 22 nd technical conference of the
American society of Quality control.

13. Lawless, J. F. (1982). Statistical Models and Methods for Life Time Data.
Wiley, New York.

14. Parsian and Sanjari Farsipour. (1993). On the Minimaxity of Pitman Type
Estimator under a Linex Loss Function. Commun. Statist. - Theory Meth.,
22(1): 97 - 113.



Sanjay Kumar Singh, Umesh Singh, Dinesh Kumar

Pak.j.stat.oper.res. Vol.VII No.2 2011 pp199-216216

15. Raquab, M. Z. and Ahsanullah, M. (2001). Estimation of Location and
Scale Parameters of Generalized Exponential Distribution Based on Order
Statistics. Journal of Statistical computation and Simulation, 69(2):
109 - 124.

16. Raquab, M. Z. and Madi, M. T. (2005). Bayesian Inference for the
Generalized Exponential Distribution. Journal of Statistical computation
and Simulation, 75(10):841 - 852.

17. Sarhan, A. M. (2007). Analysis of Incomplete Censored Data in
Competing Risks Models with Generalized Exponential Distribution. IEEE
Trans. Reliability, 56:132 - 138.

18. Varian, H. R. (1975). A Bayesian Approach to Real Estate Assessment.:
195-208.

19. Zellner, A. (1986). A Bayesian Estimation and Prediction Using
Asymmetric Loss Function. JASA, 81:446-451.

20. Zheng, G. (2002). Fisher Information Matrix in Type II Censored Data from
Exponentiated Exponential Family. Biometrical J., 44:353 - 357.


