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Abstract 

The assumption of the error normality in the regression model was often questioned especially in cases 

where there was an outlier, which causes the behavior of asymmetric data. To overcome this, without data 

transformation, we could use skew distribution. This distribution was very important and applicable in 

various fields of science such as finance, economics, actuarial science, medicine, biology, investment. 

Skew Normal distributions had been proven to have a convenient for calculating bias in data with 

asymmetric behavior. This study aims to model SUR with Skew Normal error using Bayesian approach 

applied to East Java GRDP data. This study would compared two types of models, namely models with 

Normal distributed errors and models with Skew Normal distributed errors. The result of parameter 

estimation with Bayesian approach shows that SUR Skew Normal model was more suitable for East Java 

GRDP modeling rather than using normal error model. This was based on their smaller Root of Mean 

Square Error (RMSE), Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) value.  

Keywords: Skew normal distribution; Seemingly unrelated regression; Root of mean 

square error; Mean absolute error; Mean absolute percentage error. 

1. Introduction 

In several economic and other areas of knowledge, the seemingly unrelated regression 

(SUR) model introduced by Zellner (1962) was often used as a tool to explain the 

occurrence of an economic phenomenon. In most non-Bayesian and Bayesian books, it 

had provided various explanations of analytical techniques on SUR models, including 

Judge (1988), Greene (2008), Geweke (2005), and Lancaster (2004). One of the most 

popular Bayesian approaches for SUR model estimation was the Markov Chain Monte 

Carlo (MCMC) method, which was a simulation approach technique for calculating the 

posterior distribution of parameters. The Bayesian approach in the SUR model had been 

introduced by Zellner (1971) by performing an analysis to obtain posterior distribution of 

parameters via the Gibbs sampling method on the combined posterior parameters. 
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As an assumption for the SUR model, normal distributed errors were often incompatible 

with the condition of an actual data. One alternative solution was transformation to 

normality, but data transformation could make it difficult in experimental explanations as 

revealed by Azzalini and Capitanio (1999). One way to overcome this was to use a Skew 

Normal distribution that had been proven its useful for calculating bias in data with 

abnormal behavior. The Skew Normal distribution method, that had been disseminated 

after Azzalini (1985) through a new class of skew-normal distributions, has generated 

much interest in flexible skewness in multivariate distribution. A popular approach was 

to build a multivariate Skew Normal distribution by modifying the multiplication of 

normal probability density  function (pdf). 

The Skew Normal distribution which was made by Azzalini, although able to provide the 

relaxation of normality as a pattern that was tilted to the right or tilted to the left, but 

unable to maintain its stability in its location or stable in the mean (Iriawan, 2012). This 

means that if the pattern of a residual data was detected rather tilted to the right, then the 

modeling must bear the shift of its residual center also shifted to the right which was no 

longer centered in its mode location at zero. It would be work for residual slope when it 

was tilted to the left. Fernandez and Steel (1998) armed with normal distribution began to 

think about dividing it into two, the negative side (left side of zero) and the positive side 

(right side of zero) to be treated with the inverse operator. Based on that thought, 

Fernandez and Steel made a normal slant that could be stable in its mode of distribution. 

This study was using the normal skew distribution of Fernandez and Steel, which has the 

stability in its mode of distribution and would be applied for the SUR model by using 

GRDP of East Java province data. Thus, the assumptions of  Normal and Skew-Normal 

errors would be employed to be coupled with the Bayesian approach and the MCMC 

method for estimating the parameters. 

2. Multivariate Skew Normal Distribution  

The proposed Skew Normal distribution (Fernandez and Steel, 1998) considers, that 

was a residual model having probable values, − was normally, 2(0, ).N :  

Suppose (.)f was the symmetric univariate distribution centered at zero, then the normal 

skew distribution of residual with the skewness parameters   was defined as follows : 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )

0, ,0

2 2
| ,

1 1
signp f f f f 

     
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   (1) 

Where S(.)Ι  was an indicator function on S, and sign (·) was a function mark on ℜ with

−  and (0, ) =  . Parameters  become divisor transformations, 


, for 0   

,and treat them as multiplier parameters,  , for 0  . So that the original distribution 

could still be maintained for, 1 = , ( | 1) ( )f f  = = , where 2(0, )N : . If there was a 

vector ( )1 2, ,..., M   =δ ,  1 2( , ,..., )M   =ξ and non-singular matrices M MR Α , then the 

variable 1 2( , ,..., ) M
M R   = η could be defined as 

= +η Α δ ξ ,  (2) 
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Then the density function of  , therefore, would follow the general Multivariate Skew 

Normal. The equation of Skew Normal multivariate of  with the parameters , , , fξ A  

(Ferreira and Steel, 2007) was defined as: 

( ) ( )
1 1

.

1

| , , , | ,
M

m m m

m

p f p f     
− −

=

 = −
  

A A A ,  (3) 

where 1
. j
−

A  was a member of the jth column of the matrix 1−
A ,  A was the absolute value 

of the matrix determinant A , and ( ). | ,p f was the Skew Normal function as in 

equation(1). 

 

Considering equations (1) and (2) into equation (3), the general form of Multivariate 

Skew Normal of δ  could be written in equation (4). 
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3. Bayes SUR Skew Normal Model 

In general, the equation of SUR model with M equation could be written as follows 

(Zellner and Ando, 2010)  

, 1,2, ,    ,m m m m m M= + =y X β ε L       (5) 

where  my   is a 1T   vector of observations on the dependent variable in the mth equation,  

mX  is a mT k  matrix of independent  variables in the mth equation with rank mk  , mβ  is 

a 1mk   vector of unknown parameters in the mth equation, mε  is an 1T  vector of 

unobservable disturbances (Funda and Fikri , 2016) with 

( ) 0 and ( )   ( , 1,2,..., )m m n mnE Cov I m n M   = = =  

This model had independent variables and different form of error variants. This model 

also shows the correlation between errors in different equations. The model of equation 

(5) could be rewritten in matrix form as: y = Xβ+ε , and .−ε = y Xβ  

Based on equation (4), the general form of Multivariate Skew Normal of ε  could be 

written as: 
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Given that the Jacobian from ε to y was 1, the density of y could be written as follow: 
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Equation (7) was a function of the likelihood SUR Skew Normal model, which would be 

used to obtain the estimated parameters of SUR Skew Normal model through the mean 

posterior model. Skew Normal distribution was non standard distribution, and therefore, 

there were not facilitated by WinBUGS package program. To overcome this problem, the 

"Zeros trick" scenario would be used. Zeros Trick in WinBUGS uses the log of its 

likelihood function. The syntax code could be written as follow (Ntzoufras, 2009)  

C<-10000 

for(i in 1:n){ 

zeros[i]<-0 

zeros[i]~dpois(zeros.mean[i]) 

zeros.mean[i]<- -l[i]+ C 

l[i]<- #Log Likelihood function  

...} 

 

Log Likelihood function of  SUR  Skew Normal model in the syntax above could be 

substituted with the following equation: 

( ) ( ) ( ) ( ) ( )( )
1/21/2 1 ( )

1

2 1 1
log | , ,  log log exp

1 22

m
sign

j

p  




−− − − −

=

 
    =  + − −    

   +
  


y Xβ Σ

y β Σ ,X y Xβ Σ y Xβ  (8) 

 

The prior of   in SUR Skew Normal model follows the Gamma distribution with 

parameters p and q which could be written as ( )~  ,Gamma p q and was defined as 

follows: 

( )

1
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The use of prior distribution parameters model uses an independent prior distribution to 

avoid problems in modeling (Box and Tiao, 1973). The prior distribution for parameters 

β  was as follows: 

1 2

1

( ) ( ) ( ).... ( )

( ) ( )
M

m
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p p p p

p p
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=

=

β β β β

β β
                (10) 

Prior distribution for each mβ , m=1,2,..,M defined as 𝑝( mβ ) was a normal distribution 

which was a pseudo informative prior defined as follows: 
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In the Bayesian approach, Inverse Wishart as a prior distribution was often used as a prior 

for sigma ( )Σ , in equation (8) when the prior distribution was a conjugate of its likelihood 

function. Since this Inverse Wishart distribution was not conjugated the likelihood 

function of the SUR Skew Normal model, the prior distribution for the sigma ( )Σ  was 

designed as a combination of prior of tau  ( ) and rho (  ). Prior of tau ( ) uses Gamma 

distribution (m, n) which could be written ( )~  Gamma ,m n  and the density as follows  

( )
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

    (12) 

and prior of rho (  ) was defined to follow the Uniform distribution (a,b) or

( )~  ,Uniform a b  and had the density as follows : 

1
( , ) .|   p a b

b a
 =

−
    (13) 

 

The joint posterior distribution for the SUR Skew Normal model, therefore, was obtained 

by combining the above information from Skew Normal likelihood and prior distribution, 

which could be written as follows  

( ) ( ) 1 2,  . ( ) ( ).... ( ). ( ). ( )| , , , ., ( )Mg p pp y p p p p   Σ β Σ y,y,X βXβ β β . (14) 

 

Finally, the marginal posterior distribution of each coefficient of Bayes SUR model was 

as follows  
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Due to the complexity of the integration process in equation (15), the estimation would 

be done by using MCMC and Gibbs Sampling which the employing the repeated 

sampling scenario through the form of full conditional posterior distribution. The full 

conditional posterior distribution of each model parameter was as follow  

i. full conditional posterior distribution of β : 

( )\ ,, ,m mp   Σβ β y A B      (16) 

ii. full conditional posterior distribution of Σ : 
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iii. full conditional posterior distribution of  : 
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The Gibbs Sampling iteration procedure was performed with the following stages: 

Step 1: Determine the initial value for each parameter to be estimated. 

Step 2: Generate the sample by executing iterations of M for each parameter using the 

full conditional posterior, ie: 

i) Generating β  using equation (16), 

ii) Generating Σusing equations (17), 

iii) Generating  using equation (18). 

iv) Processes i) up to iii) this was done iterative until convergent. 

 Repeating step 2.i) up to 2.iii) until each parameter convergence. 

4. Application And Result 

This research uses data of GRDP (response variable) and data of labor force, labor and 

investment (domestic investment and foreign investment) as the predictor variables, for 

the three main sectors in East Java, which refer to AB Santosa et all (2017). In detail, the 

types of research variables that were employed in this study were shown in Table 1. 
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In this Bayes SUR model, parameter estimation was done by estimating probability 

distribution parameters with Skew Normal error by using WinBUGS. Bayesian estimates 

were considered to be significant at 5% of the probability, if the credibility of the interval 

from the SUR model coefficients for the posterior did not have a zero value. The 

marginal posterior distribution for all parameters was obtained based on the 100,000 

iteration MCMC processes. 

The contribution of all of three main sectors was about 72 percent of the total East Java’s 

GRDP. Therefore, these three main sectors were used as an indicator of economic 

development in this province. Based on the equation (7), SUR models in this study were: 

1 10 11 1 ,1 12 1 ,2 13 1 ,3 14 1 ,4 1

2 20 21 2 ,1 22 2 ,2 23 2 ,3 24 2 ,4 2

3 30 31 3 ,1 32 3 ,2 33 3 ,3 34 3 ,4 3 .

t t t t t t

t t t t t t

t t t t t t

y X X X X u

y X X X X u

y X X X X u

    

    

    

= + + + + +

= + + + + +

= + + + + +

   (21) 

Table 1: Response variables ( )Y  and predictor variables ( )X  used in the study 

Variables Unit 

1tY

 

GRDP of Agriculture Sector billion 

Rupiahs 

2tY

 

GRDP of Manufacturing Industrial 

Sector  

billion 

Rupiahs 

3tY

 

GRDP of Trade, Hotel and 

Restaurant Sector 

billion 

Rupiahs 

1 ,1tX

 

labors amount of Agriculture 

Sector 

thousand 

heads 

2 ,1tX

 

labors amount of Manufacturing  

Industrial Sector  

thousand 

heads 

3 ,1tX

 

labors amount of Trade, Hotel and 

Restaurant Sector 

thousand 

heads 

1 ,2tX

 

Labor Wages of Agriculture Sector   
thousand 

Rupiahs 

2 ,2tX

 

Labor Wages of Manufacturing 

Industrial Sector  

thousand 

Rupiahs 

3 ,2tX

 

Labor Wages of Trade, Hotel and 

Restaurant Sector 

thousand 

Rupiahs 

1 ,3tX

 

Domestic  Investment of 

Agriculture Sector 

billion 

Rupiahs 

2 ,3tX

 

Domestic  Investment of 

Manufacturing Industrial Sector  

billion 

Rupiahs 

3 ,3tX

 

Domestic  Investment of Trade, 

Hotel and Restaurant Sector 

billion 

Rupiahs 

1 ,4tX

 

Foreign Investment of Agriculture 

Sector 

billion 

Rupiahs 

2 ,4tX

 

Foreign Investment of 

Manufacturing Industrial Sector  

billion 

Rupiahs 
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3 ,4tX

 

Foreign Investment of Trade, Hotel 

and Restaurant Sector 

billion 

Rupiahs 

   
 

Estimation parameters of SUR models with Bayesian MCMC Normal and Skew Normal 

methods were shown in Table 2. All estimated parameters were positive, both for the 

GRDP model of agriculture, manufacturing industry and trade, hotels and restaurants. 

These results were consistent with economic theory, which states that the higher of 

increasing amount of labor, labor wages, domestic investment and foreign investment, the 

greater of increasing amount of GRDP. While the partial test shows that there was only 

one variable, namely investment  domestic (X23), which was not significant in affecting 

the GRDP of the manufacturing sector. 

Table 2: A Result of  Bayes SUR Model Parameters with Norma and Skew Normal 

Model Assumption 

 MCMC NORMAL   MCMC SKEW NORMAL 

 Mean 2.50% 97.50% Elasticity   Mean 2.50% 97.50% Elasticity 

     
 

    

β10 24,124.57 14,700.00 33,470.00  
 

7,761.20 -10,759.30 26,148.11  

β11 1.55 0.32 2.79 0.2848  3.64 1.59 5.71 0.6688 

β12 18.62 15.48 21.71 0.1199  16.92 13.38 20.48 0.1090 

β13 9.25 0.05 19.72 0.0108  16.90 0.86 32.94 0.0197 

β14 40.75 15.34 67.81 0.0158  50.34 10.30 90.48 0.0195 

β20 17,693.25 -4,958.00 40,880.00   18,507.85 -17,288.00 54,029.07  

β21 13.03 0.67 24.67 0.4563  12.14 0.87 23.53 0.4250 

β22 25.33 14.29 37.01 0.1789  24.71 13.01 36.35 0.1745 

β23 0.18 -0.14 0.52 0.0220  0.31 0.00 0.62 0.0375 

β24 4.39 2.26 6.65 0.0697  4.86 2.73 7.02 0.0771 

β30 -8,259.73 -39,160.00 19,970.00   -39,221.31 -91,352.17 12,944.92  

β31 15.44 5.39 26.71 0.7910  26.59 14.61 38.58 1.3621 

β32 39.26 21.02 56.88 0.2652  24.03 3.86 44.13 0.1623 

β33 6.36 1.11 12.18 0.0243  10.97 1.61 20.33 0.0419 

β34 55.40 30.80 81.34 0.0507  61.28 15.25 107.20 0.0561 

                    

Source: Data analysis using Program R danWinBUGS 

SUR models using Bayesian MCMC Normal method for the model of the agricultural 

sector, total employment had the highest level of elasticity, that was 0, 2848. This means 

that the growth of total employment by one percent, the GRDP of the agricultural sector 

in East Java would grow 0.2848 percent. Similarly, MCMC Skew Normal approach 

reported that the number of workers has the highest level of elasticity on the agricultural 

sector value, that was 0.6688. Likewise, in the agricultural sector, MCMC Normal and 

Skew Normal methods in modeling of industrial sector and trade, hotel and restaurant 

sectors, were syncronously shown that the amount of labor in this sector also had the 

highest level of elasticity, but in different level. MCMC reports 0.4563 for elasticity of 
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the number workers in industry sectors and 0.7910 for trading sectors, while MCMC 

Skew Normal reports for 0.4250 and 1.3621 for each sector respectively. 

Some selection criteria, i.e. Root Mean Square Error (RMSE), Mean Absolute Deviation 

(MAD) and Mean Absolute Percentage Error (MAPE) the MCMC Skew Normal 

approach shows a better value than the MCMC Normal approach. Table 3 and Figure 1 

shows these comparisons. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Some of the selection criteria models for MCMC Approach 
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Table 3: The RMSE, MAD and MAPE of The SUR model with MCMC  NORMAL 

and SKEW NORMAL 

Model of Bayesian 

SUR 

Bayesian SUR of MCMC Normal   
Bayesian SUR of MCMC Skew 

Normal 

RMSE MAD MAPE   RMSE MAD MAPE 

GRDP of the 

agricultural sector 
1.192,7752 962,2523 0,0229  998,8476 795,7055 0,0194 

GRDP of the 

industrial sector 
3.369,5928 2.670,9537 0,0440  3.161,2334 2.466,2381 0,0409 

GRDP of trade, hotel 

and restaurant sectors 
5.258,3207 4.413,4124 0,0758   4.565,5748 3.853,0332 0,0655 

Source: Data analysis using R Package danWinBUGS 

5. Conclusion 

All estimated parameters for MCMC Normal and Skew Normal method were positive. It 

was conforming to an economic theory, that says the higher increasing the amount of 

labor, wage labor, domestic investment and foreign investment, the greater growing the 

GRDP. All of variables were significant to influence the GRDP, except the domestic 

investment of manufacturing industry sector (X23). 

The results of parameter estimation using MCMC Normal and Skew Normal approach 

show almost the same level of elasticity; the amount of labor has the highest elasticity in 

figuring the East Java’s GRDP model of agriculture, manufacturing industry and trade, 

hotels and restaurant’s sectors. However, comparing the goodness of a model based on 

several criteria for selecting the model (RMSE, MAD and MAPE) shows that the MCMC 

Skew Normal approach was better than the MCMC Normal approach. SUR model with 

Skew Normal error was an alternative method for GRDP model in East Java. This was 

because SUR models with Skew Normal errors were more reliable than models with 

Normal errors. 

Future research 

The MCMC Skew Normal error model approach could be applied to more complex 

variants on the SUR model which were obtained in GRDP cases. 
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