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Abstract 

This paper presents exact formulas for the reliability of linear consecutive k-out-of-n: F, and relayed 

consecutive k-out-of-n: F systems, having a change point at position 𝑐, 1 ≤ 𝑐 ≤ 𝑛, for any 𝑘 ≤ 𝑛. A 

change point at position 𝑐, means that the components after this point have reliabilities that are different 

from those before or at position 𝑐. The components are assumed to be independent. Practically, the change 

in the components reliabilities may be due to change in the stress applied. Assuming a change in stress, 

exact formulas of the stress-strength reliability of the systems are derived, considering two cases. The first 

case assumed strength and stress having the same form of distributions, while the second case assumed 

strength and stress having different forms of distributions. Estimation of the stress-strength reliability for 

both cases is discussed. Applications to both cases are considered with numerical illustration. 

Keywords: Linear (relayed linear) consecutive k-out-of-n: F system; Stress-strength 

reliability; General exponential form distribution; Generalized Lindley distribution, 

Maximum likelihood estimator. 

 

Notations 

𝑛 Number of components of the system. 

𝑘 Minimum number of consecutive failed components required for system 

failure. 

𝑁(𝑗, 𝑠, 𝑟 ) The number of ways in which 𝑗 identical balls can be placed in 𝑠 distinct 

urns subject to the requirement that at most 𝑟 balls are placed in any one 

urn. 

𝑐 Position of the change point of the system, 1 ≤ 𝑐 ≤ 𝑛. 

P Is a vector [𝑝1, 𝑝2]. 

𝐿/𝑘/𝑛/𝑐 Linear consecutive k-out-of-n: F system with a change point at position 

𝑐. 

𝐿/𝑘/𝑛/𝑐; P 𝐿/𝑘/𝑛/𝑐 with reliability 𝑝1 for components from 1 to 𝑐, and reliability 

𝑝2 from 𝑐 + 1 to 𝑛.  

Rw(𝑘, 𝑛, 𝑐; P) Reliability of a 𝐿/𝑘/𝑛/𝑐; P, given that the component at position 𝑐 is 

working. 

R𝐹(𝑘, 𝑛, 𝑐; P) Reliability of a 𝐿/𝑘/𝑛/𝑐; P, given that the component at position 𝑐 is 

failed. 

R(𝑘, 𝑛, 𝑐; P) Reliability of a 𝐿/𝑘/𝑛/𝑐; P. 
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R𝑢(𝑘, 𝑛, 𝑐; P) Reliability of a relayed-unipolar 𝐿/𝑘/𝑛/𝑐; P. 

R𝑏(𝑘, 𝑛, 𝑐; P) Reliability of a relayed-bipolar 𝐿/𝑘/𝑛/𝑐; P. 

R(𝑠:𝑠)(𝑘, 𝑛, 𝑐) Stress-strength reliability of a 𝐿/𝑘/𝑛/𝑐. 

R(𝑠:𝑠)𝑢(𝑘, 𝑛, 𝑐) Stress-strength reliability of a relayed-unipolar 𝐿/𝑘/𝑛/𝑐. 

R(𝑠:𝑠)𝑏(𝑘, 𝑛, 𝑐) Stress-strength reliability of a relayed-bipolar 𝐿/𝑘/𝑛/𝑐. 

X, and Stands for a failed, and working component, respectively.  

1. Introduction 

A linear consecutive k-out-of-n: F system consists of 𝑛 components arranged linearly, the 

system fails if and only if 𝑘 or more consecutive components fail. There exist many 

practical applications of this type of systems, for example, the telecommunications 

system with 𝑛 relay stations, and the oil pipeline system with 𝑛 pump stations, given by 

Chiang and Niu (1981). Many researches in the literature concerned such systems. 

Derman et al. (1982) presented a formula for the reliability of a linear consecutive k-out-

of-n: F system with identical and independent components with reliabilities 𝑝, given by 

R(𝑘, 𝑛; 𝑝) = ∑ 𝑁(𝑗, 𝑛 − 𝑗 + 1, 𝑘 − 1)𝑞𝑗𝑝𝑛−𝑗

𝑛

𝑗=0

. 
 

(1) 

 

Lambiris and Papastavridis (1985) derived an expression for the numbers 

𝑁(𝑗, 𝑛 − 𝑗 + 1; 𝑘 − 1) in (1), with 𝑛 − 𝑗 + 1 ≥ 0, as follows 

𝑁(𝑗, 𝑛 − 𝑗 + 1, 𝑘 − 1) = ∑ (
𝑛 − 𝑗 + 1

𝜆
) (

𝑛 − 𝜆𝑘

𝑗 − 𝜆𝑘
) (−1)𝜆

𝑛−𝑗+1

𝜆=0

. 

 

(2) 

 

Other different formulas for the reliability of a linear consecutive k-out-of-n: F system 

are obtained by different methods, see Chiang and Niu (1981), Hwang (1982), Kossow 

and Preuss (1989), Ge and Wang (1990), Jung and Kim (1993), Chao et al. (1995), 

Mokhlis (2001), and Gökdere et al. (2016).  

 

Also, relayed linear consecutive k-out-of-n: F systems are of practical importance. There 

are two types of relayed linear consecutive k-out-of-n: F systems: The first type is a 

relayed-unipolar linear consecutive k-out-of-n: F system which is a system consisting of 

𝑛 components arranged in a line such that the system fails if the first component fails or 

at least 𝑘 consecutive components fail; while the second type is a relayed-bipolar linear 

consecutive k-out-of-n: F system, where the 𝑛 components are arranged in a line such 

that the system fails if the first or last component fails, or at least 𝑘 consecutive 

components fail. The notation of relayed-unipolar and bipolar consecutive k out-of-n: F 

systems is given by Hwang (1988).  

 

In the reliability theory, stress-strength reliability of a system with random strength 𝑌 

under the random stress 𝑋, is the probability that the strength exceeds the stress. Stress-

strength analysis was first considered by Birnbaum (1956) and developed by Birnbaum 

and McCarty (1958). Johnson (1988) presented stress-strength models for the system 

reliability. To the authors' knowledge few researches have considered the stress-strength 

reliability problem of consecutive k-out-of-n systems. Eryılmaz (2008) presented the 
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multi component stress-strength reliability of consecutive k-out-of-n: G system, for both 

cases in which there is a change and no change in strength. Zhao et al. (2018) studied a 

two-stage shock model with self-healing mechanism. A change point is introduced to 

describe the two-stage failure processes of the system. They proposed three preventive 

maintenance policies for the system under different monitoring conditions. 

 

Akici (2010) discussed a linear consecutive k-out-of-n: F system with a change point, 

using the longest run statistic under the condition of special values of 𝑘, 2𝑘 ≥ 𝑛. Akici 

(2010) mentioned a practical example of this model, which is the gas pipeline from 

Russia to Turkey. This pipeline system is under two different stresses 𝑋1 (water) and 𝑋2 

(soil). The pipeline starts from Russia passes across the Black Sea, enter Turkey from 

Samsun, and ends in Ankara, in Samsun it leaves the sea and enters soil, which is the 

change point of this system, and there are many other practical examples. Akici (2010) 

discussed this situation for special values of 𝑘 satisfying 2𝑘 ≥ 𝑛. However, in practice 𝑘 

could take any value between 1 and 𝑛, not necessarily, 2𝑘 ≥ 𝑛. So, in this paper we study 

the reliability of a linear consecutive k-out-of-n: F system with a change point at position 

𝑐, when 𝑘 could take any possible value i.e., 1 ≤ 𝑘 ≤ 𝑛. Also, the reliabilities of the 

relayed-unipolar and relayed-bipolar linear consecutive k-out-of-n: F systems with a 

change point at position 𝑐 are derived for any 𝑘, 1 ≤ 𝑘 ≤ 𝑛. Exact formulas for the linear 

and relayed linear (unipolar and bipolar) consecutive k-out-of-n: F systems are derived 

conditioning on the state (working or failed) of the component at position 𝑐, for any 

values of 𝑘, 1 ≤ 𝑘 ≤ 𝑛. Formulas for R(𝑠:𝑠)(𝑘, 𝑛, 𝑐), R(𝑠:𝑠)𝑢(𝑘, 𝑛, 𝑐), and R(𝑠:𝑠)𝑏(𝑘, 𝑛, 𝑐) 

are derived, for any distributions of strength of components 𝐹(𝑥) and stresses 𝐺𝑖(𝑥), 
𝑖 = 1,2. As application, we discussed two cases: Case I and Case II. Case I, when 𝐹(𝑥) 

and 𝐺𝑖(𝑥), 𝑖 = 1,2 have the same form (general exponential form), in this case exact 

formulas of R(𝑠:𝑠)(𝑘, 𝑛, 𝑐), R(𝑠:𝑠)𝑢(𝑘, 𝑛, 𝑐), and R(𝑠:𝑠)𝑏(𝑘, 𝑛, 𝑐) are obtained. For 

illustrating these results numerically, the negative exponential distribution is taken as an 

example of the general exponential form. Case II, when 𝐹(𝑥) and 𝐺𝑖(𝑥), 𝑖 = 1,2 have 

different forms (generalized Lindley distribution for strength and negative exponential 

distribution for stresses). The Generalized Lindley distribution includes as special cases 

the exponential, gamma and Lindley distributions, and it is used in stress-strength 

reliability modeling and analyzing lifetime data, see Elbatal et al. (2013). 

 

The paper is organized as follows: In Section 2, we obtain explicit forms for 

R(𝑘, 𝑛, 𝑐; P), R𝑢(𝑘, 𝑛, 𝑐; P), and  R𝑏(𝑘, 𝑛, 𝑐; P). In Section 3, we present the stress-

strength reliability of the systems generally for any continuous distributions, assuming 

the change of components reliabilities is due to change in the stress applied. In Section 4, 

we obtain exact formulas for R(𝑠:𝑠)(𝑘, 𝑛, 𝑐), R(𝑠:𝑠)𝑢(𝑘, 𝑛, 𝑐), and R(𝑠:𝑠)𝑏(𝑘, 𝑛, 𝑐) for case I, 

and case II. In Section 5, the maximum likelihood estimators of the stress-strength 

reliabilities are obtained for both cases I & II. In Section 6, a numerical illustration of the 

theoretical results is presented, to show the effect of 𝑘, 𝑐, and the parameters of the 

distributions on the reliabilities. Also, the performance of the estimators is detected. In 

Section 7, a conclusion is presented. 

 



S.M.Bakry, N.A. Mokhlis 

Pak.j.stat.oper.res.  Vol.XV  No.1 2019  pp231-247 234 

Reliability Formulas  

Assume we have a linear consecutive k-out-of-n: F system with independent components, 

having a change point at position 𝑐. This means that the first 𝑐 components are identical 

with reliability 𝑝1(𝑞1 = 1 − 𝑝1), while the remaining (𝑛 − 𝑐) components are also 

identical but with a different reliability 𝑝2(𝑞2 = 1 − 𝑝2). The reliability of this system, 

R(𝑘, 𝑛, 𝑐; P), is given by the following theorem. 

 

Theorem 1 

Assuming independent components, for any 𝑘 ≤ 𝑛, and 1 ≤ 𝑐 ≤ 𝑛, we have 

   R(𝑘, 𝑛, 𝑐; P) 

      = ∑ 𝑁(𝑚, 𝑐 − 𝑚, 𝑘 − 1)𝑞1
𝑚𝑝1

𝑐−𝑚

𝑐−1

𝑚=0

 

      × ∑ 𝑁(𝑗 − 𝑚, 𝑛 − 𝑐 − 𝑗 + 𝑚 + 1, 𝑘 − 1)𝑞2
𝑗−𝑚

𝑝2
𝑛−𝑐−𝑗+𝑚

𝑛−𝑐+𝑚

𝑗=𝑚

 

      + ∑ ∑ 𝑁(𝑚 − 𝑟, 𝑐 − 𝑚 − 1, 𝑘 − 1)𝑞1
𝑚+1𝑝1

𝑐−𝑚−1

𝑐−2

𝑚=𝑟

𝑘−2

𝑟=0

 

      × ∑ ∑ 𝑁(𝑗 − 𝑚 − 𝑤 − 1, 𝑛 − 𝑐 − 𝑗 + 𝑚 + 1, 𝑘 − 1)𝑞2
𝑗−𝑚−1

𝑝2
𝑛−𝑐−𝑗+𝑚+1

𝑛−𝑐+𝑚

𝑗=𝑚+𝑤+1

𝑘−𝑟−2

𝑤=0

 

      +𝑞1
𝑐 ∑ ∑ 𝑁(𝑗 − 𝑐 − 𝑤, 𝑛 − 𝑗, 𝑘 − 1)𝑞2

𝑗−𝑐
𝑝2

𝑛−𝑗

𝑛−1

𝑗=𝑐+𝑤

𝑘−𝑐−1

𝑤=0

 

      +𝑞2
𝑛−𝑐 ∑ ∑ 𝑁(𝑗 − 𝑛 + 𝑐 − 𝑟 − 1, 𝑛 − 𝑗, 𝑘 − 1)𝑞1

𝑗−𝑛+𝑐
𝑝1

𝑛−𝑗

𝑛−1

𝑗=𝑛−𝑐+𝑟+1

𝑘−𝑛+𝑐−2

𝑟=0

, 

 

 

 

 

 

 

 

 

 

 

 

 

(3) 

where ∑ =𝑏
𝑎 0 if 𝑎 > 𝑏, and 𝑁(𝑎, 𝑠, 𝑘 − 1) is computed using Equation (2), take in 

consideration that (𝑏
𝑑

) = 0 if 𝑏, 𝑑 < 0 or 𝑑 > 𝑏. 

 

Proof 

The state of the component at position 𝑐 is either working or failed. Conditioning on the 

state of the component at the change point 𝑐, we have 

R(𝑘, 𝑛, 𝑐; P) =  𝑝1R𝑤(𝑘, 𝑛, 𝑐; P) + 𝑞1R𝐹(𝑘, 𝑛, 𝑐; P). (4) 

 

Now, we try to find R𝑤(𝑘, 𝑛, 𝑐; P) and R𝐹(𝑘, 𝑛, 𝑐; P). Suppose that we have 𝑗 failed 

components in the system, 𝑚 failures from these 𝑗 appearing before the change point c, 

and the remaining 𝑗 − 𝑚 failures appearing after 𝑐. 

(i) For computing R𝑤(𝑘, 𝑛, 𝑐; P) we argue as follows: 

 

In this case 0 ≤ 𝑗 ≤ 𝑛 − 1, where 0 ≤ 𝑚 ≤ 𝑐 − 1 and 0 ≤ 𝑗 − 𝑚 ≤ 𝑛 − 𝑐. 
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Figure 1: System with 𝑗 failures and the component at position 𝑐 is working. 

 

Figure 1 shows a system with 𝑗 failures, such that 𝑚 failures and 𝑐 − 𝑚 − 1 working 

components are before c, and 𝑗 − 𝑚 failures and 𝑛 − 𝑐 − 𝑗 + 𝑚 working components are 

after c. The component at position 𝑐 is operating with reliability 𝑝1, in this case the 

position of 𝑐 does not affect the system failure. For the system to operate, we must 

prevent the appearance of 𝑘 consecutive failures before and after the change point 𝑐. The 

𝑚 failures may occupy any position from 1 to 𝑐 − 1, with no consecutive 𝑘 failures, and 

this can be done by 𝑁(𝑚, 𝑐 − 𝑚, 𝑘 − 1) ways. The remaining 𝑗 − 𝑚 failures may occupy 

any position from 𝑐 + 1 to 𝑛 with no consecutive 𝑘 failures, with 

𝑁(𝑗 − 𝑚, 𝑛 − 𝑐 − 𝑗 + 𝑚 + 1, 𝑘 − 1) ways. For each 𝑚, each arrangement has probability 

𝑞1
𝑚𝑝1

𝑐−𝑚−1 before the change point 𝑐, and probability 𝑞2
𝑗−𝑚

𝑝2
𝑛−𝑐−𝑗+𝑚

 after 𝑐. This means 

that 

Rw(𝑘, 𝑛, 𝑐; P) = ∑ 𝑁(𝑚, 𝑐 − 𝑚, 𝑘 − 1)

𝑐−1

𝑚=0

𝑞1
𝑚𝑝1

𝑐−𝑚−1

× ∑ 𝑁(𝑗 − 𝑚, 𝑛 − 𝑐 − 𝑗 + 𝑚 + 1, 𝑘 − 1)𝑞2
𝑗−𝑚

𝑝2
𝑛−𝑐−𝑗+𝑚

𝑛−𝑐+𝑚

𝑗=𝑚

. 

 

(5) 

 

(ii) For computing R𝐹(𝑘, 𝑛, 𝑐; P), we argue as follows: 

 

The component at position 𝑐 fails with probability of failure 𝑞1, in this case the position 

of 𝑐 affects the system failure. Then we have the following three cases for the system to 

operate: 

(a) 𝑟 failures from the 𝑚 failures before 𝑐 are directly located before the position 𝑐, 

and 𝑤 failures from the 𝑗 − 𝑚 failures after 𝑐, are directly located after 𝑐, this 

situation is depicted by Figure 2, this case for any position of 𝑐, and 

1 ≤ 𝑗 ≤ 𝑛 − 2. 

  

 
Figure 2: System with 𝑗 failures and the component at position 𝑐 is failed. 

 

Figure 2 shows a system with 𝑗 failures, where 𝑟 consecutive failures from the 𝑚 failures 

are directly located before 𝑐, and 𝑤 consecutive failures from the 𝑗 − 𝑚 failures are 

directly located after 𝑐.  The system operates if 𝑟 + 𝑤 + 1 ≤ 𝑘 − 1, in this case 0 ≤ 𝑟 ≤
𝑘 − 2 and 0 ≤ 𝑤 ≤ 𝑘 − 𝑟 − 2, and at each of positions 𝑐 − 𝑟 − 1 and 
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𝑐 + 𝑤 + 1, we must have a working component. The remaining 𝑚 − 𝑟 and 

𝑗 − 𝑚 − 𝑤 − 1 failures can take any positions in the remaining 𝑐 − 𝑟 − 2 and 

𝑛 − 𝑐 − 𝑤 − 1 positions, respectively, without 𝑘 consecutive failures, and this can be 

done by 𝑁(𝑚 − 𝑟, 𝑐 − 𝑚 − 1, 𝑘 − 1) and 𝑁(𝑗 − 𝑚 − 𝑤 − 1, 𝑛 − 𝑐 − 𝑗 + 𝑚 + 1, 𝑘 − 1) 

arrangements, respectively. Each arrangement has probability 𝑞1
𝑚𝑝1

𝑐−𝑚−1 before the 

change point 𝑐, and 𝑞2
𝑗−𝑚−1

𝑝2
𝑛−𝑐−𝑗+𝑚+1

 after 𝑐, with 1 ≤ 𝑗 ≤ 𝑛 − 2. Hence this 

possibility occurs with probability 

 

∑ ∑ 𝑁(𝑚 − 𝑟, 𝑐 − 𝑚 − 1, 𝑘 − 1)𝑞1
𝑚𝑝1

𝑐−𝑚−1

𝑐−2

𝑚=𝑟

𝑘−2

𝑟=0

 

  × ∑ ∑ 𝑁(𝑗 − 𝑚 − 𝑤 − 1, 𝑛 − 𝑐 − 𝑗 + 𝑚 + 1, 𝑘 − 1)𝑞2
𝑗−𝑚−1

𝑝2
𝑛−𝑐−𝑗+𝑚+1

𝑛−𝑐+𝑚

𝑗=𝑚+𝑤+1

𝑘−𝑟−2

𝑤=0

. 

 

(6) 

  

  
(b) All components before 𝑐 are failures, 𝑐 < 𝑘. 

 

 
Figure 3: System with 𝑗 failures and the first 𝑐 components failed. 

 

Figure 3 shows a system with 𝑗 failures, the first 𝑐 components failed, and 𝑤 consecutive 

failures occur directly after those 𝑐 failures. In this case 𝑐 + 𝑤 ≤ 𝑗 ≤ 𝑛 − 1, if 𝑤 of 

consecutive failures occur directly after the first 𝑐 failed components, then the system 

operates if 𝑐 + 𝑤 ≤ 𝑘 − 1, then 𝑤 can take values from 0 to 𝑘 − 𝑐 − 1. At position 

𝑐 + 𝑤 + 1, we must have a working component. The remaining 𝑗 − 𝑐 − 𝑤 failures can 

occupy any position in the remaining 𝑛 − 𝑐 − 𝑤 − 1 positions, without 𝑘 consecutive 

failures. There are 𝑁(𝑗 − 𝑐 − 𝑤, 𝑛 − 𝑗, 𝑘 − 1) arrangements that satisfy the condition. 

Since for each 𝑤, each arrangement has probability 𝑞1
𝑐−1 before the change point 𝑐, 

and 𝑞2
𝑗−𝑐

𝑝2
𝑛−𝑗

 after this point. Then this possibility occurs with probability 

 

𝑞1
𝑐−1 ∑ ∑ 𝑁(𝑗 − 𝑐 − 𝑤, 𝑛 − 𝑗, 𝑘 − 1)

𝑛−1

𝑗=𝑐+𝑤

𝑞2
𝑗−𝑐

𝑝2
𝑛−𝑗

𝑘−𝑐−1

𝑤=0

. 
 

(7) 

 

(c) All components after 𝑐 failed, 𝑐 > 𝑛 − 𝑘 + 1. 

 
Figure 4: System with 𝑗 failures and the last 𝑛 − 𝑐 components failed. 
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Figure 4 shows a system with 𝑗 failures, the last 𝑛 − 𝑐 components fail and 𝑟 consecutive 

failures occur directly before position 𝑐. In this case we have failures at the last 𝑛 − 𝑐 

positions, position 𝑐, and 𝑟 consecutive failures before 𝑐. In order the system not to fail, 

we must have 𝑛 − 𝑐 + 𝑟 + 1 ≤ 𝑘 − 1, this means that 0 ≤ 𝑟 ≤ 𝑘 − 𝑛 + 𝑐 − 2 and at 

position 𝑐 − 𝑟 − 1 we must have a working component. The remaining 

𝑗 − 𝑛 − 𝑟 + 𝑐 − 1 failures can occupy any position in the remaining 𝑐 − 𝑟 − 2 positions, 

without 𝑘 consecutive failures, and this can be done by 

𝑁(𝑗 − 𝑛 + 𝑐 − 𝑟 − 1, 𝑛 − 𝑗, 𝑘 − 1) arrangement. Since for each 𝑟, each arrangement has 

probability 𝑞1
𝑗−𝑛+𝑐−1

𝑝1
𝑛−𝑗

 before the change point 𝑐, and 𝑞2
𝑛−𝑐 after 𝑐, with 

𝑛 − 𝑐 + 𝑟 + 1 ≤ 𝑗 ≤ 𝑛 − 1. Then the probability of this case is 

𝑞2
𝑛−𝑐 ∑ ∑ 𝑁(𝑗 − 𝑛 + 𝑐 − 𝑟 − 1, 𝑛 − 𝑗, 𝑘 − 1)

𝑛−1

𝑗=𝑛−𝑐+𝑟+1

𝑞1
𝑗−𝑛+𝑐−1

𝑝1
𝑛−𝑗

𝑘−𝑛+𝑐−2

𝑟=0

 

 

(8) 

  

Combining (6), (7), and (8) we get 

        R𝐹(𝑘, 𝑛, 𝑐; P) 

      = ∑ ∑ 𝑁(𝑚 − 𝑟, 𝑐 − 𝑚 − 1, 𝑘 − 1)𝑞1
𝑚𝑝1

𝑐−𝑚−1

𝑐−2

𝑚=𝑟

𝑘−2

𝑟=0

 

      × ∑ ∑ 𝑁(𝑗 − 𝑚 − 𝑤 − 1, 𝑛 − 𝑐 − 𝑗 + 𝑚 + 1, 𝑘

𝑛−𝑐+𝑚

𝑗=𝑚+𝑤+1

𝑘−𝑟−2

𝑤=0

− 1)𝑞2
𝑗−𝑚−1

𝑝2
𝑛−𝑐−𝑗+𝑚+1

 

      +𝑞1
𝑐−1 ∑ ∑ 𝑁(𝑗 − 𝑐 − 𝑤, 𝑛 − 𝑗, 𝑘 − 1)

𝑛−1

𝑗=𝑐+𝑤

𝑞2
𝑗−𝑐

𝑝2
𝑛−𝑗

𝑘−𝑐−1

𝑤=0

 

      +𝑞2
𝑛−𝑐 ∑ ∑ 𝑁(𝑗 − 𝑛 + 𝑐 − 𝑟 − 1, 𝑛 − 𝑗, 𝑘 − 1)

𝑛−1

𝑗=𝑛−𝑐+𝑟+1

𝑞1
𝑗−𝑛+𝑐−1

𝑝1
𝑛−𝑗

𝑘−𝑛+𝑐−2

𝑟=0

. 

 

 

 

 

 

 

 

(9) 

 

Substituting (5), and (9) in (4) the proof is completed. 

The following corollary presents the formulas of R𝑢(𝑘, 𝑛, 𝑐; P) and R𝑏(𝑘, 𝑛, 𝑐; P). 

 

Corollary 1. 

Assuming independent components, for any 𝑘 ≤ 𝑛, 1 ≤ 𝑐 ≤ 𝑛 we have 

  R𝑢(𝑘, 𝑛, 𝑐; P) = 𝑝1R(𝑘, 𝑛 − 1, 𝑐 − 1; P), and (10) 

  R𝑏(𝑘, 𝑛, 𝑐; P) = 𝑝1𝑝2R(𝑘, 𝑛 − 2, 𝑐 − 1; P). (11) 

 

Remark. 

Substituting with 𝑐 = 𝑛 and 𝑝1 = 𝑝, 𝑞1 = 𝑞 in (3), we obtain the same result as (1) which 

is the result obtained by Derman et al. (1982) for consecutive k-out-of-n: F system 

without change point. Similarly substituting with 𝑐 = 0 and 𝑝2 = 𝑝, 𝑞2 = 𝑞 in (3), we 

obtain (1). Clearly (1) can be written as 

R(𝑘, 𝑛; 𝑝) = ∑ 𝑎𝑛,𝑗  𝑝𝑗𝑞𝑛−𝑗

𝑛−1

𝑗=0

, where 𝑎𝑛,𝑗 = {
(

𝑛

𝑗
)                                        𝑖𝑓 𝑗 < 𝑘

𝑁(𝑗, 𝑛 − 𝑗 + 1, 𝑘 − 1)      𝑖𝑓 𝑗 ≥ 𝑘 
. 
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Note that if 𝑗 = 𝑛 in (1), the term 𝑁(𝑛, 1, 𝑘 − 1) = 0, for any 𝑘. 

Stress-Strength Reliability 

In this section we obtain R(𝑠:𝑠)(𝑘, 𝑛, 𝑐), R(𝑠:𝑠)𝑢(𝑘, 𝑛, 𝑐), and R(𝑠:𝑠)𝑏(𝑘, 𝑛, 𝑐). Suppose that 

a change in the stress occurs after the component at position 𝑐. Thus, assume we have 

two common independent stresses 𝑋𝑖, 𝑖 = 1,2, with cumulative distribution functions  

𝐺𝑖(𝑥), 𝑖 = 1,2, where the common stress 𝑋1 is imposed on components 1 to 𝑐, and the 

common stress 𝑋2 is imposed on components 𝑐 + 1 to 𝑛. The strengths 𝑌𝑖 , 𝑖 = 1, … , 𝑛 of 

the components are independent and identically distributed, having cumulative 

distribution function 𝐹(𝑥). The stress-strength reliability of 𝐿/𝑘/𝑛/𝑐 is given by the 

following theorem. 

 

Theorem 2. 

Let 𝐺𝑖(𝑥), 𝑖 = 1,2 denote the cumulative distribution functions of stresses 𝑋𝑖, 𝑖 = 1,2, and 

𝐹(𝑥) denote the cumulative distribution function of strengths 𝑌𝑖, 𝑖 = 1, … , 𝑛. Assume that 

𝑋1 and 𝑋2 are independent, and 𝑌𝑖
′𝑠 are independent and identically distributed. The 

stress-strength reliability of 𝐿/𝑘/𝑛/𝑐, for any 𝑘 ≤ 𝑛, and 1 ≤ 𝑐 ≤ 𝑛, is given by 

 

            R(𝑠:𝑠)(𝑘, 𝑛, 𝑐) 

        = ∑ 𝑁(𝑚, 𝑐 − 𝑚, 𝑘 − 1)

𝑐−1

𝑚=0

𝐼𝑚,𝑐−𝑚
1  

        × ∑ 𝑁(𝑗 − 𝑚, 𝑛 − 𝑐 − 𝑗 + 𝑚 + 1, 𝑘 − 1)

𝑛−𝑐+𝑚

𝑗=𝑚

𝐼𝑗−𝑚,𝑛−𝑐−𝑗+𝑚
2  

        + ∑ ∑ 𝑁(𝑚 − 𝑟, 𝑐 − 𝑚 − 1, 𝑘 − 1)

𝑐−2

𝑚=𝑟

𝑘−2

𝑟=0

𝐼𝑚+1,𝑐−𝑚−1
1  

        × ∑ ∑ 𝑁(𝑗 − 𝑚 − 𝑤 − 1, 𝑛 − 𝑐 − 𝑗 + 𝑚 + 1, 𝑘 − 1)𝐼𝑗−𝑚−1,𝑛−𝑐−𝑗+𝑚+1
2

𝑛−𝑐+𝑚

𝑗=𝑚+𝑤+1

𝑘−𝑟−2

𝑤=0

 

        +𝐼𝑐,0
1 ∑ ∑ 𝑁(𝑗 − 𝑐 − 𝑤, 𝑛 − 𝑗, 𝑘 − 1) 𝐼𝑗−𝑐,𝑛−𝑗

2

𝑛−1

𝑗=𝑐+𝑤

𝑘−𝑐−1

𝑤=0

 

        +𝐼𝑛−𝑐,0
2 ∑ ∑ 𝑁(𝑗 − 𝑛 + 𝑐 − 𝑟 − 1, 𝑛 − 𝑗, 𝑘 − 1)𝐼𝑗−𝑛+𝑐,𝑛−𝑗

1

𝑛−1

𝑗=𝑛−𝑐+𝑟+1

𝑘−𝑛+𝑐−2

𝑟=0

, 

 

 

 

 

 

 

 

 

 

 

 

 

(12) 

where 

𝐼𝑎,𝑏
𝑖 = ∫ [𝐹(𝑥)]𝑎[1 − 𝐹(𝑥)]𝑏𝑑𝐺𝑖(𝑥)

∞

0

, 𝑖 = 1,2. 
 

(13) 

 

Proof  

We can easily show that (12) could be obtained by substituting 𝑞𝑖
𝑠𝑝𝑖

ℎ−𝑠 in (3) by 

∫ [𝐹(𝑥)]𝑠[1 − 𝐹(𝑥)]ℎ−𝑠𝑑𝐺𝑖(𝑥)
∞

0
, 𝑖 = 1,2, where 
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ℎ = {
𝑐              with     𝑠 = 𝑚, 𝑚 + 1, 𝑐, or 𝑗 − 𝑛 + 𝑐   if 𝑖 = 1

    𝑛 − 𝑐      with    𝑠 = 𝑗 − 𝑚, 𝑗 − 𝑚 − 1, 𝑗 − 𝑐, or 𝑛 − 𝑐  if 𝑖 = 2
. 

Corollary 2 

Let 𝑋1 and 𝑋2 be two common stresses with cumulative distribution functions 

𝐺1(𝑥) and 𝐺2(𝑥), imposed on components 1 to 𝑐 and components 𝑐 + 1 to 𝑛, 

respectively. Assume that 𝑋1 and 𝑋2 are independent. Let 𝑌𝑖, 𝑖 = 1, … , 𝑛 denote the 

strengths of components 1, … , 𝑛. Assume that 𝑌𝑖
′𝑠 are independent and identically 

distributed. For any 𝑘 ≤ 𝑛, and 1 ≤ 𝑐 ≤ 𝑛, the stress-strength reliability of a unipolar-

relayed and bipolar-relayed  𝐿/𝑘/𝑛/𝑐 system, is given respectively by 

            R(𝑠:𝑠)𝑢(𝑘, 𝑛, 𝑐) 

        = ∑ 𝑁(𝑚, 𝑐 − 𝑚 − 1, 𝑘 − 1)

𝑐−2

𝑚=0

𝐼𝑚,𝑐−𝑚
1  

        × ∑ 𝑁(𝑗 − 𝑚, 𝑛 − 𝑐 − 𝑗 + 𝑚 + 1, 𝑘 − 1)𝐼𝑗−𝑚,𝑛−𝑐−𝑗+𝑚
2

𝑛−𝑐+𝑚

𝑗=𝑚

 

        + ∑ ∑ 𝑁(𝑚 − 𝑟, 𝑐 − 𝑚 − 2, 𝑘 − 1)𝐼𝑚+1,𝑐−𝑚−1
1

𝑐−3

𝑚=𝑟

𝑘−2

𝑟=0

 

        × ∑ ∑ 𝑁(𝑗 − 𝑚 − 𝑤 − 1, 𝑛 − 𝑐 − 𝑗 + 𝑚 + 1, 𝑘 − 1)𝐼𝑗−𝑚−1,𝑛−𝑐−𝑗+𝑚+1
2

𝑛−𝑐+𝑚

𝑗=𝑚+𝑤+1

𝑘−𝑟−2

𝑤=0

 

        +𝐼𝑐−1,1
1 ∑ ∑ 𝑁(𝑗 − 𝑐 − 𝑤 + 1, 𝑛 − 𝑗 − 1, 𝑘 − 1) 𝐼𝑗−𝑐+1,𝑛−𝑗−1

2

𝑛−2

𝑗=𝑐+𝑤−1

𝑘−𝑐

𝑤=0

 

        + 𝐼𝑛−𝑐,0
2 ∑ ∑ 𝑁(𝑗 − 𝑛 + 𝑐 − 𝑟 − 1, 𝑛 − 𝑗 − 1, 𝑘 − 1)𝐼𝑗−𝑛+𝑐,𝑛−𝑗

1

𝑛−2

𝑗=𝑛−𝑐+𝑟+1

𝑘−𝑛+𝑐−2

𝑟=0

, 

 

 

 

 

 

 

 

 

 

 

 

 

(14) 

 

and 

                R(𝑠:𝑠)𝑏(𝑘, 𝑛, 𝑐) 

               = ∑ 𝑁(𝑚, 𝑐 − 𝑚 − 1, 𝑘 − 1)

𝑐−2

𝑚=0

𝐼𝑚,𝑐−𝑚
1  

               × ∑ 𝑁(𝑗 − 𝑚, 𝑛 − 𝑐 − 𝑗 + 𝑚, 𝑘 − 1)𝐼𝑗−𝑚,𝑛−𝑐−𝑗+𝑚
2

𝑛−𝑐+𝑚−1

𝑗=𝑚

 

               + ∑ ∑ 𝑁(𝑚 − 𝑟, 𝑐 − 𝑚 − 2, 𝑘 − 1)𝐼𝑚+1,𝑐−𝑚−1
1

𝑐−3

𝑚=𝑟

𝑘−2

𝑟=0

 

               × ∑ ∑ 𝑁(𝑗 − 𝑚 − 𝑤 − 1, 𝑛 − 𝑐 − 𝑗 + 𝑚, 𝑘 − 1)𝐼𝑗−𝑚−1,𝑛−𝑐−𝑗+𝑚+1
2

𝑛−𝑐+𝑚−1

𝑗=𝑚+𝑤+1

𝑘−𝑟−2

𝑤=0

 

               +𝐼𝑐−1,1
1 ∑ ∑ 𝑁(𝑗 − 𝑐 − 𝑤 + 1, 𝑛 − 𝑗 − 2, 𝑘 − 1)𝐼𝑗−𝑐+1,𝑛−𝑗−1

2

𝑛−3

𝑗=𝑐+𝑤−1

𝑘−𝑐

𝑤=0

 

 

 

 

 

 

 

 

 

 

 

 

 

(15) 
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               +𝐼𝑛−𝑐−1,1
2 ∑ ∑ 𝑁(𝑗 − 𝑛 + 𝑐 − 𝑟, 𝑛 − 𝑗 − 2, 𝑘 − 1)

𝑛−3

𝑗=𝑛−𝑐+𝑟

𝑘−𝑛+𝑐−1

𝑟=0

𝐼𝑗−𝑛+𝑐+1,𝑛−𝑗−1
1 . 

The Exact Stress-Strength Reliability Formulas for Some Special Distributions 

The exact reliability formulas of R(𝑠:𝑠)(𝑘, 𝑛, 𝑐), R(𝑠:𝑠)𝑢(𝑘, 𝑛, 𝑐), and R(𝑠:𝑠)𝑏(𝑘, 𝑛, 𝑐) are 

obtained in two cases: case I, when the strength and the stresses have the same form of 

distributions. As an application of this case, we consider the general exponential form. 

Case II, when the strength and the stresses have different forms of distributions, and as 

application, we consider the generalized Lindley distribution for strength, while the 

stresses have a negative exponential distribution. 

 

Case I 

Al-Hussaini (1999) has proposed that survival function 𝐹𝑋 of any continuous random 

variable can be expressed by the form 𝐹𝑋(𝑥) = 𝑒−𝜆(𝑥,𝜃), where 𝜃 could be a vector 

parameter, 𝜆(𝑥, 𝜃) is a continuous, monotone increasing, and differentiable function such 

that 𝜆(𝑥, 𝜃) → 0 as 𝑥 → −∞ and 𝜆(𝑥, 𝜃) → ∞ as 𝑥 → ∞. Here we shall consider 

𝜆(𝑥, 𝜃) = 𝛿𝑔(𝑥, 𝜗), 𝛿 > 0, 𝑔(𝑥, 𝜗) does not contain 𝛿, and 𝑔(𝑥, 𝜗) is a continuous, 

monotone increasing, and differentiable function such that 𝑔(𝑥, 𝜗) → 0 as 𝑥 → −∞ and 

𝑔(𝑥, 𝜗) → ∞ as 𝑥 → ∞. We consider distributions with cumulative distribution function, 

given by  

𝐻(𝑥) = 1 − 𝑒−𝛿𝑔(𝑥,𝜗) , 𝛿 > 0. (16) 

 

The distribution with form (16) is called general exponential form distribution, see 

Mokhlis et al. (2017). Many distributions have cumulative distribution functions 

satisfying the form in (16). Table 1 presents some examples of these distributions. 

Table 1: The cumulative distribution function of some distributions 

that belongs to the general exponential form 

Distribution 𝐻(𝑥) 𝑔(𝑥, 𝜗) 

Negative Exponential 1 − 𝑒−𝛿𝑥 𝑥 

Weibull 1 − 𝑒−𝛿𝑥𝜗
 𝑥𝜗 

Pareto 
1 − (

𝜗

𝑥
)

𝛿

 
ln (

𝑥

𝜗
) 

Kumaraswamy 1 − (1 − 𝑥𝜗)
𝛿
 ln(𝑥𝜗 − 1) 

 

Assume that the cumulative distribution functions of the stresses 𝑋1 and 𝑋2, and strength 

𝑌 are given by 

𝐺𝑖(𝑥) = 1 − 𝑒−𝜆𝑖𝑔(𝑥,𝜗) ; 𝜆𝑖 > 0, 𝑖 = 1, 2, and 

𝐹(𝑥) = 1 − 𝑒−𝛿𝑔(𝑥,𝜗)  , 𝛿 > 0. 

(17) 

(18) 

 

By substituting the forms of 𝐺𝑖(𝑥), 𝑖 = 1,2 and 𝐹(𝑥) given by (17) and (18) respectively, 

in (13), we get  
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𝐼𝑎,𝑏
𝑖 = ∫[1 − 𝑒−𝛿𝑔(𝑥,𝜗)]

𝑎
[𝑒−𝛿𝑔(𝑥,𝜗)]

𝑏
 d(1 − 𝑒−𝜆𝑖𝑔(𝑥,𝜗))

∞

0

 

           = ∑ (
𝑎

𝑙
) (−1)𝑙  

𝜆𝑖

(𝑙 + 𝑏)𝛿 + 𝜆𝑖

𝑎

𝑙=0

= 𝐼𝑎,𝑏
𝑖 (𝛿, 𝜆𝑖) , 𝑖 = 1,2, 

 

 

 

 

(19) 

which does not contain the parameter 𝜗. Substituting (19) in (12), (14), and (15), we 

obtain exact stress-strength reliability formulas for R(𝑠:𝑠)(𝑘, 𝑛, 𝑐), R(𝑠:𝑠)𝑢(𝑘, 𝑛, 𝑐), and 

R(𝑠:𝑠)𝑏(𝑘, 𝑛, 𝑐). Since (19) does not contain the parameter 𝜗, the stress-strength reliability 

formulas also do not contain the parameter 𝜗. 

 

Case II 

Suppose that the distributions of stresses 𝑋1 and 𝑋2 are negative exponential, with 

cumulative distribution functions are given by  

 

𝐺𝑖(𝑥) = 1 − 𝑒−𝜆𝑖𝑥, 𝑖 = 1,2. (20) 

 

Let the distribution of the strength 𝑌 is a generalized Lindley distribution, with 

probability distribution and cumulative distribution function given respectively by  

𝑓(𝑦) =
1

1 + 𝜃
[
𝜃𝛼+1𝑦𝛼−1

𝛤(𝛼)
+

𝜃𝛽𝑦𝛽−1

𝛤(𝛽)
] 𝑒−𝜃𝑦, and 

𝐹(𝑥) = 𝑝(𝑌 ≤ 𝑥) =
1

1 + 𝜃
[
𝜃𝛾(𝛼, 𝜃𝑥)

𝛤(𝛼)
+

𝛾(𝛽, 𝜃𝑥)

𝛤(𝛽)
] , 𝜃, 𝛼, 𝛽 > 0, 

 

 

(21) 

where 𝛾(𝑠, 𝑣𝑥) is a lower incomplete gamma. We can easily see that 𝑓(𝑦) is a mixture of 

two gamma distributions, with parameters (𝜃, 𝛼) and (𝜃, 𝛽) with probabilities 
𝜃

1+𝜃
 and 

1

1+𝜃
 respectively. Substituting 𝐺𝑖(𝑥), i = 1,2 and 𝐹(𝑥) given by (20) and (21) 

respectively in (13), we have 

𝐼𝑎,𝑏
𝑖 = ∫ [

1

1+𝜃
[

𝜃𝛾(𝛼,𝜃𝑥)

𝛤(𝛼)
+

𝛾(𝛽,𝜃𝑥)

𝛤(𝛽)
] ]

𝑎

[1 −
1

1+𝜃
[

𝜃𝛾(𝛼,𝜃𝑥)

𝛤(𝛼)
+

𝛾(𝛽,𝜃𝑥)

𝛤(𝛽)
] ]

𝑏

d(1 − 𝑒−𝜆𝑖𝑥)
∞

0
          

 

(22) 

        = 𝐼𝑎,𝑏
𝑖 (𝜃, 𝛼, 𝛽, 𝜆𝑖), 𝑖 = 1,2. 

 

The above integral can be obtained numerically, and hence the expression for 

R(𝑠:𝑠)(𝑘, 𝑛, 𝑐), R(𝑠:𝑠)𝑢(𝑘, 𝑛, 𝑐), and R(𝑠:𝑠)𝑏(𝑘, 𝑛, 𝑐). 

Estimation of The Stress-Strength Reliability 

Case I 

As an application of the general exponential form, we take for simplicity 𝑔(𝑥, 𝜗) = 𝑥. 

The maximum likelihood estimator of R(𝑠:𝑠)(𝑘, 𝑛, 𝑐), R(𝑠:𝑠)𝑢(𝑘, 𝑛, 𝑐), and R(𝑠:𝑠)𝑏(𝑘, 𝑛, 𝑐), 

can be obtained by replacing the parameters in (19) by their corresponding maximum 

likelihood estimators. For obtaining the maximum likelihood estimator of the parameters, 

let 𝑋1, 𝑋2, … , 𝑋𝑛𝑖
; 𝑖 = 1,2, and 𝑌1, 𝑌2, … , 𝑌𝑛3

 be samples of size 𝑛𝑖, 𝑖 = 1,2, and 𝑛3 from 

stresses and strength distributions. Clearly the maximum likelihood estimators of the 

parameters 𝜆𝑖, 𝛿 are given by 
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𝜆̂𝑖 =
𝑛𝑖

∑ 𝑋𝑟
𝑛𝑖
𝑟=0

 , 𝑖 = 1,2, and 

𝛿 =
𝑛3

∑ 𝑌𝑟
𝑛3
𝑟=0

. 

 

(23) 

 

(24) 

 Hence  

𝐼𝑎,𝑏
𝑖 (𝛿̂, 𝜆̂𝑖) = ∑ (

𝑎

𝑙
) (−1)𝑙

𝑛𝑖 ∑ 𝑌𝑟
𝑛3
𝑟=0

𝑛𝑖 ∑ 𝑌𝑟
𝑛3
𝑟=0 + (𝑙 + 𝑏)𝑛3 ∑ 𝑋𝑟

𝑛𝑖
𝑟=0

𝑎

𝑙=0

 , 𝑖 = 1,2. 
 

(25) 

 

Replacing 𝐼𝑎,𝑏
𝑖 , 𝑖 = 1,2 in Equations (12), (14), and (15) by 𝐼𝑎,𝑏

𝑖 (𝛿̂, 𝜆̂𝑖) given by (25), we 

get the maximum likelihood estimators R̂(𝑠:𝑠)(𝑘, 𝑛, 𝑐), R̂(𝑠:𝑠)𝑢(𝑘, 𝑛, 𝑐), and R̂(𝑠:𝑠)𝑏(𝑘, 𝑛, 𝑐) 

of R(𝑠:𝑠)(𝑘, 𝑛, 𝑐), R(𝑠:𝑠)𝑢(𝑘, 𝑛, 𝑐), and R(𝑠:𝑠)𝑏(𝑘, 𝑛, 𝑐), respectively. 

 

Case II 

The maximum likelihood estimators of the parameters 𝜆𝑖, 𝑖 = 1,2 are given by (23). Since 

the generalized Lindley distribution in (21) is a mixture of two gamma distributions, we 

use the EM algorithm for obtaining the estimators 𝜃, 𝛼̂, and 𝛽̂ of 𝜃, 𝛼, and 𝛽 respectively. 

Estimators of R(𝑠:𝑠)(𝑘, 𝑛, 𝑐), R(𝑠:𝑠)𝑢(𝑘, 𝑛, 𝑐), and R(𝑠:𝑠)𝑏(𝑘, 𝑛, 𝑐) are obtained by 

substituting the parameters with their corresponding estimators 𝜃, 𝛼̂, and 𝛽̂.   

Numerical Illustration 

Tables (2), (3), and (4) present the exact stress-strength reliabilities for case I (same 

general exponential form distributions), with 𝑔(𝑥, 𝜗) = 𝑥, while Tables (5), (6), and (7) 

illustrate the reliabilities for case II (different forms of distributions), showing the effect 

of position of the change point 𝑐, the value of 𝑘 with respect to 𝑛, and different 

parameters, on reliabilities. Using R-programming we compute R(𝑠:𝑠)(𝑘, 𝑛, 𝑐), 

R(𝑠:𝑠)𝑢(𝑘, 𝑛, 𝑐), and R(𝑠:𝑠)𝑏(𝑘, 𝑛, 𝑐) with 𝑛 = 6, 𝑘 =  (2, 3, 𝑎𝑛𝑑 4) , and different values 

of the parameters of the distributions of the stresses and strength, with different values of 

𝑐 = (2, 𝑎𝑛𝑑 4)𝑖. 𝑒(𝑐 ≤ 𝑘 , 𝑎𝑛𝑑 𝑐 > 𝑘). In Table (8) we present the maximum likelihood 

estimator of the reliabilities, obtained in Section 5. The estimators R̂(𝑠:𝑠)(𝑘, 𝑛, 𝑐), 

R̂(𝑠:𝑠)𝑢(𝑘, 𝑛, 𝑐), and R̂(𝑠:𝑠)𝑏(𝑘, 𝑛, 𝑐), that appear in these table are the average of 1000 

repetitions, and we take 𝑛𝑖 = 20, 50, 100 , 𝑖 = 1,2,3. The mean square error of the 

estimators is also calculated to indicate the accuracy of the estimators. 

 

It is clear from Tables (2) to (7) that all reliabilities increase as 𝑘 increases for all cases of 

𝑐, and for the different values of the parameters. The position of change point 𝑐 also 

influence the reliability according to the rate of stress before or after this point and 

number of components under this stress. We also see the effect of the strength and 

stresses parameters, on the reliability of the system in both cases I, and II. For case I, for 

the strength parameters, we can see that the increase of 𝛿 causes decrease in the 

reliability, while for stresses parameters, as 𝜆1 or 𝜆2 increase the reliability increases. 

From Tables (2 − 4), we see that the highest value of the reliability is attained for the 

largest values of 𝜆1 and 𝜆2, and the smallest value of 𝛿. Also, for generalized Lindley 

strength, we see from Tables (5 − 7) as 𝜃 increases the reliability decreases, but as 

𝛼 or 𝛽 increase the reliability increases. Also, we have the highest value of the reliability 
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attained when the values of 𝛼, 𝛽, and 𝜆𝑖(𝑖 = 1,2)  are large and 𝜃 is small. From Table 

(8), we see that bias and the mean square errors are small. The mean square error in all 

cases decreases by increasing the sample size. However, the estimators are satisfactory. 

Also, we see that 𝑀𝑆𝐸 (R̂(𝑠:𝑠)(𝑘, 𝑛, 𝑐)) < 𝑀𝑆𝐸 (R̂(𝑠:𝑠)𝑢(𝑘, 𝑛, 𝑐)) <

𝑀𝑆𝐸 (R̂(𝑠:𝑠)𝑏(𝑘, 𝑛, 𝑐)) for all cases. 

Table 2: Exact reliabilities for case I, with 𝒌 = 𝟐 

𝑐 𝛿 𝜆1 𝜆2 R(𝑠:𝑠)(𝑘, 𝑛, 𝑐) R(𝑠:𝑠)𝑢(𝑘, 𝑛, 𝑐) R(𝑠:𝑠)𝑏(𝑘, 𝑛, 𝑐) 

 

2 

4 8 6 0.494228 

0.5171429 

0.8874074 

0.3415416 

0.2481481 

0.3910534 

0.3971429 

0.8059259 

0.2450666 

0.1957672 

0.3102453 

0.3228571 

0.7185185 

0.1948052 

0.1449735 

4 6 8 

1 8 6 

4 3 6 

4 8 2 

 

4 

4 8 6 0.5171429 

0.494228 

0.9025974 

0.3048804 

0.3088889 

0.42 

0.3917749 

0.8220779 

0.2304033 

0.2511111 

0.3228571 

0.3102453 

0.7298701 

0.176432 

0.1755556 

4 6 8 

1 8 6 

4 3 6 

4 8 2 

 

Table 3: Exact reliabilities for case I, with 𝒌 = 𝟑 

𝑐 𝛿 𝜆1 𝜆2 R(𝑠:𝑠)(𝑘, 𝑛, 𝑐) R(𝑠:𝑠)𝑢(𝑘, 𝑛, 𝑐) R(𝑠:𝑠)𝑏(𝑘, 𝑛, 𝑐) 

 

2 

4 8 6 0.7520924 

0.8019048 

0.9759259 

0.6912801 

0.4444444 

0.5246753 

0.5085714 

0.8698413 

0.3335807 

0.3153439 

0.3665224 

0.3742857 

0.7540741 

0.2339349 

0.184127 

4 6 8 

1 8 6 

4 3 6 

4 8 2 

 

4 

4 8 6 0.8019048 

0.7520924 

0.9844156 

0.5461693 

0.7333333 

0.5971429 

0.5310245 

0.8805195 

0.3472044 

0.5577778 

0.3742857 

0.3665224 

0.7571429 

0.2203964 

0.2066667 

4 6 8 

1 8 6 

4 3 6 

4 8 2 

Table 4: Exact reliabilities for case I, with 𝒌 = 𝟒 

𝑐 𝛿 𝜆1 𝜆2 R(𝑠:𝑠)(𝑘, 𝑛, 𝑐) R(𝑠:𝑠)𝑢(𝑘, 𝑛, 𝑐) R(𝑠:𝑠)𝑏(𝑘, 𝑛, 𝑐) 

 

2 

4 8 6 0.8626263 

0.9047619 

0.9939153 

0.8337662 

0.5640212 

0.5858586 

0.5542857 

0.8840212 

0.3745994 

0.3873016 

0.3930736 

0.3942857 

0.7612698 

0.2506662 

0.2137566 

4 6 8 

1 8 6 

4 3 6 

4 8 2 

 

4 

4 8 6 0.9047619 

0.8626263 

0.9968254 

0.6457143 

0.5803752 

0.8878788 

0.3942857 

0.3930736 

0.7614719 

4 6 8 

1 8 6 
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4 3 6 0.6800312 

0.8755556 

0.4005742 

0.6266667 

0.2481437 

0.2177778 4 8 2 

 

Table 5: Exact reliabilities for case II, with 𝒌 = 𝟐 

𝑐 𝜃 𝛼 𝛽 𝜆1 𝜆2 R(𝑠:𝑠)(𝑘, 𝑛, 𝑐) R(𝑠:𝑠)𝑢(𝑘, 𝑛, 𝑐) R(𝑠:𝑠)𝑏(𝑘, 𝑛, 𝑐) 

 

2 

1 3 2 8 6 0.9978886 

0.9986011 

0.8136749 

0.9985046 

0.8411834 

0.9875958 

0.9912793 

0.7518598 

0.992505 

0.7229847 

0.9804053 

0.9810692 

0.6855084 

0.9828109 

0.6116767 

1 3 2 6 8 

7 3 2 8 6 

1 5 2 8 6 

1 3 1/2 8 6 

 

4 

1 3 2 8 6 0.9986011 

0.9978886 

0.8347424 

0.9989932 

0.8535313 

0.9920017 

0.9869422 

0.7774817 

0.9929991 

0.7354143 

0.9810692 

0.9804053 

0.6998564 

0.9832741 

0.6207246 

1 3 2 6 8 

7 3 2 8 6 

1 5 2 8 6 

1 3 1/2 8 6 

 

Table 6: Exact reliabilities for case II, with 𝒌 = 𝟑 

𝑐 𝜃 𝛼 𝛽 𝜆1 𝜆2 R(𝑠:𝑠)(𝑘, 𝑛, 𝑐) R(𝑠:𝑠)𝑢(𝑘, 𝑛, 𝑐) R(𝑠:𝑠)𝑏(𝑘, 𝑛, 𝑐) 

 

2 

1 3 2 8 6 0.9998605 

0.9999604 

0.9266386 

0.9999275 

0.9692297 

0.9883034 

0.9930054 

0.8234927 

0.9937484 

0.8114427 

0.9814962 

0.981542 

0.716885 

0.9836141 

0.6638775 

1 3 2 6 8 

7 3 2 8 6 

1 5 2 8 6 

1 3 1/2 8 6 

 

4 

1 3 2 8 6 0.9999604 

0.9998605 

0.9582906 

0.9999771 

0.9748258 

0.9931194 

0.9882719 

0.8689741 

0.9938056 

0.8179912 

0.981542 

0.9814962 

0.7228816 

0.9836378 

0.666214 

1 3 2 6 8 

7 3 2 8 6 

1 5 2 8 6 

1 3 1/2 8 6 

 

Table 7: Exact reliabilities for case II, with 𝒌 = 𝟒 

𝑐 𝜃 𝛼 𝛽 𝜆1 𝜆2 R(𝑠:𝑠)(𝑘, 𝑛, 𝑐) R(𝑠:𝑠)𝑢(𝑘, 𝑛, 𝑐) R(𝑠:𝑠)𝑏(𝑘, 𝑛, 𝑐) 

 

2 

1 3 2 8 6 0.999987 

0.9999977 

0.9606657 

0.9999954 

0.9939743 

0.988336 

0.9931286 

0.8507304 

0.9938142 

0.8286248 

0.9815591 

0.9815593 

0.730014 

0.9836479 

0.6729649 

1 3 2 6 8 

7 3 2 8 6 

1 5 2 8 6 

1 3 1/2 8 6 

 

4 

1 3 2 8 6 0.9999977 

0.999987 

0.9817882 

0.999999 

0.9955297 

0.993141 

0.9883376 

0.881405 

0.9938185 

0.8305905 

0.9815593 

0.9815591 

0.7302931 

0.983648 

0.6731956 

1 3 2 6 8 

7 3 2 8 6 

1 5 2 8 6 

1 3 1/2 8 6 
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Table 8: Estimated reliabilities 

 𝛿 = 1, 𝜆1 = 8, 𝜆3 = 6 

   R(𝑠:𝑠)(𝑘, 6,4) = 0.9025974 R(𝑠:𝑠)𝑢(𝑘, 6,4) = 0.8220779 R(𝑠:𝑠)𝑏(𝑘, 6,4) = 0.7298701 

𝑐 𝑘 𝑛𝑖 R̂(𝑠:𝑠)(𝑘, 6,4) 𝑀𝑆𝐸 (R̂(𝑠:𝑠)(𝑘, 6,4)) R̂(𝑠:𝑠)𝑢(𝑘, 6,4) 𝑀𝑆𝐸 (R̂(𝑠:𝑠)𝑢(𝑘, 6,4)) R̂(𝑠:𝑠)𝑏(𝑘, 6,4) 𝑀𝑆𝐸 (R̂(𝑠:𝑠)𝑏(𝑘, 6,4)) 

4 2 20 0.8942729 0.0020128 0.8149079 0.003190001 0.7230752 0.004299111 

50 0.8982109 0.0007581546 0.8179397 0.001277216 0.7254178 0.001716659 

100 0.9005023 0.0003329096 0.8200292 0.0005794551 0.7277966 0.0007978714 

4  R(𝑠:𝑠)(𝑘, 6,4) = 0.9968254 R(𝑠:𝑠)𝑢(𝑘, 6,4) = 0.8878788 R(𝑠:𝑠)𝑏(𝑘, 6,4) = 0.7614719 

20 0.9955468 2.000183e-05 0.8850323 0.001099091 0.7552738 0.003143106 

50 0.9962543 5.705549e-06 0.8861276 0.0004521645 0.7574973 0.001225475 

100 0.9965579 2.021869e-06 0.8869406 0.0002086243 0.75967 0.0005703563 

𝜃 = 1, 𝛼 = 5, 𝛽 = 2, 𝜆1 = 8, 𝜆2 = 6 

   R(𝑠:𝑠)(𝑘, 6,4) = 0.9989932 R(𝑠:𝑠)𝑢(𝑘, 6,4) = 0.9929991 R(𝑠:𝑠)𝑏(𝑘, 6,4) = 0.9832741 

4 2 20 0.9982376 1.978051e-05 0.9920301 0.0001622574 0.9829211 0.0005270429 

50 0.9990122 1.623837e-06 0.9939229 2.974348e-05 0.9857895 0.0001272536 

100 0.999075 6.751809e-07 0.9939069 1.601924e-05 0.9855436 6.959535e-05 

  R(𝑠:𝑠)(𝑘, 6,4) =  0.999999 R(𝑠:𝑠)(𝑘, 6,4) = 0.9938185 R(𝑠:𝑠)(𝑘, 6,4) = 0.983648 

4 20 0.9999923 2.148235e-09 0.9933975 9.329565e-05 0.9836148 0.0004547605 

50 0.9999984 1.977968e-11 0.9947174 2.042044e-05 0.9861629 0.0001169278 

100 0.9999988 4.774957e-12 0.9946545 1.14742e-05 0.9858904 6.451973e-05 

Conclusions  

In this paper explicit expressions for R(𝑘, 𝑛, 𝑐; P), R𝑢(𝑘, 𝑛, 𝑐; P), and R𝑏(𝑘, 𝑛, 𝑐; P) are 

obtained conditioning on the state of the change point at position 𝑐 (working or failed). 

Then consequently, R(𝑠:𝑠)(𝑘, 𝑛, 𝑐), R(𝑠:𝑠)𝑢(𝑘, 𝑛, 𝑐), and R(𝑠:𝑠)𝑏(𝑘, 𝑛, 𝑐) are presented when 

the change in the components reliabilities is due to change in the stress. This means that 

the components from 1 to 𝑐 are subjected to a common stress, 𝑋1, while the components 

from 𝑐 + 1 to 𝑛 are subjected to a different common stress, 𝑋2. The strengths of all 

components 1 to 𝑛 are independent and identical. The stress-strength reliabilities of linear 

consecutive k-out-of-n: F system, unipolar-relayed and bipolar-relayed linear consecutive 

k-out-of-n: F systems are obtained for any distribution of stresses 𝑋𝑖, 𝑖 = 1,2, and 

strength 𝑌. As application, two cases are discussed: Case I and Case II. In Case I, the 

stresses and strength are assumed to have the same form of distributions (as an example, 

general exponential form, in (16)). Exact formulas are obtained in this case, showing that 

the forms of the stress-strength reliabilities for all systems do not involve the parameter 

𝜗. In Case II, the stresses and strength are assumed to have different forms of 

distributions (as an example, negative exponential distribution for stresses and 

generalized Lindley distribution for strength). Numerical illustrations are applied through 

simulation studies for both cases, to detect the effect of position of the change point 𝑐, the 

value of 𝑘 with respect to 𝑛, and different distributions parameters, on the stress strength 

reliabilities. For both Cases I and II, the simulation studies showed that R(𝑠:𝑠)(𝑘, 𝑛, 𝑐), 

R(𝑠:𝑠)𝑢(𝑘, 𝑛, 𝑐), and R(𝑠:𝑠)𝑏(𝑘, 𝑛, 𝑐) increase as 𝑘 increases for any value of 𝑐, and for the 

different values of the parameters. It is also shown that the position of change point 𝑐 

influences the reliability, depending on the rate of stress before or after this point and the 
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number of components under that stress. Also, the stress-strength reliability of all systems 

is sensitive to the distributions parameters involved in its form. The maximum likelihood 

estimators R̂(𝑠:𝑠)(𝑘, 𝑛, 𝑐), R̂(𝑠:𝑠)𝑢(𝑘, 𝑛, 𝑐) and R̂(𝑠:𝑠)𝑏(𝑘, 𝑛, 𝑐) of R(𝑠:𝑠)(𝑘, 𝑛, 𝑐), 

R(𝑠:𝑠)𝑢(𝑘, 𝑛, 𝑐) and R(𝑠:𝑠)𝑏(𝑘, 𝑛, 𝑐), are their mean square errors are also calculated to 

indicate the accuracy of the estimation. 
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