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Abstract 

Recently, Corderio et al. (2016) applied a model called odd-logistic generalized half-normal distribution for 

describing fatigue lifetime data, based on this model, we propose a new wider model with a strong physical 

motivation called the odd-log-logistic generalized half-normal poisson distribution which is commonly used 

in reliability studies and modeling maximum of a random number of lifetime variables. Various of its 

structural properties are derived. The method of maximum likelihood is adapted to estimate the model 

parameters and its potentiality is illustrated with applications to two real fatigue data sets. For different 

parameter settings and sample sizes, some simulation studies compare the performance of the new lifetime 

model. 

 

Keywords:Generalized half-normal distribution; Truncated Poisson distribution; 
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Introduction 

The fatigue process can be considered as a sequence of small fracture processes. The crack 

growth depends on the stress intensity factor and some material parameters. The structure 

will break when the fatigue crack become unstable. The fatigue process in the experimental 

research is treated as a random process. There are many statistical models in literature that 

have studied the random variation of the failure times with regard to fatigue materials. The 

distribution of Half-Normal (HN) and Birnbaum-Saunders (BS) are models that are widely 

used to describe the lifetime of a fatigue process. For fitting monotone hazard rates, the 

HN distribution may be initial choices because of its negatively and positively skewed 

density shapes. However, in some practical situations, it does not provide a reasonable 
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parametric fit for modeling phenomenon with non-monotone failure rates such as the 

bathtub shaped and the unimodal failure rates, which are common in reliability and 

biological studies (Corderio. et al., 2016). Cooray and Ananda (2008) proposed the 

generalized half-normal (GHN) distribution to deal with this problem. They demonstrated 

that the GHN distribution can model monotone (increasing and decreasing) and non-

monotone (bathtub shaped) failure rates for certain values of its shape parameter, thus 

providing its greater applicability. The GHN density function (Cooray and Ananda, 2008) 

with shape parameter > 0  and scale parameter > 0  is given by (for > 0x ) 
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its cumulative distribution function (cdf) depends on the error function  
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its nth moment is given by (Cooray and Ananda, 2008) as  
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where ( )   is the gamma function. The HN distribution is a sub-model when =1 . 

Although this type of density function is asymmetric, the degrees of skewness and/or 

kurtosis in some cases are outside the distributional range defined by the GHN distribution. 

However, this distribution is not appropriate in situations where the hazard rate function 

(hrf) is unimodal. The GHN distribution has been widely modified and studied in recent 

years and various authors developed new generalizations from this lifetime model. Pescim 

et al. (2010) introduced the beta generalized half-Normal (BGHN) distribution with 

applications to myelogenous leukemia data. Cordeiro et al. (2012) defined the 

Kumaraswamy generalized half-normal (KwGHN) distribution for censored data. More 

recently, Pescim et al. (2013) proposed a log-linear regression model based on the BGHN 

distribution, while Ramires et al. (2013) defined the beta generalized half- normal 

geometric (BGHNG) distribution in order to achieve wider diversity among the density 

and failure rate functions and Merovci et al. (2017) defined and applied the exponentiated 

transmuted eneralized half-normal (ETGHN) for a data set of the life of fatigue fracture. 

For an arbitrary baseline cdf ( )G x , Gleaton and Lynch (2006), Cooray (2006) and 

da Cruz et al. (2014) proposed the probability density function (pdf), ( )f x  and the cdf, 

( )F x  of the odd log-logistic-G ("OLL-G" for short) distribution with an additional shape 

parameter > 0  defined by  
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Deal with density function ( )f x  is generality difficult except for the special choices of the 

function ( )g x  and ( )G x . We can note that  
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and ( ) =1 ( )G x G x− . So, the parameter   represents the quotient of the log odds ratio for 

the generated and baseline distributions. Corderio. et al (2016) introduced a three-

parameter extension of the GHN distribution based on the OLL-G family refereed to as the 

odd log-logistic generalized half-normal (OLLGHN) distribution, by inserting (1) and its 

pdf in (2) and (3). This distribution due to its flexibility can be applied to various fatigue 

lifetime data. In this paper, we develop the OLL-G family based on the Poisson distribution 

which called Odd Log -Logistic Generalized Poisson (OLLG-P for short) and then 

introduce an extension of the OLLGHN distribution refereed to as the odd log-logistic 

generalized half-normal Poisson (OLLGHNP) distribution, the cdf and pdf of the OLLG-

P family are given by,  
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respectively, where > 0, 0    and ( ), ( )G x g x  denote the cdf and pdf of the baseline 

distribution. We organize the paper as below. In section 2, introduces the new OLLGHNP 

distribution and its motivation. In section 3, the maximum likelihood estimation of the 

model parameters is discussed. In section 4, for different sample sizes various simulations 

are presented. In section 5, we apply the OLLGHNP model for a real data set to illustrate 

its potentiality. Final conclusions are given in section 6. Also, some important 

mathematical properties of the new distribution are derived in the Appendix. 

 

The OLLGHNP lifetime and its motivation 

By inserting (1) in (4) the OLLGHNP cumulative distribution function ( for > 0x ), with 

four parameters > 0 , > 0  and > 0 , 0   is given by  
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The pdf corresponding to (6) are given by  
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 if X  is a random variable with density (7), we write X OLLGHNP ( , , , )    . Some 

useful mathematical properties have been transferred to Appendix. Plots of these functions 

for different values of parameters are shown in Figures 1 , 2 and 3 respectively. It is clear 

that the new distribution is more flexible than GHN distribution. Fig. 2 displays some plots 

of the OLLGHNP hrf for some parameter values. It is evident that the hazard rates have 

four major shapes ascending, descending, unimodal and bathtub. In Figures 3, we plot the 

measures skewness and kurtosis for the OLLGHNP(1.5,2, ,  ) distribution, as a 

functions of  ,  . These plots indicate that the skewness always decreases when   

increases (for fixed  ) and first decreases steadily to a minimum value and then increases 

when   increases (for fixed  ). The kurtosis always increases when   increases (for 

fixed  ) and increases when   increases (for fixed  ). So, the new OLLGHNP 

distribution is quite flexible and can be used effectively in analyzing real data in many 

areas. 

 

 
Figure 1: Plots of the OLLGHNP density function for some parameter values 
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Figure 2: The OLLGHNP hrf.(a) Unimodal. (b) Increasing. (c) Bathtub form. 

 

 

 
Figure 3: Skewness and kurtosis of the OLLGHNP distribution for some values of   and 

 . 

 

Suppose 1, , nZ Z  be independent identically random variables (iid) with common 

cdf (3) and N  be a random variable with,  
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The justification for the practicality of the OLLGHNP lifetime model is based on the 

fatigue crack growth under variable stress or cyclic load. We also are motivated to 

introduce the OLLGHNP distribution because it exhibits increasing, decreasing, upside-

down as well as bathtub hazard rates as illustrated above; It is shown in Section 3 that the 

OLLGHNP distribution can be viewed as a mixture of the two-parameter GHN lifetime 

model; It can be viewed as a suitable model for fitting the the right-skewed, left-skewed 

and bimodal data as shown in Section 5; The OLLGHNP distribution outperforms several 

of the well known lifetime distributions with respect to two real data applications as 

illustrated in Setion 5. 

 

Estimation and Inference 

The estimation of the model parameters is performed by the method of maximum 

likelihood. If ( , , , )X OLLGHNP      the vector of parameters is = ( , , , )T     , the 

log-likelihood for   from a single observation x  of X  is given by,  
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For a random sample 
1= ( , , )T

nx x x  of size n  from X , the total log-likelihood is 
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  , where ( ) ( )i   is the log-likelihood function for the ith observation 
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i

U U  , where ( )iU  has the form given before 

for =1,...,i n . Maximization of ( )  can be performed using well-established routines 

such as the nlm  or optimize  in the R statistical package. Setting these equations to zero, 

( ) = 0U  , and solving them simultaneously gives the MLE, ̂  of  . These equations 

cannot be solved analytically and statistical software can be used to evaluate them 

numerically using iterative techniques such as the Newton-Raphson algorithm. For interval 

estimation and hypothesis tests on the parameters in  , we require the 4 4  unit observed 

information matrix 
,= ( ) = { }r sJ J j , whose elements are 

,r sj  for , = , , ,r s     . Under 

conditions that are fulfiled for parameters in the interior of the parameter space but not on 

the boundary, the estimated approximate multivariate normal 
1 1

4
ˆ(0, ( ) )N n J − −

 distribution 

can be used to construct approximate confidence intervals for the model parameters. The 

likelihood ratio (LR) statistics are useful for comparing the new distribution with some 

special models. For example, we may use the LR statistic to check if the fit using the 

OLLGHNP distribution is statistically superior to a fit using the GHN distribution for a 

given data set. In any case, considering the partition 
1 2= ( , )T T T   , tests of hypotheses of 

the type (0)

0 1 1: =H    versus (0)

1 1:AH    can be performed using the LR statistic 

ˆ= 2{ ( ) ( )}w  − , where ̂  and   are the estimates of   under AH  and 0H , 

respectively. Under the null hypothesis 0H , 
2

d

qw → , where q  is the dimension of the 

parameter vector 1  of interest. The LR test rejects 0H  if >w  , where   denotes the 

upper 100 % point of the 
2

q  distribution (Cordeiro et al ., 2012). 

 

A simulation study 

We perform a Monte Carlo simulation study to assess the finite sample behavior of 

the MLEs of , ,    and  . The results obtained from 3,000 Monte Carlo replications 

from the simulations are carried out using the statistical software R. In each replication, a 
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random sample of size n  is drawn from the OLLGHNP ( , , , )     distribution and the 

parameters are estimated by the maximum likelihood method. The random variable X  is 

generated using the inversion method. The true parameter values in the data-generating 

processes are =1.5 , = 2 , =1.8  and =1.5 .The mean estimates of the four model 

parameters and the corresponding root mean squared errors (RMSEs) for the sample sizes 

n  = 50, 100, 150 and 200 are listed in Table 1 and the plot of the corresponding root mean 

squared errors (RMSEs) for the sample sizes n , equal to 50 to 200 with step 5 are shown 

in Figure 4. We note that the RMSEs of the MLEs of  ,  ,   and   decay toward zero 

when the sample size increases, as expected. 

 

Table 1: Mote Carlo simulation results: Mean estimates and RMSEs (in 

parentheses) of , ,    and  . 

 n =50  n =100  n =150  n =200  

̂   2.7640(0.6389)   2.2536(0.3040)   1.8551(0.1870)   1.7000(0.0000) 

̂   1.8360(0.4392)   1.8474(0.2445)   1.9366(0.1388)   2.0000(0.0000) 

̂   1.3060(0.4124)   1.6052(0.2533)   1.7456(0.1047)   1.8000(0.0000) 

̂   1.5245(0.4103)   1.4461(0.2785)   1.4826(0.1254)   1.5000(0.0000)  

 

 
Figure 4: RSMEs versus Sample size of .(a)  . (b)  . (c)  . (d)  . 
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Real data modeling 

In this section, we present application of the OLLGHNP model to real data to 

illustrate its usefulness and potentiality. We consider two sets of real data and adopt the 

OLLGHNP distribution as the baseline model. The first real data represents the failure 

times (in hours) of unscheduled maintenance actions for the USS Halfbeak number 4 main 

propulsion diesel engine over 25.518 operating hours with 71 observations studied by 

Ascher and Feingold (1984). It consists of the observations presented in table 2. 

 

Table 2: Diesel Engine Data, Ascher and Feingold (1984) 

 1.382  9.794  18.122  20.121  21.378  21.815  22.311  23.305  25.000  

 2.990  10.848  19.067  20.132  21.391  21.820  22.634  23.491  25.010 

4.124 11.99319.172  20.431  21.456  21.822  22.635  23.526  25.048  

6.827 12.300 19.29920.525  21.461  21.888  22.669  23.774  25.268  

7.472  15.413 19.360 21.05721.603  21.930  22.691  23.791  25.400  

7.567  16.497  19.686 21.061 21.65821.943  22.846  23.822  25.500 

8.845  17.352  19.940  21.309 21.688 21.94622.947  24.006  25.518 

 9.450  17.632  19.944  21.310  21.750 22.181 23.14924.286 

 

The source of the second data set is the open university. The following data are the prices 

of the 31 different children’s wooden toys on sale in a Suffolk craft shop in April 1991: 

4.2, 1.12, 1.39, 2, 3.99, 2.15, 1.74, 5.81, 1.7, 2.85, 0.5, 0.99, 11.5, 5.12, 0.9, 1.99, 6.24, 2.6, 

3, 12.2, 7.36, 4.75, 11.59, 8.69, 9.8, 1.85, 1.99, 1.35, 10, 0.65, 1.45. We compare the 

proposed model with the following lifetime distributions: Odd Log-Logistic Generalized 

Half-Normal(OLLGHN) distribution (Gauss M. Corderio. et al., 2016), Beta Generalized 

Half-Normal Geometric (BGHNG) distribution (Thiago G. et al., 2013), Beta Generalized 

Half-Normal (BGHN) distribution (Pescim et al ., 2010), Exponentiated Generalized 

Half-Normal (EGHN) distribution (Pescim et al ., 2010), Kumaraswamy Generalized 

Half-Normal (KwGHN) distribution (Cordeiro et al ., 2012), Marshall-Olkin Generalized 

Half-Normal (MOGHN) distribution (Alizadeh et al., 2015) and Generalized Half-Normal 

(GHN) distribution (Cooray and Ananda, 2008). 

For each model, we estimate the unknown parameters by using maximum 

likelihood approach. The computations were done using the statistical software R. Table 3, 

gives the maximum likelihood estimation (MLE) of the model parameters and their 

standard errors (in parentheses) and the values of the following statistics for the fitted 

models by using the first set of real data and Table 6 for the second: Akaike Information 

Criterion ( = 2 2log( )AIC p L− ), Bayesian Information Criterion (

= log( ) 2log( )BIC p n L− ), where ˆ= ( )L L   is the value of the likelihood function 

evaluated at the parameter estimates, n  is the number of observations, and p  is the number 

of estimated parameters are obtained. The results indicate that the OLLGHNP model has 

the smallest values of AIC  and BIC  statistics among the fitted models. And the results of 

formal goodness-of-fit tests: the Cramer-Von Mises ( *W ) and Anderson-Darling ( *A ) 

statistics defined by Chen and Balakrishnan (1995) in order to verify which distribution 

fits the data better are given in Tables 4 and 7. By comparing the values of these statistics 

for the fitted models, we conclude that the OLLGHNP distribution outperforms all the 
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distributions considered in Table 4 (for the first data) and Table 7 (for the second data) and 

therefore it can be an interesting alternative to these distributions for modeling each of the 

real data set. Comparisons of the OLLGHNP distribution with GHN, GHNP(submodel of 

OLLGHNP when  =1) and OLLGHN distributions individually (that has less than four 

parameters) using the LR statistics are given in table 5 (for the first data) and table 8 (for 

the second real data). We reject the null hypotheses of the LR tests in favor of the 

OLLGHNP distribution. 

 

Table 3:  MLEs and standard errors (in parentheses) and the AIC and BIC statistics 

for the first real data 

Model   Estimates   Statistics 

  
     

 AIC   BIC  

OLLGHNP  
16.6264 4.3495 0.2284 3.1954 

  397.7 406.7 
-1.1556 -0.6238 -0.065 -0.7559 

OLLGHN  
20.5159 7.2435 0.3189 

    414.1 420.9 
-0.5716 -0.9632 -0.065 

BGHNG  
18.3336 6.1205 0.2963 0.0953 0.2033 

405.1 416.5 
-0.024 -0.0238 -0.0592 -0.0234 -0.3129 

BGHN  
19.9467 8.4713 0.2121 0.1137 

  404.1 413.2 
-0.004 -0.004 -0.0353 -0.0154 

EGHN  
24.4685 11.94 0.244 

    419.7 426.5 
-0.0049 -0.0049 -0.029 

KwGHN 
19.0036 6.9884 0.1164 0.1172 

  399.4 408.4 
-0.0042 -0.0058 -0.0116 -0.014 

MOGHN  
15.8886 2.2263 

  
14.8719 

  419.2 425.9 
-1.7863 -0.4248 -9.9684 

GHN  
21.8836 3.8205 

      438.5 443 
-0.497 -0.415 

 

Table 4: Formal goodness of fit tests for the first real data. 

 Model  Statistics 
*W  *A  

OLLGHNP   0.0714   0.4543  

OLLGHN   0.3282   1.6439  

BGHNG   0.1269   0.7228  

BGHN   0.2050   1.0790  

EGHN   0.4870   2.4889 

KwGHN  0.0982   0.5956  

MOGHN   0.3830   2.1090  

GHN   0.7967   4.2056  

 

 

Table 5: LR tests for first real data. 
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 Hypothesis   Statistics w  p -value 

0 1: :H GHN vs H OLLGHNP   44.80   0.0000 

0 1: :H GHNP vs H OLLGHNP   33.72   0.0000  

0 1: :H OLLGHN vs H OLLGHNP   18.47   0.0000  

 

 

Table 6:  MLEs and standard errors (in parentheses) and the AIC and BIC statistics 

for the second real data. 

 
Model   Estimates   Statistics 

         p   AIC   BIC  

OLLGHNP   10.5661  

 (0.0044)  

 11.2475  

 (0.0044)  

 0.1217  

 (0.0150)  

 -4.4663  

 (0.9978)  

 

 

 149  

 

 154.7  

 

OLLGHN   12.3405  

 (26.3053)  

 0.2780  

 (0.4320)  

 3.8641  

 (6.1841)  

 

 

 

 

 155.8  

 

 160.1  

BGHNG   12.6325  

 (0.0337)  

 9.3628  

 (0.0339)  

 0.1560  

 (0.0345)  

 0.6795 

 (0.6619)  

 0.8737  

(0.1031)  

 154.8  

 

 162.0 

 

BGHN   12.3967  

 (0.0091)  

 10.2154  

 (0.0094)  

 0.0691  

 (0.0128)  

 1.4372  

 (0.7588)  

 

 

 160.6  

 

 166.3  

EGHN   11.8650  

 (0.0121)  

 10.1748  

 (0.0121)  

 0.0683  

 (0.0123)  

 

 

 

 

 158.5  

 

 162.8  

KwGHN  0.2990  

 (0.0022)  

 0.5661  

 (0.0025)  

 5.7358  

 (0.2616)  

 0.0879  

 (0.0159)  

 

 

 154.1  

 

 159.8  

MOGHN   10.9656  

 (4.0353)  

 1.6259  

 (0.3411)  

 

 

 0.1093  

 (0.1229)  

 

 

 153.3  

 

 157.6 

GHN   5.4446  

 (0.8019)  

 0.9553  

 (0.1427)  

 

 

 

 

 

 

 155.2  

 

 158 

 

 

For more information Figure 5 is provided a visual comparison of the histogram of 

the first data set with the fitted density functions. Clearly, the OLLGHNP distribution 

provides a closer fit to the histogram than the other models. And Figure 6 shows that the 

OLLGHNP hasa closer fit to the histogram of the second data set than the other models 

except the KwGHN, MOGHN and OLLGHN distributions because it has a second peak 

near 12.  
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Figure 5: The histogram of first real data with the fitted density functions. 

 

 

 
Figure 6: The histogram of second real data with the fitted density functions. 

Table 7: Formal goodness of fit tests for the second real data. 
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 Model   Statistics 
*W  *A  

OLLGHNP   0.0859   0.4782  

OLLGHN   0.0967   0.5916  

BGHNG   0.1719   1.0152  

BGHN   0.2246   1.3217  

EGHN   0.2289   1.3447 

KwGHN  0.0839   0.5050  

MOGHN   0.0929   0.5610  

GHN   0.1594   0.9569  

 

Table 8: LR tests for second real data. 

Hypothesis   Statistics w  p -value 

0 1: :H GHN vs H OLLGHNP   10.22   0.0060 

0 1: :H GHNP vs H OLLGHNP   8.93   0.0028  

0 1: :H OLLGHN vs H OLLGHNP   8.82   0.0030  

 

Conclusions 

The odd log-logistic generalized half-normal (OLLGHN) distribution is commonly 

used to model the lifetime of a system. We propose a new four parameter model called the 

odd log-logistic Poisson generalized half-normal (OLLGHNP) distribution, whose failure 

rate function can be increasing, decreasing and bathtub that extends the OLLGHN (Gauss 

M. Corderio. et al., 2016), MOGHN (Alizadeh et al., 2015), EGHN (Pescim et al., 2010), 

generalized half-normal (GHN) and half-normal (HN) (Cooray and Ananda, 2008) 

distributions. The OLLGHNP distribution is quite flexible in analyzing positive data in 

place of some other special models. We provide an expansion for the density function and 

a mathematical treatment of the distribution including expansions moments and generating 

function. The estimation of the model parameters is approached by the method of 

maximum likelihood and a simulation study is performed. We consider likelihood ratio 

statistics and formal goodness-of-fit tests to compare the OLLGHNP distribution with 

some other lifetime models that include four, less than four and more than four parameters. 

Applications of the new model to two real data sets individually demonstrated that it can 

be used effectively to provide a more suitable fit than other models. We hope that this 

generalization can find wider applications in the literature of lifetime distributions. 

 

Acknowledgment 
The authors would like to thank the referees and editor for supplying extremely helpful comments and 

suggestions. 
 

References 

1. Aarset, M.V. (1987). How to identify bathtub hazard rate, IEEE Transactions Reliability, 

36, 106-108. 



Fazlollah Lak, Mehdi Basikhasteh, M. Alizadeh and Haitham M. Yousof 

Pak.j.stat.oper.res.  Vol.XIV  No.3 2018  pp111-128 124 

 

2. Aarts, R.M. (2000). Lauricella functions, www.mathworld.com/LauricellaFunctions.html. 

From MathWorld - A Wolfram Web Resource, created by Eric W. Weisstein. 

 

3. Alexander, C., Cordeiro, G.M., Ortega, E.M.M. and Sarabia, J.M. (2012). Generalized 

beta- generated distributions, Computational Statistics and Data Analysis, 56, 1880-1897. 

 

4. Alizadeh, M., Cordeiro, G.M., Brito, D.E., and Demtrio, C.G.B. (2015). The beta 

Marshall-Olkin family of distributions, Journal of Statistical Distributions and 

Applications, 2:4, DOI 10.1186/s40488-015-0027-7. particle counts, "Semiconductor 

International, June, 117-122. 

 

5. Ascher, H. and Feingold, H. (1984). Repairable Systems Reliability, Marcel Dekker, New 

York. 

 

6. Chen, G. and Balakrishnan, N. (1995). A general purpose approximate goodness-of-fit 

test, Journal of Quality Technology, 27, 154-161. 

 

7. Cooray, K. (2006). Generalization of the Weibull distribution: the odd Weibull family, 

Statistical Modeling, 6, 265-277. 

 

8. Cooray, K. and Ananda, M.M.A. (2008). A Generalization of the HalfNormal 

Distribution with Applications to Lifetime Data, Communication in Statistics - Theory 

and Methods, 37, 1323- 1337. 

 

9. Cordeiro, G.M., Alizadeh, M., Pescim, R.R. and Ortega, E.M.M. (2016). The odd log-

logistic generalized half-normal lifetime distribution: properties and applications, 

Communications in Statistical-Theory and Methods, 4195-4214. 

 

10. Cordeiro, G.M., Alizadeh, M., Pescim, R.R. and Ortega, E.M.M. (2016). The odd log-

logistic generalized half-normal lifetime distribution: properties and applications, 

Communications in Statistical-Theory and Methods, 4195-4214. 

 

11. Cordeiro, G.M. and Lemonte, A.J. (2011). The beta Birnbaum Saunders distribution: An 

im- proved distribution for fatigue life modeling, Computational Statistics and Data 

Analysis, 55, 1445-1461. 

 

12. Cordeiro, G.M., Lemonte, A.J. and Ortega, E.M.M. (2013). An extended fatigue life 

distribution, Statistics, 47, 626-653. 

 

13. Cordeiro, G.M., Ortega, E.M.M., Lemonte, A.J. (2014). The exponential Weibull lifetime 

distribution, Journal of Statistical Computation and Simulation, 47, 626-653. 

 

14. Cordeiro, G.M., Pescim, R.R. and Ortega, E.M.M. (2012). The Kumaraswamy 

Generalized Half- Normal Distribution for Skewed Positive Data, Journal of Data 

Science, 10, 195-224. 

 

15. Exton, H. (1978). Handbook of hyper geometric integrals: Theory, Applications, Tables, 

computer programs. New York, Halsted Press. 

 



The Odd Log-Logistic Generalized Half-Normal Lifetime Poisson Model 

Pak.j.stat.oper.res.  Vol.XIV  No.3 2018  pp111-128 125 

16. Merovci, F., Alizadeh, M., Yousof, H. M. and Hamedani G. G. (2017). The 

exponentiated transmuted-G family of distributions: theory and applications, 

Communications in Statistics-Theory and Method, forthcoming. 

 

17. The Open University. MDST242 Statistics in Society Unit A0: Introduction . 2nd 

ed.,Milton Keynes: The Open University,1963, Table 3.1. 

 

18. Trott, M. (2006). The Mathematica Guidebook for Symbolic. With 1 DVD-ROOM 

(Windows, Macintosh and UNIX). Springer, New York.  

 

Appendix A 

First, we define the exponentiated-G (“ Exp-G” ) distribution for an arbitrary parent 

distribution ( )G x , say W Exp ( )c G , if W  has cdf and pdf given by ( ) = ( )c

cH x G x  and 

1( ) = ( ) ( ) ,c

ch x cg x G x −  respectively. This transformed model is also called the Lehman type 

I distribution, say Exp ( )c G . For >1c  and <1c  and for larger values of x , the 

multiplicative factor 1( )ccG x −  is greater and smaller than one, respectively. The reverse 

assertion is also true for smaller values of x . The latter immediately implies that the 

ordinary moments associated with the density function ( )ch x  are strictly larger (smaller) 

than those associated with the density ( )g x  when >1c  ( <1c ). Second, with using Taylor 

expansion for the cdf of OLLGHNP we obtain,  

 ( ) ( )
1 1

=0

( ) = exp 1 ! 2 1

i

i

i

x
F x i




 



− −

    
−  −      

     
  

 2 1 2 2 .

i

x x
 

 

 

−

                − + −                           

 (A1) 

Now, we obtain an expansion for ( )F x . First, we use a power series for ( )G x   ( > 0  

real) given by,  

 
=0

( ) = ( ) 2 1 ,

k

k

k

x
G x a



 


     
 −   

     
  (A2) 

where,  

 
=

( ) = ( 1) .k j

k

j k

j
a

j k





+   

−   
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  

For any real > 0 , we consider the generalized binomial expansion  

 
=0

2 2 = ( 1) 2 1 .

k

k

k

x x

k


 



 

             
−  −  −          

                
  (A3) 

Inserting (A2) and (A3) in equation (A1), we obtain,  
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where = ( , )k kb h i  is defined in Appendix B. The ratio of the two power series can be 

expressed as,  
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 (A4) 

where the coefficients kc ’s (for 0k  ) are determined from the recurrence equation,  

 1 1

0 0

=1

= ,
k

k k r k r
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c b a b b c− −
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then we can write,  

 
=0

( ) = ( ),k k

k

F x d H x
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where,  

 ( ) ( )
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=0

= exp 1 ! ( , )for 0.i
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The pdf of X  follows by differentiating (A5) as,  

 
1 1

=0

( ) = ( ),k k

k

f x d h x


+ +  (A6) 

where 
1( ) = ( 1) ( ) ( )k

kh x k G x g x+ +  is the Exp-G density function with power parameter 

( 1)k + . Equation (A6) reveals that the OLLGHNP density function is a linear combination 

of Exp-GHN densities. Thus, some structural properties of the new family such as the 

ordinary and incomplete moments and generating function can be immediately obtained 

from well-established properties of the Exp-GHN distribution.By setting =
x

u





 
 
 

 and 

considering the error function as the cdf of the GHN distribution, the n th  moment of X  

can be obtained from equation (A6) as, 
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inserting the power series for the error function 
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in the last equation and computing the integral, we have (for any real /k n + ) we get, 
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inserting the power series for the error function, 
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Moreover, for the very special case when /k n +  is even, the integral ( )/ ,I n k  can be 

expressed in terms of the Lauricella function of type A (Exton, 1978; Aarts, 2000) defined 

by 
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where ( ) =
k

a ( ) ( )1 ... 1a a a k+ + −  is the ascending factorial (with the convention that 

( )
0

=1a ). Numerical routines for the direct computation of the Lauricella function of type 

A are available, see Exton (1978) and Mathematica (Trott, 2006). Hence, ( )nE X  can be 

expressed in terms of the Lauricella functions of type A, 
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where, 
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The central moments (
n ) and cumulants (

n ) of X  are determined using ( )nE X  as,  
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respectively, where 
1 1= '  . The skewness 3/2

1 3 2= /    and kurtosis 2

2 4 2= /    are 

obtained from the third and fourth standardized cumulants. The moment generating 

function (mgf) of of , X say ( ) ( )= ,tX

XM t E e is given by, 

 ( ) ( )
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= / !.n n

X

n

M t t E X n


  

The characteristic function (cf) of X , ( )t = ( )it XE e , and the cumulant generating 

function (cgf) of X , ( )K t ( )= log t  can be obtained from the well known relationships, 

where = 1i − .  

Appendix B 

We present three power series expansions required for the proof of the general 

result in Appendix A. By expanding z  in Taylor series, we can write  
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where 
=
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  and ( ) = ( 1) ( 1)k k   − − +  is the 

descending factorial. Further, we obtain an expansion for [ ( ) ( ) ]a a cG x G x+ . We can write,  
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Then, using (A1), we have,  
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where = ( )i if f c . Finally, we obtain,  
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 and for 0i                    1
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