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Abstract  

A four-parameter lifetime model, named as Weibull inverse Lomax (WIL) is presented and studied. Some 

structural properties are derived. The estimation of the model parameters is performed based on Type II 

censored samples. Maximum likelihood estimators along with asymptotic confidence intervals of 

population parameters and reliability function are constructed. The property of consistency of maximum 

likelihood estimators is verified on the basis of simulated samples.  Further, the results are applied on two 

real data. 
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1. Introduction  

In the past, a number of probability distributions has been found to be useful in the fields 

of insurance, engineering, medicine, economics and finance (among others). However, 

generalizing these probability distributions provided several new models that are more 

flexible compared to the baseline distributions. Several attempts have been made to 

extend new families of distributions by utilizing a number of techniques. One may refer 

to Eugene et al.( 2002), Jones (2004), Alzaatreh et al. (2013) and Bourguignon et al. 

(2014), for some more interesting results on this topic. Out of the several families of 

distributions, of interest to us in this study is the Weibull- generated (W-G) family of 

distributions presented by Bourguignon et al. (2014).  The cumulative distribution 

function (cdf) of the W- G is defined as follows,  
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where, ( ; )G x  is the baseline cdf with parameter vector and ( ; ) 1 ( ; ).G x G x = −

Based on W-G family, some particular distributions have been studied by several authors; 

see for example; Tahir et al. (2015), Merovci and Elbatal (2015), Hassen et al. (2016), 

Abouelmagd et al. (2017) and Ibrahim et al. (2017). 

 

The inverse Lomax (IL) is belonging to the family of generalized beta distribution. The 

IL distribution is the inverse of Lomax distribution. Kleiber and Kotz (2003) showed that 

the IL distribution can be used in economics and actuarial sciences. The IL distribution 

has a lot of applications in stochastic modeling of decreasing failure rate life components 
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and life testing. Kleiber (2004) used the IL distribution to get Lorenz ordering 

relationship among ordered statistics. According to McKenzie et al. (2011), the IL 

distribution has been applied on geophysical databases. Rahman et al. (2013) discussed 

the estimated and predicted values using Bayesian approach under various loss functions. 

Rahman and Aslam (2014) used two-component mixture IL model for the prediction of 

future ordered observations in Bayesian framework using predictive model. Yadav et al. 

(2016) discussed the parameter estimation of the IL distribution based on hybrid censored 

samples. Rahman and Aslam (2017) introduced an estimation of two-component mixture 

IL model via Bayesian approach. Singh et al. (2016) calculated the reliability estimators 

of IL distribution under Type II censoring. Bayesian estimation of two-component 

mixture of IL distribution based on Type-I censoring scheme was discussed by Reyad 

and Othman (2018).   

The probability density function (pdf) of two-parameter IL distribution is specified by 

            1 ( 1)( ; , ) (1 ) , , , 0,
x

g x x x 




   

 
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where,  and   are the scale and shape parameters respectively. The cdf corresponding 

to (2) is  

             ( ; , ) (1 ) , , , 0.G x x
x


   −= +                                             (3)                                                                 

It is common practice in a life testing experiment to terminate the experiment before all 

the units have failed as there is limited availability of test time. The observations obtained 

in such situation are called censored samples. Censoring is done to save time and cost 

associated with testing. Type-I and Type-II censoring (TIIC) schemes are the two most 

popular censoring schemes used in the reliability and life testing experiments. In TIIC 

scheme, the experiment of n items is placed on test and the number of uncensored data r 

is predetermined. Instead of continuing experiments until all n items have failed, the 

experiment is terminated when the rth item fails. The remaining n−r items are regarded as 

censored data. 

The main aim here is to introduce a four-parameter Weibull inverse Lomax (WIL) 

distribution as well as study the estimate of its population parameters depending on TIIC 

samples. The rest of the paper contains the following sections. In Section 2, the pdf, cdf, 

reliability function, hazard rate function and reversed hazard rate function of the WIL 

distribution are defined. Statistical properties of the WIL distribution include; moments, 

Rényi entropy, quantile function and distribution of order statistics are derived in Section 

3. The maximum likelihood (ML) estimators of the model parameters are derived in 

Section 4. Simulation study is carried out in Section 5. Analysis to real data sets is 

presented in Section 6. The article ends with concluding remarks. 

 2. Weibull Inverse Lomax Distribution  

In this section, the WIL distribution is defined depending on the W-G family. The 

expansion for the WIL density function is provided. The reliability characterizations of 

WIL distribution are provided. 

Taking the base-line distribution in (1) to be the cdf of IL defined in (3), hence the cdf of 

WIL distribution is specified by   
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where, ,a  are the scale parameters, ,b   are the shape parameters and ( , , , )a b  =  is 

set of parameters. The pdf of the WIL distribution corresponding to (4) is specified by 
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For 2,b = the pdf (5) reduces to Rayleigh inverse Lomax distribution as a new model. For  

1,b = the pdf (5) reduces to exponential inverse Lomax distribution as a new model. A 

random variable X with density function (5) will be denoted by X~WIL ( ; ).x   

2.1 Useful Expansion  

Here, an explicit expression for the WIL pdf is provided.  By using the exponential 

function in (5), we obtain   
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Since, the binomial expansion, for real non-integer value of k, is given  
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Then, by applying the binomial expansion (7) in (6), then we have 
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Or, it can be written as follows 
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where 
( ), ( )b bi jg x + +

 denotes the pdf  of IL distribution with parameters ( )b bi j + +  

and .  

2.2 Reliability Characterization  

 The reliability function and hazard rate function (hrf) of X are given, respectively, as 

follows: 
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and 
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Further, the reversed hrf ( ( ; )r x   ) and cumulative hrf ( ( ; )H x   ) of X are obtained as 

follows  
1

( 1)( 1) 1 1 1 1
1( ; ) 1 1 1 1 ,

b b
bb a a

x xb b x
r x ab x e e

x

 
  

  
 



− − −
   − +    − + − − + − − + −      
      − −    

 
      

= + − + −            
 

and, 

( ; ) ln( ( ; )) 1 1 .

b

H x R x a
x




 

−

  
= − = + −  

   

  

Plots of the pdf and hrf of the WIL distribution are displayed in Figures 1 and 2, 

respectively, for different values of parameters. As seen the shapes of pdf take different 

forms as symmetric, right skewed, and unimodel. Also, it is clear from Figure 2 that the 

shapes of the hrf are J-shaped, reversed J- shaped, decreasing and increasing at some 

selected values of parameters. 

  

  
Figure 1: The pdf of the WIL distribution for 

some parameter values 

Figure 2:  The hrf  of the WIL distribution for 

some parameter values 

3. Statistical Properties 

3.1 Moments and Inverse Moments 

The sth moment of the WIL distribution about zero is derived by using pdf (9) as follows 
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Therefore, the sth moment of the WIL distribution can be obtained as follows 
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where,   is  Euler's constant. The sth central moment (
s ) of X is given by 
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The skewness and kurtosis measures can be calculated from the central moments using 

the well-known relationships. To examine how the mean 1( )  , variance 2

1( ),  skewness 

(Sk) and kurtosis (Ku) change for various values of parameters , ,b a  and ,  numerical 

values are obtained. Table 1 contains the mean, variance, Sk and Ku of the WIL 

distribution for various values of parameters , ,b a  and .  It can be noticed that both the 

mean and variance are non-decreasing for various values of , ,b a  and  . Also, it can be 

noticed that both the Sk and the Ku are decreasing for various values of , ,b a and  .  

Table 1: Mean, variance, skewness and kurtosis of WIL distribution for various 

values of  , ,b a and   

 

b  

 

  

0.5a =     2 =  0.5a =  4.5 =  0.5a =    2 =  0.5a =  4.5 =  

1            
 

2

1  1                
2

1  Sk              Ku Sk                 Ku 

 

3 

2 2.186         5.694 4.918            28.827 0.452            1.692 0.452           1.692 

2.5 2.842         9.524 6.395            48.215 0.428            1.650 0.428           1.650 

3 3.501         14.349 7.876            72.641 0.412            1.622 0.412           1.622 

 

3.5 

2 2.202         5.552 4.954            28.105 0.354            1.508 0.354           1.508 

2.5 2.862          9.304 6.440             47.101 0.334            1.477 0.334           1.477 

3 3.525          14.035 7.931             71.052 0.321            1.457 0.321           1.457 

 

4 

2 2.217          5.474 4.988             27.714 0.285            1.392 0.285           1.392 

2.5 2.881          9.187 0.269             46.507 0.269            1.368 0.269           1.368 

3 3.548         13.869 7.983             70.214 0.258            1.353 0.258           1.353 

5 

2 2.243          5.411 5.046             27.395 0.197            1.257 0.197           1.257 

2.5 2.914          9.094 6.556             46.04 0.185            1.241 0.185           1.241 

3 3.587          13.743 8.072             69.574 0.178            1.231 0.178           1.231 
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Recall the Taylor’s series expansion of the function ,txe that is 
0
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moment generating function of the WIL distribution for |t| < 1, is given by 
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The kth inverse moment, for the WIL distribution is derived by using pdf (9) as follows 
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The harmonic mean of the WIL distribution can be obtained by using the first inverse 

moment.  

3.2. Rényi Entropy  

The entropy of a random variable provides an excellent tool to quantify the amount of 

information (or uncertainty) contained in a random observation regarding its parent 

distribution (population). A large value of entropy implies the greater uncertainty in the 

data (Rényi, 1961). The concept of entropy is important in various situations in science, 

engineering and economics. The Rényi entropy of a random variable X is defined by 
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for 0,  and 1.   The Rényi entropy of the WIL distribution is obtained by inserting 

the pdf (5) in (11) as follows    
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After simplification, the Rényi entropy of WIL can be expressed as follows 
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3.3 Distribution of Order Statistics 

A closed form expression for the pdf of the uth order statistics of the WIL distribution is 

derived. Let X(1)< X(2),…, <X(n)  be the order statistics for a random sample  X1, X2,…, Xn  

of size n from WIL  distribution. It is known that, the pdf of the uth order statistic is 

defined by 
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Inserting pdf (9) and cdf (4) in (12) and after simplification, we obtain the pdf of uth order 

statistic of WIL distribution as follows 
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The pdf of the smallest and largest order statistic of WIL distribution is obtained by 

setting u =1 and u = n in (13), respectively, as follows 
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3.4 Quantile Function 

 The quantile function of X, where X~WIL ( ; )x    is obtained by inverting XQ = F-1(Q) as  
1

1
1

1
ln(1 ) 1 1 , 0< 1.

b

QX Q Q
a





−

− 
    = − − + −      
  

 

                                                      (14) 

Setting Q =0.5 in (14) gives the median of X. Simulating the WIL random variable is 

straightforward. If Q is a uniform variate on the unit interval (0,1), then the random 

variable X follows (5).  

4. Estimation of the Model Parameters 

In this section, ML estimators of the population parameters for WIL distribution are 

derived based on Type II censored samples. ML, reliability function estimators and 

approximate confidence interval (CI) for the population parameters are obtained.   

 Let n items, whose life time's follow the WIL distribution (5) are put on test. The test is 

terminated when the rth item fails for some fixed value of r. The lifetimes of these first r 

failed items, say X(1)< X(2) <…< X(r) are observed. The log likelihood function of the WIL 

distribution is obtained as follows 
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For simplicity, we write ix instead of ( ).ix The log likelihood function of the WIL 

distribution, denoted by ln ,l  is obtained as follows   

( )

( )    

1 1

1 1
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where, (1 ) , (1 ) .i i
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D E
x x

   −= + = +  The components of the score vector ( ln l   ,

ln l a  , ln l b  , ln l   ) are obtained as follows 
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The ML estimators of the unknown parameters of the WIL distribution can be obtained 

by solving the following non-linear equations: ln 0, ln 0, ln 0l l a l b  =   =   = and 

ln 0.l   = Unfortunately these equations cannot be solved analytically and can be 

solved numerically. 
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For interval estimation of the parameters, the 4 4 observed information matrix

( ) { }wxI I =  for ( , ) ( , , , ),w x a b =  are obtained. Under the regularity conditions, the 

known asymptotic properties of the ML method ensure that:  
1

4
ˆ( ) (0, ( ))dn N I  −− ⎯⎯→  as n →   where

d⎯⎯→   means the convergence in 

distribution, with mean 0 (0,0,0,0)T=  and 4 4  covariance matrix 1( )I −   then, the 

approximate 100(1-)% two sided CIs for , , , ,a b   are respectively, given by: 

2 2 2
ˆ ˆˆ ˆ ˆ ˆˆ ˆvar( ), var( ), var( ), var( ).Z a Z a b b Z          

Here, 
2Z
 is the upper 2 th  percentile of the standard normal distribution and var (.)’s 

denote the diagonal elements of 1( )I − corresponding to the model parameters. 

5. Simulation Study 

 In this section, numerical study is presented to illustrate the performance of the estimates 

for different parameter values and at two censoring levels. The performance of the 

estimates of unknown parameters and the reliability function are measured in terms of 

their mean square errors (MSEs), bias, standard errors (SEs), lower confidence bound 

(LCB), upper confidence bound (UCB), and the length of 95%, CI. The numerical 

procedures are defined through the following algorithm. 

 

Step (1): 1000 random samples of size n = 50, 100 and 150 are selected; these random 

samples are generated from the WIL distribution.  

Step (2):  The number of failure items; r, based on two levels of censoring schemes, is 

selected at 90% and 70% censoring levels.  

Step (3): Different values of the unknown parameters ( , , ,a b   ) are selected as as Set1≡

( 0.5, 2, 0.5, 0.7)a b = = = = , Set2≡ ( 0.7, 1.8, 0.8, 0.5)a b = = = = , Set3≡ 

( 0.9, 2.2,a = = 0.5, 0.7)b = =  and Set4 ≡ ( 0.7, 1.6, 0.5, 0.5)a b = = = = . 

Step (4): For all sample sizes and for parameters values; the MSE, bias, and SE are 

computed. 

Step (5): The LCB, UCB and length of CIs with confidence level 0.95 for all samples 

sizes and parameters values are computed. 

Step (6): ML estimates and 95% CI for reliability function at the different mission time's 

t0 where (t0 =0.1, 0.3 and 0.6) for different sample sizes and level of  censoring r =0.9n 

are calculated. 

Numerical results are outlined in Tables 2 to 7. From these tables, the following 

observations can be detected about the performance of the estimated parameters: 

 

▪ For all set of parameters, SE of all estimated parameters decreases as n increases. 

Also, the SEs for all set of parameters at censoring level 90% are smaller than the 

corresponding at  censoring level 70% (see Tables 2 and 3). 

▪ The MSE and bias of , ,a b  and   decrease as n increases for all values of 

parameters. Also, the MSE and bias for the numbers of the failure items at r =0.7n 

for all parameters values are the larger than the corresponding at r = 0.9n (see 

Tables 2 and 3). 
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▪ The MSEs and SEs of  and   are smaller than the corresponding MSEs and SEs 

for the other estimates for a  and b  in most of situations (see Tables 2 and 3). 

▪ For the same sample size, for fixed value of 0.5, 0.7 = =  and as the value of a 

increases, the MSE and bias of a increase (see Table 2). 

▪ The length of CIs for the population parameters decreases as n increases (see 

Tables 4 and 5). 

▪ The MSE for the Set 4 has the smallest values corresponding to other sets.  

▪ The ML estimates of reliability function decrease as the mission time's increase 

for all values of parameters.   

▪ The length of CI gets shorter when n increases (see Tables 4, 5, 6 and 7). 

▪ The MSE of all ML estimates decreases as the censoring level increases for all 

sets of parameters (see for examples Figures 3 and 4). 

▪ The ML estimates decrease as the censoring level increases. Also, the Set 1 has 

the smallest MSE compared to the other sets.  

▪ The MSE of ML estimates of Set 3 at censoring level 90% decreases as n 

increases (see Figure 5). Also, the MSE of ML estimates of Set 2 at censoring 

level 70% decreases as n increases (see Figure 6).  

 

  

Figure 3: MSEs of   for all set of 

parameters 

Figure 4: MSEs of a  for all set of 

parameters 

  

Figure 5: MSEs of Set 3 at 90% level of 

censoring 

Figure6: MSEs of Set2 at 70% level of 

censoring 
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Table 2: The MSE, bias and SE of the estimates for Set 1 and Set 2 

n r Properties 

(λ=0.5, a=2, b=0.5,  β=0.7) (λ=0.7, a=1.8, b=0.8,  β=0.5) 

̂   â  b̂  ̂  ̂   â  b̂  ̂  

50 

35 

MSE 0.051 0.632 0.268 0.265 0.064 0.307 0.042 0.034 

Bias 0.207 -0.772 -0.052 -0.515 0.239 -0.547 0.002 -0.184 

SE 0.002 0.004 0.001 0.000 0.002 0.002 0.002 0.000 

45 

MSE 0.020 0.392 0.143 0.139 0.019 0.184 0.016 0.008 

Bias 0.108 -0.584 -0.022 -0.373 0.119 -0.417 0.047 -0.086 

SE 0.002 0.005 0.001 0.000 0.001 0.002 0.002 0.005 

100 

70 

MSE 0.044 0.471 0.245 0.244 0.033 0.203 0.033 0.029 

Bias 0.190 -0.654 -0.078 -0.493 0.168 -0.441 -0.023 -0.167 

SE 0.001 0.002 0.001 0.000 0.007 0.001 0.001 0.000 

90 

MSE 0.014 0.287 0.119 0.117 0.015 0.135 0.017 0.013 

Bias 0.088 -0.495 -0.035 -0.341 0.096 -0.338 -0.004 -0.106 

SE 0.001 0.002 0.001 0.000 0.001 0.001 0.001 0.000 

150 

105 

MSE 0.039 0.437 0.232 0.232 0.028 0.025 0.003 0.001 

Bias 0.183 -0.630 -0.083 -0.480 0.155 0.023 -0.029 0.017 

SE 0.001 0.001 0.000 0.000 0.000 0.001 0.000 0.000 

135 

MSE 0.004 0.183 0.026 0.026 0.014 0.086 0.005 0.000 

Bias 0.048 -0.387 -0.009 -0.155 0.055 -0.102 0.012 -0.005 

SE 0.000 0.001 0.000 0.000 0.007 0.002 0.001 0.000 

 

Table 3: The MSE, bias and SE of the estimates for Set 3 and Set 4 
 

n r Properties 
(λ=0.9, a=2.2, b=0.5,  β=0.7) (λ=0.7, a=1.6, b=0.5,  β=0.5) 

̂   â  b̂  ̂  ̂   â  b̂  ̂  

50 

35 

MSE 0.023 0.983 0.150 0.145 0.024 0.238 0.035 0.030 

Bias 0.113 -0.984 0.870 -0.381 0.118 -0.465 0.047 -0.174 

SE 0.002 0.003 0.002 0.000 0.002 0.003 0.001 0.000 

45 

MSE 0.014 0.442 0.039 0.036 0.009 0.071 0.005 0.007 

Bias 0.082 -0.654 0.068 -0.189 0.047 -0.222 0.057 0.026 

SE 0.002 0.002 0.001 0.002 0.002 0.003 0.001 0.000 

100 

70 

MSE 0.020 0.704 0.138 0.136 0.019 0.147 0.031 0.029 

Bias 0.091 -0.817 0.039 -0.368 0.107 -0.362 0.009 -0.169 

SE 0.001 0.002 0.001 0.000 0.008 0.001 0.001 0.000 

90 

MSE 0.013 0.279 0.038 0.036 0.009 0.054 0.004 0.003 

Bias 0.056 -0.495 0.034 -0.190 0.025 -0.164 0.026 -0.018 

SE 0.001 0.002 0.001 0.000 0.001 0.002 0.001 0.000 

150 

105 

MSE 0.012 0.597 0.127 0.125 0.015 0.128 0.027 0.025 

Bias 0.061 -0.761 0.028 -0.354 0.087 -0.324 -0.004 -0.159 

SE 0.001 0.001 0.000 0.000 0.001 0.001 0.000 0.000 

135 

MSE 0.011 0.243 0.034 0.032 0.008 0.034 0.003 0.001 

Bias 0.028 -0.453 0.025 -0.177 0.008 -0.093 0.024 0.028 

SE 0.001 0.001 0.000 0.000 0.001 0.001 0.000 0.000 
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Table 4: LCB, UCB and Length of the estimates for Set 1 and Set 2 
 

n r Parameters 
(λ=0.5, a=2, b=0.5,  β=0.7) (λ=0.7, a=1.8, b=0.8,  β=0.5) 

LCB UCB Length LCB UCB Length 

50 

35 

λ 0.703 0.710 0.007 0.936 0.942 0.007 

a 1.221 1.236 0.015 1.250 1.258 0.008 

b 0.445 0.450 0.004 0.800 0.808 0.007 

 β 0.185 0.448 0.263 0.315 0.805 0.490 

45 

λ 0.605 0.612 0.007 0.816 0.822 0.005 

a 1.407 1.425 0.018 1.379 1.387 0.008 

b 0.476 0.480 0.004 0.843 0.850 0.007 

 β 0.327 0.478 0.151 0.413 0.848 0.434 

100 

70 

λ 0.691 0.694 0.003 0.867 0.869 0.003 

a 1.338 1.346 0.008 1.459 1.465 0.006 

b 0.422 0.424 0.002 0.775 0.778 0.003 

 β 0.211 0.423 0.212 0.333 0.777 0.445 

90 

λ 0.591 0.595 0.003 0.794 0.797 0.003 

a 1.495 1.504 0.008 1.357 1.361 0.004 

b 0.464 0.466 0.002 0.795 0.798 0.003 

 β 0.350 0.465 0.114 0.798 0.797 0.404 

150 

105 

λ 0.682 0.684 0.002 0.854 0.856 0.002 

a 1.367 1.372 0.005 1.821 1.825 0.004 

b 0.417 0.418 0.001 0.770 0.772 0.001 

 β 0.219 0.417 0.198 0.517 0.771 0.300 

135 

λ 0.577 0.579 0.002 0.754 0.756 0.002 

a 1.501 1.505 0.005 1.698 1.702 0.004 

b 0.461 0.463 0.001 0.811 0.813 0.002 

 β 0.357 0.462 0.106 0.494 0.813 0.300 
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Table 5: LCB, UCB and Length of the estimates for Set 3 and Set 4 

n r Parameters 
(λ=0.9, a=2.2, b=0.5,  β=0.7) (λ=0.7, a=1.6, b=0.5,  β=0.5) 

LCB UCB Length LCB UCB Length 

50 

35 

λ 1.009 1.017 0.008 0.814 0.822 0.008 

a 1.211 1.221 0.010 1.129 1.141 0.012 

b 0.584 0.589 0.005 0.544 0.549 0.005 

 β 0.319 0.587 0.268 0.326 0.547 0.221 

45 

λ 0.978 0.985 0.007 0.743 0.750 0.006 

a 1.541 1.550 0.009 1.372 1.383 0.011 

b 0.566 0.570 0.005 0.555 0.560 0.005 

 β 0.511 0.568 0.058 0.526 0.557 0.032 

100 

70 

λ 0.989 0.993 0.004 0.806 0.809 0.003 

a 1.380 1.387 0.008 1.236 1.241 0.005 

b 0.538 0.540 0.002 0.508 0.510 0.002 

 β 0.332 0.540 0.208 0.331 0.510 0.179 

90 

λ 0.954 0.958 0.004 0.724 0.727 0.003 

a 1.702 1.709 0.007 1.433 1.438 0.005 

b 0.533 0.535 0.002 0.525 0.527 0.002 

 β 0.510 0.535 0.025 0.524 0.526 0.002 

150 

105 

λ 0.960 0.962 0.002 0.785 0.788 0.002 

a 1.436 1.441 0.005 1.274 1.278 0.004 

b 0.527 0.528 0.001 0.499 0.500 0.001 

 β 0.346 0.528 0.182 0.341 0.500 0.159 

135 

λ 0.927 0.929 0.003 0.707 0.709 0.002 

a 1.745 1.750 0.005 1.504 1.509 0.004 

b 0.524 0.525 0.001 0.524 0.525 0.001 

 β 0.522 0.525 0.003 0.526 0.528 0.002 

 

Table 6: ML estimates and 95% CI of reliability function for Set 1 and Set 2 at 

censoring level r =0.9 n 

  (λ=0.5, a=2, b=0.5,  β=0.7) (λ=0.7, a=1.8, b=0.8,  β=0.5) 

n r t0 average 
95%CI 

average 
95%CI 

LCB UCB Length LCB UCB Length 

50 45 

0.1 0.972 0.948 0.996 0.048 1.000 1.000 1.000 0.000 

0.3 0.803 0.765 0.840 0.075 0.998 0.997 1.000 0.003 

0.6 0.510 0.473 0.548 0.075 0.972 0.959 0.985 0.026 

100 90 

0.1 0.995 0.994 0.996 0.002 0.996 0.986 1.007 0.022 

0.3 0.729 0.711 0.747 0.036 0.996 0.983 1.008 0.024 

0.6 0.518 0.498 0.537 0.038 0.981 0.968 0.995 0.026 

150 135 

0.1 0.995 0.994 0.996 0.002 0.998 0.992 1.004 0.012 

0.3 0.721 0.707 0.735 0.028 0.998 0.991 1.005 0.014 

0.6 0.527 0.507 0.548 0.041 0.998 0.985 0.991 0.007 
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Table 7: ML estimates and 95% CI of reliability function for Set 3 and Set 4 at 

censoring level r =0.9 n 

  (λ=0.9, a=2.2, b=0.5,  β=0.7) (λ=0.7, a=1.6, b=0.5,  β=0.5) 

n r t0 average 
95%CI 

average 
95%CI 

LCB UCB Length LCB UCB Length 

50 45 

0.1 0.996 0.986 1.005 0.018 0.999 0.998 1.000 0.002 

0.3 0.956 0.936 0.976 0.040 0.902 0.879 0.925 0.047 

0.6 0.804 0.765 0.843 0.078 0.600 0.555 0.644 0.089 

100 90 

0.1 0.994 0.990 0.998 0.009 0.996 0.991 1.001 0.010 

0.3 0.920 0.906 0.933 0.028 0.921 0.908 0.934 0.026 

0.6 0.729 0.706 0.752 0.046 0.686 0.663 0.709 0.046 

150 135 

0.1 0.996 0.995 0.998 0.003 0.998 0.996 1.000 0.004 

0.3 0.928 0.921 0.936 0.016 0.926 0.918 0.933 0.016 

0.6 0.732 0.716 0.747 0.031 0.687 0.671 0.702 0.031 

6. Applications  

In this section, two real data sets are provided to illustrate the importance of the WIL 

distribution. The first data set refers to Hinkley (1977), which consists of thirty 

successive values of March precipitation (in inches) in Minneapolis/St Paul. The data are 

listed as follows: 0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, 2.20, 3.00, 3.09, 

1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 

0.90, 2.05 

 

The second data refer to Jorgensen (1982) will be considered, it consists of 40 

observations of the active repair times (in hours) for airborne communication transceiver. 

The data are: 0.50, 0.60, 0.60, 0.70, 0.70, 0.70, 0.80, 0.80, 1.00, 1.00, 1.00, 1.00, 1.10, 

1.30, 1.50, 1.50, 1.50, 1.50, 2.00, 2.00, 2.20, 2.50, 2.70, 3.00, 3.00, 3.30, 4.00, 4.00, 4.50, 

4.70, 5.00, 5.40 5.40, 7.00, 7.50, 8.80, 9.00, 10.20, 22.00, 24.50. 

 

To check the validity of the fitted model, Kolmogorov- Smirnov goodness of fit test and 

its p-value are obtained.  The estimated pdf and cdf for both data are provided in Figures 

7 and 8. It is clear from these figures that the WIL distribution fitting these both data sets. 
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Figure 7: Estimated pdf and cdf of the WIL  model for the first data 

 

  

 Figure 8: Estimated pdf and cdf of the WIL model for the second data 

Furthermore, the ML estimates of the population parameters, reliability function and their 

SEs for both real data sets based on TIIC are listed in Table 8. 

Table 8: ML estimate of the parameters, reliability function and their SEs Based on 

TIIC samples 

                          First Real Data                       Second Real Data  

n r t0 estimator estimate SEs n r t0 estimator estimate SEs 

 

 

30 

 

 

21 

 

 

0.1 

̂  7.59 0.272  

 

40 

 

 

28 

 

 

0.1 

̂  30.71 0.913 

â  3.533 0.103 â  1.86 0.022 

b̂  
0.873 0.019 b̂  

0.401 0.004 

̂  
0.430 0.011 ̂  

0.176 0.004 

0
ˆ ( )R t

 
1  

0
ˆ ( )R t

 
1  
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7. Concluding Remarks 

In this paper, a new distribution with four parameters, called the Weibull inverse Lomax 

distribution is introduced.  Some of the statistical properties of the new distribution such 

as quantile function, moments, order statistics and Rényi entropy are obtained. Maximum 

likelihood estimators of population parameters are obtained based on Type II censored 

samples. The approximate confidence intervals for the model parameters and reliability 

function are derived. Simulation study is presented to illustrate the performance of 

estimates for two censoring schemes. Two real data sets are presented to illustrate 

theortical results.  
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