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1. Introduction 

Ranked set sampling (RSS) introduced by McIntyre (1952), was used to estimate the mean 

pasture and forage yield. The RSS is employed when precise measurement of the variable 

of interest is difficult or expensive, but one can easily rank the variable without measuring 

the variable by an inexpensive method such as visual perception, judgment and auxiliary 

information. For example, in the problem of estimating the mean height of trees in a forest, 

one can rank the heights of a small sample of two or three trees standing nearby easily by 

visual inspection without measuring them. In estimating the number of bacterial cells per 

unit volume, we can rearrange two or three test tubes easily in order of concentration using 

optical instruments without measuring exact values. In the RSS, instead of selecting a 

single sample of size m , we select m - sets of samples each of size m . In each set, we rank 

all the elements but we only measure one of them. Finally, the average of the m - measured 

units is taken as an estimate of the population mean.  

Takahashi and Wakimoto (1968) and Takahasi (1970) provided the theoretical justification 

for using the ranked set sampling. They proved that when the ranking is perfect, the sample 

mean of the RSS is an unbiased estimator of the population mean and the variance of the 

RSS mean is smaller than that of the sample mean of the simple random sampling with 
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replacement (SRSWR) of the same size. Dell and Clutter (1972) proved that the sample 

mean based on the RSS is unbiased for the population mean regardless of the ranking error 

and it is at least as precise as the SRSWR sample mean of the same size. Stokes (1977) 

considered the performance of the Dell and Clutter estimator when the regression of the 

study variable (y) and the ranking variable (x) is linear, and y and x follow certain model.  

Yu and Lam (1997) proposed regression estimator when x and y follow a bivariate normal 

distribution and found on the basis of simulation studies that their proposed regression 

estimator performs better than the naive estimator, unless the correlation between x and y 

is low (|ρ|< 0.4). Kadilar et al., (2006) and Arnab and Olaomi (2015) proposed an improved 

estimator of mean y , the population mean of the study variable y using the ranking 

variable as an auxiliary variable x  when the population mean x  of x is unknown.  

Zamanzade and Al-Omari (2016) developed a new ranked set sampling for estimating the 

population mean and variance, called neoteric ranked set sampling (NRSS) under perfect 

and imperfect ranking conditions while Mahdizadeh and Zamanzade (2018) introduced 

stratified pair ranked set sampling (SPRSS) and utilized it in estimating the population 

mean, with some theoretical results.  

In this paper, we propose two alternative estimators for two-phase sampling where in the 

first phase; information only on the ranking variable x is collected. Based on the observed 

x - values, the population is divided into a number of homogeneous strata. From each of 

the stratum so formed, one selects ranked set samples independently using proportional 

allocation. The performances of the proposed estimators are compared by simulation 

studies using both real tree data collected by Platt et al. (1988) and generated bivariate 

normal data. We found that the proposed two-phase stratified regression estimator 

performs better in respect of relative bias (RB) and mean-square error (MSE) than those of 

naïve and Yu and Lam (1997) estimators for the tree data and it behaves better in most 

situations for the simulated bivariate data. 

  

1.1. Rank set sampling by SRSWR method 

First, we choose a small number m  (set size) such that one can easily rank the m  elements 

of the population with sufficient accuracy. Then the selection of RSS is as follows:  Select 

a sample of 2m units from a population U by SRSWR method. Allocate these 2m units at 

random into m sets each of size m .   Rank all the units in a set with respect to the values of 

the variable of interest y  from 1 (minimum) to m (maximum) by a very inexpensive 

method such as eye inspection. At this stage, no actual measurement is done. After the 

ranking has been completed, the unit holding rank i ( 1,..,i m= ) in the i th set is actually 

measured. This completes a cycle of the sampling. One repeats the process for r  cycles to 

obtain the desired sample of size n mr= . Thus, in a RSS, a total of 2m r units are drawn from 

the population but only mr of them are measured and the rest ( 1)mr m− are discarded. We 

call these measured mr  observations “ranked set sample”.  Since the ordering of a large 

number of observations is difficult, increase of sample size n mr= is done by increasing the 

number of cycles .r  It is well known that ˆ ( , )rss m r , the sample mean the RSS of size n mr=

is unbiased for the population mean 
y .   

1.2. Judgment ranking 

Sometimes, perfect ranking (no error in ranking) is not possible. In such cases, we use 

judgment ranking where each of the selected samples is ranked by an approximate method 
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such as visual inspection, expert opinion or use of concomitant variable. It should be noted 

that some tests have been developed in the literature to assess the assumption of perfect 

ranking in RSS. Some of these include Frey, et al (2007),   Zamanzade, et al (2012) and  

Zamanzade and Vock (2018).  

Let |i j ky
 
be the smallest j th “judgment order statistic” corresponding to order statistic 

( )|i j kx  of the concomitant variable x   in the i th set of the cycle k. In case the judgment 

ranking is perfect |i j ky
 
becomes equal to the j th order statistic ( )|i j ky , otherwise if the 

judgment process is imperfect, we find ( )|| i j ki j ky y .  

Stokes (1977) derived the following results: 

Theorem 1. 

(i) |

1

1
ˆ

r

rss m k

k

y
r



=

=   is an unbiased estimator for y .  

 (ii) The variance of ˆ
rss  is 

                  
( ) 2 2

|
1

1 1
ˆ

m

yrss j m
j

V
n m

  

=

 
 = −
 
 

  

(iii) An unbiased estimator of the variance of ( )ˆ
rssV    is            

                ( ) ( )
2

|

1

1ˆ ˆ ˆ
( 1)

r

rss m k rss

k

V y
r r

 

=

= −
−


 
1.3. Use of auxiliary variable with known mean x   

Stokes (1977) considered the linear regression of y on x  as follows: 

                                      ( )y xy B x = + − +                                                               (1) 

where x and   are independent random variables, ( | ) 0E x = , 2 2( | ) (1 )yV x   = − , 
y

x

B





=  

and   is the correlation coefficient between x and y . 

The equation (1) yields 

                                                     
( )( )| ( )|| y i i k x i i ki i ky B x = + − +                              (2) 

Stokes (1977) further assumed that y

y

y 



−
 and x

x

x 



−

 
have the same marginal distribution, 

which holds for bivariate normal and bivariate Pareto distributions. Stokes (1977) derived 

the following Theorem: 

Theorem 2. 

 (i)  ( )ˆ yy rssE  =   

(ii)

 
( )

2
2 2

|

1

1
ˆ

m

y y j my rss

j

V
mr m


    

=

 
 = −
 
 

  

where |

1 1

1
ˆ

r m

j j ky rss

k j

y
mr

  

= =

=  and ( )| |y j m i j k yE y    = −  
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Following Stokes (1977), Yu and Lam (1997) proposed the following estimator of the 

population mean y  
of y as 

                                            ( )( )
ˆˆ ˆ ˆyreg y rss x rss xB    = − −                                       (3) 

where  

( ) ( )|

1 1

1
ˆ

r m

x rss j j r

k j

x
mr



= =

= 
 

and 

( )( )

( )

| ( )| ( )

1 1

2

( )| ( )

1 1

ˆ ˆ

ˆ

ˆ

r m

j j k y rss j j k x rss

k j

r m

j j k x rss

k j

y x

B

x

 



   

= =

= =

− −

=

−




                   (4) 

Yu and Lam (1997) derived the following theorem:    

Theorem 3.  

( )ˆ( )  yreg yi E  =
 

( )ii The optimum value of  B̂  that minimizes the variance of ˆ yreg  is B . 
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 where 
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 and 

( )
22

( ) ( )| ( )

1 1

1
r m

x rss j j k rss

k j

s x x
mr

= =

= − .  

1.4. Population mean with unknown x   

Since x is unknown, Yu and Lam (1997) considered a two-phase sampling procedure 

where in the first-phase, a relatively large sample s of size n  is selected by the simple 

random sampling without replacement (SRSWOR) method from a population of size N

and only information on the auxiliary variable x  is collected. On the second-phase, a sub-

sample s   of size ( )n rm=  is selected from s  using ranked set sampling with r  cycles and 

information of study variable y  is obtained using x  as ranking variable. The proposed 

estimator for the population mean 
y  is 

                                                 ( )( )
ˆˆ ˆ ˆ 'YM y rss x rssB x   = − −                                      (5)  

where ' /i

i s

x x n



=  and B̂ is defined in (4).  

Yu and Lam (1997) derived the following results for large N  and assuming the model (2) 

holds. 

Theorem 4.  

( )ˆ( )  YM yi E  =
 

( )ii  The optimum value of  B̂  that minimizes the variance of ˆYM  is B . 
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( ) ( )
22 2 2 2

( )

2
( )

1 '
1

y rss y

x rss

x x
E

mr ns

   
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= + +  
                                           

(6) 

where ( )' /x xZ x  = −  , ( )rssZ  , ( )rssx , 2
ZS  and 2

( )x rsss  are defined as in Theorem 3.  

 

2. Two-phase stratified ranked set sampling 

Initially, a relatively large sample s of size n  is selected from the entire population by 

SRSWOR method. From each of the selected units of s , information only on the 

concomitant variable x  is obtained similar to Yu and Lam (1977) in two-phase sampling. 

Here, we assume that the condition of two-phase sampling is valid i.e. the cost of collecting 

data on x is much cheaper than that of the study variable y . Observing the values of x , the 

sampled units are classified into a number of strata H so that each of the stratum becomes 

homogeneous with respect to the variable under study y . The number of strata will 

certainly depend on the characteristics of the variable y  and sample size n .  For example, 

noting eye estimates of heights or date of plantation, one can classify the plants as small, 

medium or big. Similarly, noting the CD counts of HIV patients, we may classify the 

conditions of the HIV infected patients into bad, very bad and severe. Let hs  be the set of 

units of size hn falling in the h th stratum. Here hn  is a random variable taking values from 

0 to min ( ),h hn N where hN  is the total number of the units in the h th stratum of the 

population. From the sampled hn units of the h th stratum, a sub-sample of ( )h hs s  of size 

h h h hn n mr= = units is selected using a ranked-set sampling procedure with hr cycles of set-

size m  each using the x  as ranking variable where (0 1)h h   are pre-determined 

fractions (vide Rao, 1973). Here we assume that (i) n  is so large that ( )1 1hP n  =  and (ii) 

hr  are integers. For proportional allocation with fixed sample size h

h

n n
 
 =
 
 
 , /h n n = =  

and /h h hn n n n mr= = .  

 Let the ranked set data collected from the h stratum be denoted by                      

                                ( ) ( ) ( )
| ( )|

, ; 1,.., ;  1,..,
h h

h h
h h hj j t j j t

d y x j m t r
 

= = = ; 1,...,h H=                (7) 

where ( )
( )| h

h
j j t

x is the j th ordered statistics  for the concomitant variable x of the j th set of 

ht th cycle of the h th stratum and ( )
| h

h
j j t

y
 

be the corresponding judgment order statistic for 

the study variable for y . 

2.1. Estimator of the population mean without using auxiliary variable at the 

estimation stage 

We propose the estimator for the population mean y without assuming any auxiliary 

information at the estimation stage as follows:                                  
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1

ˆ ˆ

H
st h
yrss h y rss

h

w   

=

=
                                               

 (8) 

where  h
h

n
w

n
=  and 

( )
|

1 1

1
ˆ

h

h

h

r m
hh

y rss j j t
h t j

y
mr

    
= =

=   .  

Theorem 5.
  (i) st

yrss  is an unbiased estimator of y  

(ii) ( ) ( )
2

2 2
|

1 1

1 1 1
ˆ

H m
st
yrss h hy h j m hy y

hh j

V W
n m

    


 

= =

  
  = − + −
  

  

    

where hy  and 2
hy  are the population mean and variance of y  for the stratum h , 

| |h j m h j m hy     = − , ( )| | h

h
h j m j j t

E y    
=  and hW is the proportion of units in the population 

of the hth stratum. 

Proof: 

Since �̃�ℎ, the number of units in 𝑛 that fall into h th stratum is a random variable, we have 

from Rao (1973) 

h hE w W , 
1h h

h

W W
V w

n
, '

', h h
h h

W W
Cov w w

n
, ( )ˆ |h

y rss h hyE n   =  and 

( ) 2 2
|

1

1 1
ˆ |

m
h
y rss h hy h j m

h j

V n
n m

     

=

 
 = −
 
 

                                                                  (9) 

Using (9), we get the following: 

(i) ( ) ( )
1

ˆ ˆ |

H
st h
y rss h y rss h

h

E E w E n    

=

 
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 
 
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1

H

h hy

h

E w 

=

 
 =
 
 
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1

H

h hy

h

W 

=

=  y=  

(ii) ( ) ( ) ( )2

1 1

ˆ ˆ ˆ| |

H H
st h h
y rss h y rss h h y rss h

h h

V E w V n V w E n       

= =

   
   = +
   
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                          (10) 

Now using Theorem 1, we find       

( )ˆ |h
y rss h hyE n   =  and ( ) 2 2

|

1

1 1
ˆ |

m
h
y rss h hy h j m

h j

V n
n m

     

=

 
 = −
 
 


                         

(11) 

 

The first component of (10) is obtained from (11) as  

( )2

1

ˆ |

H
h

h y rss h

h

E w V n  

=

 
 
 
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2
2 2
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h
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
 
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 
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 

 
        

(noting, h h hn n= )

 

                                         

2 2
|

1 1

1 1
H m

h
hy h j m
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W
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 


 

= =

 
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 
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                                     (12) 

The second component of (10) is  

( )
1 1

ˆ |

H H
h

h yreg h h hy

h h

V w E n V w 

= =

   
   =
   
   
    ( ) ( )2 '

'

1 ' 1

,

H H H

hy h hy h y h h

h h h

V w Cov w w  

=  =

= +          (13) 

Now using (9), we get 
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( )
2

2

1 1 1

1
ˆ |

H H H
h

h yreg h h hy h hy

h h h

V w E n W W
n

  

= = =

    
    = −
    

     

   ( )
2

1

1
H

h hy y

h

W
n

 

=

 
 = −
  
                   (14) 

Part II of the theorem follows from (10), (12) and (14). 

Corollary 1. 

 
For proportional allocation with fixed sample size n

 
at the second phase,  ( )ˆ st

yregV   

reduces to 

( ) ( )
2

2 2
|

1 1

1 1 1
ˆ

H m
st
yrss h hy h j m hy y

h j

V W
n m n

     

= =

  
  = − + −
  

  

   

2.2. Using auxiliary information at the estimation stage

             

 

Noting 
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and 
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are unbiased 

estimators of the population means hy   and hx  of y and x of the stratum h respectively, 

we propose the following regression estimator of the population mean y  
of y as 
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Assume that ( )h h
i iy x , is the value of ( )y x for the i th unit of the ( 1,..., )h H= th stratum 

follows the model.  

                                                 
( )h h h

i hy h i hx iy B x = + − +                                     (15)  

where h
ix  and h

i  are independent random variables; ( ) ( ) ( )2,  ,  ,h h h
i hx i hx i hyE x V x E y  = = =

; ( ) 2 h
i hyV y == ; ( | ) 0h h

i iE x =
 
, 2 2( | ) (1 )h h

i i hy hV x   = − ,
hy

h h
hx

B





=  , and h  is the correlation 

coefficient between x and y  of the h th stratum.  

Theorem 6.
 Under the model (15)

 (i) st
yreg  is an unbiased estimator of y  

(ii) ( )
( ) ( )

( )
2

2 2 2 2
2

2
1 1

11 1
ˆ 1

H H
hy h hrss h h hyst

yreg h h hy y
h hhzh h

Z Z
V W E W

n m nS

   
  

 
= =

   
− −      

 = + + + −   
      

     

    
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( ) ( )
( )

2
2 2 ' 2 2

2( )

2
( )1 1

11 1
1

H H
hy h h rss h h hy

h h hy y
h hhx rssh h

x x
W E W

n m ns

   
 

 
= =

   
− −      

 = + + + −   
      

     

   

where ( ) ( )|

1 1

1 hr m
h

h rss j j k
h k j

Z z
mr

= =

=  , ( )
2

2
( )| ( )

1 1

1 hr m
h

hz j j k h rss
h k j

S z Z
mr

= =

= − , 

( )
2

2
( ) ( )| ( )

1 1

1 hr m
h

hx rss j j k h rss
h k j

s x x
mr

= =

= − , 
( )|

( )|

h
j j k hxh

j j k
hx

x
z





−
=  , 

'
h hx

h
hx

x
Z





−
=  and ' 1

h

h hi
h i s

x x
n



=  . 

Proof: 

(i) ( ) ( )
1

ˆ ˆ |

H
st h
yreg h yreg h

h

E E w E n 

=

 
 =
 
 
  

1

H

h hy

h

E w 

=

 
 =
 
 
   

1

H

h hy

h

W 

=

= y=  

(ii)  ( ) ( ) ( )2

1 1

ˆ ˆ ˆ| |

H H
st h h
yreg h yreg h h yreg h

h h

Var E w V s V w E s  

= =

   
   = +
   
   
                                      (16) 

Now using (6), we find 

   

( )
( ) ( )

2
2 2 2 2

2 2

1
ˆ | 1

hy h hrss h h hyh
yreg h

h hz h

Z Z
V s E

mr S r m

   


  
− −  

= + +  
  
     

                       

( ) ( )
2

2 2 2 2 2

2

1
1

hy h hrss h h hy

h hhz

Z Z
E

n mnS

   
  

− −  
= + +  

  
   

                                           (17) 

Equation (17) yields the first component of (16) as 

( )2

1

ˆ |

H
h

h yreg h

h

E w V n

=

 
 
 
 
  

( ) ( )
2

2 2 2 22

2
1

1
1

H
hy h hrss h h hyh

h h h hhzh

Z Zn
E E

n n m nS

   

 
=

   
− −     

= + +     
     

   


 

                                       

( ) ( )
2

2 2 2 2 2

2
1

11
1

H
hy h hrss h h hy

h
h hhzh

Z Z
W E

n mS

   

 
=

   
− −    

= + +   
   

     

           (18) 

                                      

( ) ( )
2

2 2 2 2 2

2
1

11
1

H
hy h hrss h h hy

h
h hhzh

Z Z
W E

n mS

   

 
=

   
− −    

= + +   
   

     

  

The second component of (16) is obtained from (14) as 

( )
1 1

ˆ |

H H
h

h yreg h h hy

h h

V w E n V w 

= =

   
   =
   
   
  ( )

2

1

1
H

h hy y

h

W
n

 

=

 
 = −
  
                                  (19) 

Part II of the theorem follows from (16), (18) and (19). 

 

Corollary 2. 

For proportional allocation with fixed sample size n ,  ( )ˆ st
yregV   reduces to 
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( ) ( )
( )

( )
2

2 2
2

2 2

2
1 1

1 1
ˆ 1 1

H H
hrss h h hyst

yreg h hy h h hy y

hzh h

Z Z
V W E W

n m nS

 
    

= =

   
−      

 = − + + + −   
      

     

 
 

                

( )
( )

( )
2

' 2 2
2( )2 2

2
( )1 1

1 1
1 1

H H
h rss h h hy

h hy h h hy y

hx rssh h

x x
W E W

n m ns

 
   

= =

   
−      

 = − + + + −   
      

     

   

where  
( )| ( )

( ) ( )|

1 1 1 1

1 1h h hr rm m
j j k hx h rss hxh

h rss j j k
h h hx hxk j k j

x x
Z z

mr mr

 

 
= = = =

− −
= = =   and 

''
( ) ( )h rss hx h rss hh hx

hrss h
hx hx hx

x x xx
Z Z

 

  

− −−
− = − = . 

3. Comparison of stratified and un-stratified ranked set sampling strategies 

It is very difficult to compare the performances of the proposed estimators 2 ˆ st
yregt =  and 

3 ˆ st
yrsst =  theoretically with the existing estimators 0 ˆ y rsst   =  (Stokes, 1977) and 1 ˆYMt =  

(Yu and Lam, 1997), since the expressions of the variances ( ); 0,1,2jVar t j =  involve several 

unknown parameters. Hence, we will compare the performances using simulation studies. 

For the simulation studies, we have considered both real and simulated data. 

 The real  tree data related to the diameter in centimetres at breast height ( x ) and entire 

height (y) in feet of 396 trees which was originally collected by Platt et al. (1988) and used 

later by Chen et al. (2003) and Zamanzade and Mahdizadeh (2018). The mean diameter 

and heights of 396 (= N ) trees are x = 20.970 cm and y = 52.967 feet respectively. The 

tree were portioned into two strata with diameter less than equal 13.6 cm (stratum 1) and 

more than 13.6 cm (stratum 2) respectively.  

The number of trees belonging to the stratum 1 and stratum 2 are equal to 198. In the first-

phase, a sample s  of size n  is selected from the entire population by the SRSWOR method 

and information only on the auxiliary variable x  is collected. Let is  be the sample of size 

in that falls in the stratum ( 1,2)i = . From the sample is , a sub-sample of size is  of size 

 /i in nn n=  is collected using proportional allocation by RSS sampling with ( )2,3,4m = as 

set-size and n  as a predetermined number. For our simulation studies we take the following 

combinations of ( ), ,n n m : (250,160,2), (250,160,3), (250,160,4); (250,100,2), (250,100,3), 

(250,100,4); (200,125,2), (200,125,3), (200,125,4); (200,80,2), (150,80,3), (200,80,4); 

(150,80,2), (150,80,3), (150,80,4); (150,60,2), (150,60,3), (150,60,4).  

The simulated data comprises with 5 bivariate normal populations of sizes 600 ( )N=  each 

of which have the same 10,  25,  2.5,x y x  = = = 4.5y =  but different values of 

 ( 0.5,  0.6,  0.7,  0.8,  0.9) = . We divide each population into two strata as the tree population. 

From each of the 5 populations, ranked set samples of parameters ( ), ,n n m : (400,125,2), 

(400,125,3), (400,125,4); (400,80,2), (400,80,3), (400,80,4); (250,80,2), (250,80,3), 

(250,80,4) are selected. 

From the selected sample s , we compute estimates 0t , 1t  , 2t  and 3t . We will call the 

process of selection of two-phase sample s  and obtaining estimates from the selected 

sample as an iteration. The iteration is repeated 100,000R =  times. Let the values of the  0t
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, 1t  , 2t  and 3t   based on the q th iteration be denoted by  0 ( )t q , 1( )t q , 2 ( )t q  and 3( )t q  

respectively. The relative biases (RB) and the mean square errors (MSE) of the estimators 

are computed using the following formula: 

                

( )
1

1 1
( )

R

j j y
y q

RB t t q
R




=

 
 = −
 
 

    and  ( ) ( )
2

1

1
( )

R

j j y

q

MSE t t q
R



=

= −   ;  0,1,2,3j =  (20) 

The percentage relative efficiency of the estimator jt  compared with the conventional 

estimator 0 ˆ y rsst   =
 
given by  

                                                      ( ) ( )0( ) 100 / %j jPRE t MSE t MSE t=                           (21) 

The values of ( )jRB t  and ( )jPRE t  are computed for the five populations with 2,3,4m =  for 

the live and simulated populations and are given in the Table 1 and Table 2. 

 
Table 1: Tree data: Relative bias (RB) and Relative Efficiency (RE) 

  RB PRE   RB PRE   RB PRE 

(�̃�, 𝑛) = (250,160) 
 

(�̃�, 𝑛) = (200, 125) 
 

(�̃�, 𝑛) = (150, 80) 

2 

 

  

ˆ
y rss   -0.0376 100.0000 

 
-0.0348 100.0000 

 
-0.0012 100.0000 

ˆYM      -0.0493 183.6407 
 

-0.0874 155.9507 
 

-0.1540 150.5943 

ˆ st
yreg      -0.0545 189.0201 

 
-0.0329 160.8565 

 
-0.0529 155.3266 

ˆ st
yrss  -0.0209 113.7285 

 
-0.0045 102.6377 

 
-0.0014 100.5208 

3 

 

  

ˆ
y rss   -0.0009 100.0000 

 
-0.0311 100.0000 

 
0.0084 100.0000 

ˆYM      -0.0495 155.1414 
 

-0.0731 133.6771 
 

-0.1249 128.3830 

ˆ st
yreg      -0.0252 160.9543 

 
-0.0303 137.5143 

 
-0.0492 131.4918 

ˆ st
yrss  -0.0233 105.9229 

 
0.0078 96.1193 

 
0.0126 92.7720 

4 

 

  

ˆ
y rss   0.0253 100.0000 

 
0.0213 100.0000 

 
0.0234 100.0000 

ˆYM      -0.0715 137.5715 
 

-0.0920 115.6215 
 

-0.0962 111.0767 

ˆ st
yreg      -0.0166 140.6034 

 
-0.0078 119.7614 

 
-0.0885 113.1531 

ˆ st
yrss  -0.0058 98.9452 

 
0.0124 87.2825 

 
-0.0619 82.9030 

 
  (�̃�, 𝑛) = (250,100) 

 
 (�̃�, 𝑛)= (200,80) 

 
(�̃�, 𝑛) = (150, 60) 

2 

 

  

ˆ
y rss   -0.0581 100.0000 

 
0.0100 100.0000 

 
-0.0621 100.0000 

ˆYM      -0.1029 233.4535 
 

-0.1195 202.9745 
 

-0.2260 179.3489 

ˆ st
yreg      -0.0236 239.2576 

 
-0.0953 209.1225 

 
-0.1061 185.3866 

ˆ st
yrss  0.0012 129.7157 

 
-0.0493 120.9196 

 
-0.0592 113.1328 

3 

 

  

ˆ
y rss   0.0011 100.0000 

 
0.0201 100.0000 

 
0.0153 100.0000 

ˆYM      -0.0899 198.1569 
 

-0.0761 169.4921 
 

-0.1678 149.3681 

ˆ st
yreg      0.0150 207.1916 

 
-0.0245 179.0657 

 
-0.0896 153.6236 

ˆ st
yrss  0.0518 123.5520 

 
0.0001 113.6298 

 
-0.0592 103.0698 

4 

 

  

ˆ
y rss   -0.0186 100.0000 

 
0.0074 100.0000 

 
-0.0402 100.0000 

ˆYM      -0.0783 173.7545 
 

-0.0743 149.7989 
 

-0.1302 133.4380 

ˆ st
yreg      -0.0212 178.7264 

 
0.0064 155.2155 

 
-0.0762 138.0304 

ˆ st
yrss  -0.0282 113.9226   0.0439 103.7253   -0.0282 96.2106 
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Table 2: Bivariate Normal data: Relative bias (RB) and Relative Efficiency (RE) 
m Estimators  = 0.5 = 0.6 = 0.7 = 0.8 = 0.9 

  

  RB PRE RB PRE RB PRE RB PRE RB PRE 

    (�̃�, 𝑛) = (400, 125) 

2 ˆ
y rss   -0.007 100.000 0.000 100.000 -0.001 100.000 0.000 100.000 -0.009 100.000 

ˆYM      0.001 105.711 0.012 123.375 0.002 133.247 0.001 166.876 -0.002 260.631 

ˆ st
yreg      

0.002 106.214 -0.001 123.803 -0.016 133.173 -0.004 166.398 -0.002 260.938 

ˆ st
yrss  

-0.001 97.338 0.002 109.578 -0.002 109.906 0.001 122.497 -0.002 153.668 

3 ˆ
y rss   -0.001 100.000 0.004 100.000 -0.001 100.00 0.002 100.000 -0.006 100.000 

ˆYM      0.002 101.634 0.011 113.628 0.001 122.631 0.000 146.398 -0.002 211.965 

ˆ st
yreg      

0.003 101.947 -0.005 113.161 -0.006 122.289 -0.008 147.418 -0.004 213.146 

ˆ st
yrss  

0.001 95.157 -0.006 102.884 0.006 103.991 -0.004 113.718 -0.003 138.658 

4 ˆ
y rss   0.000 100.000 -0.006 100.000 -0.007 100.000 0.001 100.000 0.006 100.000 

ˆYM      0.002 100.109 0.003 109.169 0.002 115.823 0.007 135.626 -0.003 186.343 

ˆ st
yreg      

0.007 100.293 0.001 108.531 0.000 113.804 -0.002 135.412 -0.001 185.834 

ˆ st
yrss  

0.007 93.206 0.002 100.129 0.010 100.961 0.004 109.483 0.002 127.097 

    (�̃�, 𝑛)  = (400, 80) 

2 ˆ
y rss   -0.004 100.000 -0.005 100.000 0.004 100.000 0.002 100.000 0.006 100.000 

ˆYM      -0.007 120.563 -0.011 122.744 -0.009 138.491 -0.006 179.296 0.004 280.103 

ˆ st
yreg      

0.008 119.793 0.017 120.831 -0.014 137.887 -0.007 177.535 0.005 278.194 

ˆ st
yrss  

-0.003 107.712 -0.002 107.774 -0.006 115.066 0.005 131.598 -0.006 158.69 

3 ˆ
y rss   -0.014 100.000 -0.001 100.000 -0.002 100.000 0.011 100.000 0.005 100.000 

ˆYM      0.004 113.308 -0.008 115.974 -0.005 127.063 -0.004 158.161 -0.001 233.942 

ˆ st
yreg      

0.006 113.476 0.010 115.598 -0.018 126.77 -0.005 157.756 0.003 233.319 

ˆ st
yrss  

0.000 105.135 -0.007 105.988 -0.011 109.547 0.005 122.871 -0.006 145.776 

4 ˆ
y rss   -0.003 100.000 0.008 100.000 -0.003 100 0.002 100.000 -0.004 100.000 

ˆYM      -0.005 108.406 -0.004 111.904 -0.001 121.196 -0.004 146.037 0.003 205.491 

ˆ st
yreg      

0.007 108.357 0.019 110.235 0.003 120.798 -0.010 144.377 0.004 203.829 

ˆ st
yrss  

-0.001 100.626 0.006 101.836 0.010 106.276 -0.005 116.793 0.000 133.482 

    (�̃�, 𝑛)  = (250, 80) 

2 ˆ
y rss   0.000 100.000 -0.001 100.000 -0.007 100.000 -0.001 100.000 -0.007 100.000 

ˆYM      -0.005 98.858 0.001 105.934 -0.004 123.857 -0.004 141.428 0.005 188.716 

ˆ st
yreg      

-0.002 97.786 0.000 105.888 -0.013 123.717 -0.012 139.53 0.003 188.326 

ˆ st
yrss  

-0.005 90.903 0.001 98.253 -0.002 106.137 -0.007 108.078 -0.001 123.835 

3 ˆ
y rss   0.001 100.000 -0.003 100.000 0.007 100.000 0.002 100.000 0.000 100.000 

ˆYM      0.003 93.089 -0.010 99.610 0.002 111.199 -0.004 125.223 0.011 159.688 

ˆ st
yreg      

0.006 93.481 0.002 101.023 -0.013 110.429 0.005 123.969 0.006 159.736 

ˆ st
yrss  

0.004 88.131 0.005 95.075 0.001 97.778 0.003 101.009 0.012 113.072 

  ˆ
y rss   -0.003 100.000 0.003 100.000 0.006 100.000 0.000 100.000 0.004 100.000 
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4 ˆYM      -0.004 91.438 0.002 95.469 0.012 103.284 0.009 115.114 0.000 139.226 

  ˆ st
yreg      

0.007 90.762 -0.001 95.006 -0.002 102.485 -0.003 113.655 0.001 140.013 

  ˆ st
yrss  

0.003 86.252 0.002 89.996 0.005 92.301 0.001 95.570 0.002 103.763 

 

 

3.1. Simulation Results 

Relative biases of all the estimators are very low in general. For the tree data it ranges from 

-0.2260 to 0.0518. The relative biases for the simulated bivariate normal data is much lower 

than that of the tree data and it varies from -0.014 to 0.023. The estimators  and 

using auxiliary information possess higher relative efficiency than the naïve estimator 

in almost all situations. The proposed two-phase stratified regression estimator  

performs the best, the next place is occupied by two-phase un-stratified regression 

estimator . The estimator performs the best in all situations for the tree data with 

a maximum PRE 239.2576. The stratified estimator performs better than naïve 

estimator in general but in some isolated situations, it possesses lower efficiency (with the 

minimum PRE = 86.252) than the naïve estimator. For a given combination of (�̃�, 𝑛), PREs  

of all the estimators for both the tree data and simulated data decrease with m . For a given 

�̃� and m , PRE of the estimators decreases with .n The relative efficiencies of all the 

estimators for the simulated data increase with the correlation coefficient   . The Yule-

estimator performs slightly better than the proposed two-phase estimator 
 
in 

scanty occasions.  

 

4. Conclusion  

Stokes (1977) recommended regression estimator for the ranked set sampling when the 

population mean of the auxiliary variable is known. Yu and Lam (1997) proposed the 

regression estimator in two-phase sampling when the population mean of the auxiliary 

variable is unknown. We also propose an alternative two-phase stratified ranked set 

sampling. On the basis of real and simulated data, it is found that the proposed regression 

estimator outperforms the other estimators in most situations, especially for the real tree 

data. We suggest therefore that instead of using two-phase sampling, one should use two-

phase stratified sampling for small strata for improving efficiency of the Yu-Lam estimator.  

Determination of the asymptotic distribution of the proposed estimators, coverage 

probabilities of the asymptotic confidence intervals and Bootsrap confidence intervals 

using Akgul et al. (2018) are subjects of our future research.   
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