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Abstract

In this article we have proposed a general transmuted family of distributions with emphasis on the
cubic transmuted (CT ) family of distributions. This new class of distributions provide additional
flexibility in modeling the bi-modal data. The proposed cubic transmuted family of distributions
has been linked with the T −X family of distributions proposed by Alzaatreh et al. (2013). Some
members of the proposed family of distributions have been discussed. The cubic transmuted expo-
nential distribution has been discussed in detail and various statistical properties of the distribution
have been explored. The maximum likelihood estimation for parameters of cubic transmuted expo-
nential distribution has also been discussed alongside Monte Carlo simulation study to assess the
performance of the estimation procedure. Finally, the cubic transmuted exponential distribution
has been fitted to real datasets to investigate it’s applicability.

Keywords: Cubic transmuted distribution, Exponential distribution, General trans-
mutation, Maximum likelihood estimation, Reliability analysis

1. Introduction

Probability distributions has been popularly used in many areas of life. The stan-
dard probability distributions has been used in practice from long. In recent years
the extension and generalization of probability distributions have attracted several
statisticians. A simple extension of the probability distributions is proposed by Gupta
et al. (1998) and is known as the exponentiated family of distributions. The exponen-
tiated family of distributions provides flexibility by adding one more parameter to
the distribution and has attracted several authors, see for example Gupta and Kundu
(1999, 2007), among others.

Eugene et al. (2002) have proposed the Beta-G distributions using logit of the Beta
distributions. The Beta-G distributions extends the distribution of order statistics.
Another family of distributions, known as Kum-G distributions, has been proposed
by Cordeiro and Castro (2010) by using cdf of the Kumaraswamy distribution. The
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Beta-G and Kum-G families of distributions uses cdf of bounded random variables
and thus has limited extension. Alzaatreh et al. (2013), have proposed a general
method of extending probability distributions known as T-X family of distributions
which used cdf of any random variable.

The Beta-G, Kum-G and T-X families of distributions uses some baseline distribu-
tion. Another method of generating families of distributions has been proposed by
Shaw and Buckley (2007), which used quadratic transmutation map to generate new
probability distribution using any baseline distribution. The quadratic transmuted
family of distributions of Shaw and Buckley (2007) has cdf

F (x) = (1 + λ)G(x)− λG2(x),

for λ ∈ [−1, 1], where G(x) is the cdf of the baseline distribution. Observe that at
λ = 0, we get the baseline cdf .

The quadratic transmuted family of distributions by Shaw and Buckley (2007), has
opened doors to extend the existing probability models to capture the quadratic
behavior of the data. The quadratic transmuted class has been further studied and
extended by Aryal and Tsokos (2009, 2011); Nofal et al. (2017); Alizadeh et al. (2016);
Merovci et al. (2016) and Yousof et al. (2015). At this time, quadratic transmuted
distributions are familiar in the literature, several quadratic transmuted distributions
are provided by Tahir and Cordeiro (2016). Alizadeh et al. (2017), have noted that
the quadratic transmuted family of distribution can be linked with the T-X family
of distributions for suitable choice of a bounded density function between [0, 1]. In
order to capture the complexity of the data and increases the flexibility, new classes
of cubic transmuted distributions have been developed by Granzotto et al. (2017);
AL-Kadim and Mohammed (2017).

In this paper, we have proposed a family of general transmuted distributions and have
developed the cubic transmuted family of distributions as well. This family of dis-
tributions captures the complexity of the data arising in engineering, environmental,
financial and other areas of life. The layout of the paper is given below.

1.1 Organization of the Article

The paper is structured as follows. The new family of general transmuted distribu-
tions is provided in Section 2. Section 3 provides a new class of cubic transmuted
distributions. Some examples related to the cubic transmuted distributions are pre-
sented in Section 4. The cubic transmuted exponential distribution has been explored
in detail in Section 5. Section 6 describes the expressions for moments, quantiles, re-
liability function and random number generation for the proposed cubic transmuted
exponential distribution. In Section 7, we have presented estimation of the parame-
ters and two real-life applications along with simulation study is given in Section 8.
Finally, in Section 9, some concluding remarks are given.
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2. General Transmuted Family of Distributions

In this section, we have proposed a general transmuted family of distributions that
can be used to generate new families. The family is defined below.

Let X be a random variable with cdf G(x), then a general transmuted family; called
k− transmuted family; is defined as

F (x) = G(x) + [1−G(x)]
k∑
i=1

λi[G(x)]i, (1)

with λi ∈ [−1, 1] for i = 1, 2, · · · , k and −k ≤
∑k

i=1 λi ≤ 1. The general transmuted
family reduces to the base distribution for λi = 0 for i = 1, 2, · · · , k. The density
function corresponding to (1) is

f (x) = g (x)

[
1−

k∑
i=1

λiG
i (x) + {1−G (x)}

k∑
i=1

iλiG
i−1 (x)

]
or

f (x) = g (x)

[
1−

k∑
i=1

λiG
i (x)

{
1− i (1−G (x))

G (x)

}]
(2)

We now give the cubic transmuted family of distributions in the following.

3. Cubic Transmuted Family of Distributions

In this section we have discussed the cubic transmuted family of distributions. The
cubic transmuted family of distributions is obtained by setting k = 2 in (1) and is
given as

F (x) = G(x) + λ1G(x)[1−G(x)] + λ2G
2(x)[1−G(x)],

which can also be written as

F (x) = (1 + λ1)G(x) + (λ2 − λ1)G2(x)− λ2G3(x), (3)

where λ1 ∈ [−1, 1] and λ2 ∈ [−1, 1] and −2 ≤ λ1 + λ2 ≤ 1. It can be easily seen that
the cubic transmuted family of distributions proposed by AL-Kadim and Mohammed
(2017), turned out to be a special case of (3) for λ2 = −λ1. The cubic family of
transmuted distributions reduces to the quadratic transmuted family of distributions
of Shaw and Buckley (2007), for λ2 = 0. Also, the family (3) is different as compared
with the family proposed by Granzotto et al. (2017).

We now present the genesis of cubic transmuted family of distributions given in (3)
in context with distribution of order statistics and with T −X family of distributions
in following two theorems.

Theorem 3.1. Let X1, X2 and X3 be iid random variables each with distribution
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function G(x), then the cubic transmuted family of distributions (3) can be obtained
as a weighted sum of three order statistics.

Proof. Consider three order statistics as

X3:3 = max(X1, X2, X3), X2:3 and X1:3 = min(X1, X2, X3),

and the random variable Y as

Y
d
= X3:3, with probability p1,

Y
d
= X2:3, with probability p2,

Y
d
= X1:3, with probability p3,

such that
∑3

i=1 pi = 1⇒ p3 = 1− p1 − p2. So the distribution function, FY (x), of Y
is given as

FY (x) = p1F3:3(x) + p2F2:3(x) + p3F1:3(x)

= (3− 3p1 − 3p2)G(x) + (3p1 + 6p2 − 3)G2(x)− (3p2 − 1)G3(x).
(4)

Setting 2− 3p1 − 3p2 = λ1 and 3p2 − 1 = λ2, the distribution given in (4) reduces to
the cubic transmuted family of distributions given (3).

Theorem 3.2. Let G(x) be cdf of a random variables X and p(t) be density function
of a bounded random variable with support on [0, 1], then the cubic transmuted family
given in (3) can be obtained by using T − X family of distributions introduced by
Alzaatreh et al. (2013), for suitable choice of p(t). Also, the density p(t) can be
written as weighted sum of three bounded densities p1(t), p2(t) and p3(t) with support
on [0, 1].

Proof. The T −X family introduced by Alzaatreh et al. (2013), is given as

F (x) =

∫ G(x)

0

p(t) dt, x ∈ R, (5)

where p(t) indicates the pdf with support on [0, 1]. Using

p(t) = 1 + λ1 − 2λ1t+ 2λ2t− 3λ2t
2,

in (5), we obtain the cubic transmuted family (3). Now, suppose that the density
p(t) is written as weighted sum of three densities as

p(t) = (1− λ1 − λ2)p1(t) + λ1p2(t) + λ2p3(t). (6)

Hence, using p1(t) = 1, p2(t) = 2(1− t) and p3(t) = 1 + 2t− 3t2 in (6) we have

F (x) =

∫ G(x)

0

[(1− λ1 − λ2)p1(t) + λ1p2(t) + λ2p3(t)] dt. (7)
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On simplification, the cdf (7) reduces to the cdf given in (3).

We now give the density function of cubic transmuted family in the following.

Definition 3.1 (Cubic Transmuted Distribution). A random variable X is said to
have a cubic transmuted distribution, with parameters λ1 ∈ [−1, 1], λ2 ∈ [−1, 1] and
−2 ≤ λ1 + λ2 ≤ 1, if its pdf is given as

f(x) = g(x)
[
1 + λ1 + 2(λ2 − λ1)G(x)− 3λ2G

2(x)
]
, x ∈ R, (8)

where g(x) is the pdf associated with baseline cdf G(x).

Observe that for λ2 = 0, the pdf of cubic transmuted distribution reduces to the pdf
of quadratic transmuted distribution. Also, observe that, at λ1 = λ2 = 0, we have the
pdf of the baseline random variable, as it should be. The density function of cubic
transmuted family of distributions given in (8) can be obtained by using k = 2 in the
density function of general transmuted family of distributions given in (2).

Lemma 3.1. The pdf f(x) given in (8) is well defined.

Proof. The proof is simple.

4. Some Examples of Cubic Transmuted Distributions

In this section, we have discussed some members of the cubic transmuted family of
distributions given in (3) for different choices of baseline G(x). These are discussed
in the following subsections.

4.1 Cubic Transmuted Normal Distribution

Suppose that the random variable X has normal distribution with cdf Φ(x), then the
cubic transmuted normal distribution has cdf

F (x) = (1 + λ1)Φ(x) + (λ2 − λ1)Φ2(x)− λ2Φ3(x), x ∈ R,

The density function of cubic transmuted normal distribution can be similarly written.

4.2 Cubic Transmuted Gamma Distribution

Let X is a gamma random variable with shape parameter α and scale parameter 1/β
, then the cdf of cubic transmuted gamma distribution is given as

G(x) =
Γ(α)− Γ(α, βx)

Γ(α)
, x ∈ R+,

where α, β ∈ R+, Γ(α) is complete gamma function and Γ(α, βx) is the upper incom-
plete gamma function. Using (3), the cdf of the cubic transmuted gamma distribution
is given by

F (x) =
[Γ(α)2 + λ1Γ(α)η(x) + λ2η(x){Γ(α)− η(x)}]

[Γ(α)− η(x)]−1 Γ(α)3
, x ∈ R+,

where η(x) = Γ(α, βx).
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Figure 1: Density functions; Upper panels: CT normal (µ, θ, λ1, λ2) and CT gamma
(α, β, λ1, λ2); Middle panels: CT log-logistic (α, β, λ1, λ2) and CT Pareto (θ, k, λ1, λ2);
Lower panels: CT Rayleigh (σ, λ1, λ2) and CT Gumbel (µ, β, λ1, λ2), all are plotted
for different values of model parameters.

4.3 Cubic Transmuted Log-logistic Distribution

Let X has Log-logistic distribution with cdf

G(x) =
xβ

αβ + xβ
, x ∈ [0,∞),

where α, β ∈ R+ are the scale and shape parameters respectively. Using (3), the cdf
of the cubic transmuted log-logistic distribution is given by

F (x) =
xβ
[
λ1α

β
(
αβ + xβ

)
+ λ2α

βxβ +
(
αβ + xβ

)2]
(αβ + xβ)3

, x ∈ [0,∞).
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4.4 Cubic Transmuted Pareto Distribution

Suppose X has Pareto distribution with cdf

G(x) = 1−
(
k

x

)θ
, x ∈ [k,∞),

where k, θ ∈ R+ are the scale and shape parameters. Using (3), the cdf of cubic
transmuted Pareto distribution is given by

F (x) =

[(
k

x

)θ
− 1

][
−λ1

(
k

x

)θ
+ λ2

{(
k

x

)θ
− 1

}(
k

x

)θ
− 1

]
, x ∈ [k,∞).

4.5 Cubic Transmuted Rayleigh Distribution

Let X has Rayleigh distribution with cdf

G(x) = 1− e−
x2

2σ2 , x ∈ [0,∞),

where σ ∈ R+ is the scale parameter of the distribution. Using (3), the cdf of cubic
transmuted Rayleigh distribution is given by

F (x) = e−
3x2

2σ2

(
e
x2

2σ2 − 1

)[
λ1e

x2

2σ2 + λ2

(
e
x2

2σ2 − 1

)
+ e

x2

σ2

]
, x ∈ [0,∞).

4.6 Cubic Transmuted Gumbel Distribution

Let random variable X has Gumbel distribution with cdf

G(x) = 1− e−e
−x−µ

β
, x ∈ R,

where µ ∈ R, β ∈ R+ are the location and scale parameters respectively. Using (3),
the cdf of the cubic transmuted Gumbel distribution is

F (x) = e−3e
µ−x
β

(
ee

µ−x
β − 1

)[
e2e

µ−x
β

+ λ1e
e
µ−x
β

+ λ2

(
ee

µ−x
β − 1

)]
, x ∈ R.

The plot of density function for above mentioned distributions is given in Figure 1.

We now discuss the cubic transmuted exponential distribution in detail in the follow-
ing section.

5. Cubic Transmuted Exponential Distribution

The exponential distribution is a widely used lifetime distribution. Several researchers
have attempted to generalize exponential distribution for the limited applicability
and they have proposed beta exponential (Nadarajah and Kotz, 2006), generalized
exponential (Gupta and Kundu, 1999, 2007), exponentiated exponential (Gupta and
Kundu, 2001) and quadratic transmuted exponential (Owoloko et al., 2015) distribu-
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Figure 2: Density and distribution functions are plotted for the CT exponential
distribution for different values of model parameters λ1 and λ2, setting θ = 1.5.

tions which are more flexible than the exponential distribution. The cdf of exponential
distribution is given by

G(x) = 1− e−
x
θ , x ∈ [0,∞),

where θ ∈ [0,∞) is the scale parameter. Owoloko et al. (2015), have developed the
quadratic transmuted exponential distribution with cdf given as

F (x) =
[
1− e−

x
θ

] [
1 + λe−

x
θ

]
, x ∈ [0,∞),

where λ ∈ [−1, 1]. Using the pdf and cdf of exponential distribution in (8), the pdf
of cubic transmuted exponential distribution is given in the following.

Proposition 5.1. Let X has exponential distribution with parameter θ ∈ [0,∞), then
the pdf of cubic transmuted exponential distribution with parameters θ ∈ [0,∞), λ1 ∈
[−1, 1], λ2 ∈ [−1, 1] and −2 ≤ λ1 + λ2 ≤ 1, is given by

f(x) =
1

θ
e−

x
θ

[
1 + λ1 + 2(λ2 − λ1)

(
1− e−

x
θ

)
− 3λ2

(
1− e−

x
θ

)2]
, x ∈ [0,∞). (9)

Proof. Using the cdf of exponential distribution in (3), the cdf of cubic transmuted
exponential distribution is

F (x) =
(1 + λ1)(

1− e−xθ
)−1 +

(λ2 − λ1)(
1− e−xθ

)−2 − λ2 (1− e−xθ )3 , x ∈ [0,∞). (10)

The pdf of cubic transmuted exponential distribution is easily obtained by differenti-
ating (10) and is given in (9).

Figure 2 shows some of the possible shapes for density and distribution functions of
cubic transmuted exponential distribution for various values of λ1 and λ2 at θ = 1.5.
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Table 1: Mean of the CT exponential distribution

λ2 = −1 λ2 = −0.5 λ2 = 0 λ2 = 0.5 λ2 = 1

θ = 1

λ1 = −1
λ1 = −0.5
λ1 = 0
λ1 = 0.5
λ1 = 1

1.833
1.583
1.333
1.083
0.833

1.667
1.417
1.167
0.917
0.667

1.500
1.250
1.000
0.750
0.500

1.333
1.083
0.833
0.583

–

1.167
0.917
0.667

–
–

θ = 2

λ1 = −1
λ1 = −0.5
λ1 = 0
λ1 = 0.5
λ1 = 1

3.667
3.167
2.667
2.167
1.667

3.333
2.833
2.333
1.833
1.333

3.000
2.500
2.000
1.500
1.000

2.667
2.167
1.667
1.167

–

2.333
1.833
1.333

–
–

θ = 3

λ1 = −1
λ1 = −0.5
λ1 = 0
λ1 = 0.5
λ1 = 1

5.500
4.750
4.000
3.250
2.500

5.000
4.250
3.500
2.750
2.000

4.500
3.750
3.000
2.250
1.500

4.000
3.250
2.500
1.750

–

3.500
2.750
2.000

–
–

θ = 4

λ1 = −1
λ1 = −0.5
λ1 = 0
λ1 = 0.5
λ1 = 1

7.333
6.333
5.333
4.333
3.333

6.667
5.667
4.667
3.667
2.667

6.000
5.000
4.000
3.000
2.000

5.333
4.333
3.333
2.333

–

4.667
3.667
2.667

–
–

θ = 5

λ1 = −1
λ1 = −0.5
λ1 = 0
λ1 = 0.5
λ1 = 1

9.167
7.917
6.667
5.417
4.167

8.333
7.083
5.833
4.583
3.333

7.500
6.250
5.000
3.750
2.500

6.667
5.417
4.167
2.917

–

5.833
4.583
3.333

–
–

6. Statistical Properties

In this section, we have discussed some distributional properties of the cubic trans-
muted exponential distribution given in (9). These properties include expressions
for moment, quantile, reliability and hazard functions. We have also discussed the
random number generation from cubic transmuted exponential distribution.

6.1 Moments

The rth moment of the cubic transmuted exponential distribution is given as

E(Xr) =

∫ ∞
0

xrf(x)dx.

Using f(x) as given in (9) and simplifying, the rth moment for cubic transmuted
exponential distribution is given as

E(Xr) =
θr

6r
r! [6r − 3r(2r − 1)λ1 − (2r − 2 · 3r + 6r)λ2] . (11)

Pak.j.stat.oper.res. Vol.14 No.2 2018 pp451-469 459



Md. Mahabubur Rahman, Bander Al-Zahrani, Muhammad Qaiser Shahbaz

The mean and variance can be obtained by using (11), and are given as

E(X) =
θ

6
(6− 3λ1 − 2λ2) and

V (X) =
θ2

36

(
36− 18λ1 − 20λ2 − 9λ21 − 12λ1λ2 − 4λ22

)
.

The higher moments can also be obtained from (11). Table 1 provides the mean for
various combinations of the parameters.

6.2 Quantile Function

The quantile function is obtained by solving (10) for x and is given as

xq = θ [−ln(y)], (12)

where

y = − b
3a
− 21/3ξ1

3a
(
ξ2+
√

4ξ31+ξ
2
2

)1/3 +

(
ξ2+
√

4ξ31+ξ
2
2

)1/3
3(21/3)a

,

ξ1 = −b2 + 3ac, ξ2 = −2b3 + 9abc− 27a2d,
a = λ2, b = −λ1 − 2λ2, c = λ1 + λ2 − 1 and d = 1− q.

 (13)

The three quartiles can be obtained by using q = 0.25, 0.50 and 0.75 in (12), respec-
tively.

6.3 Reliability Analysis

The reliability function describes the probability of an element not failing prior to
some time t, and is defined by R(t) = 1 − F (t). The reliability function of cubic
transmuted exponential distribution can be obtained as

Figure 3: Reliability and hazard functions are plotted for the CT exponential distri-
bution for different values of model parameters λ1 and λ2, setting θ = 1.5.
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R(t) = 1− η(t)
[
(1 + λ1) + (λ2 − λ1)η(t)− λ2η2(t)

]
, t ∈ R+.

The hazard function, h(t), is defined by

h(t) =
f(t)

1− F (t)
,

which, for cubic transmuted exponential distribution, is given as

h(t) =

(
1
θ
e−

t
θ

)
[1 + λ1 + 2(λ2 − λ1)η(t)− 3λ2η

2(t)]

1− η(t) [(1 + λ1) + (λ2 − λ1)η(t)− λ2η2(t)]
, t ∈ R+,

where η(t) =
(

1− e− tθ
)

. The hazard function indicates the instantaneous rate of

failure at time t, given that the component has survived up to time t. Some of
the possible shapes of the reliability and hazard functions for the selected values of
model parameters λ1 and λ2 keeping θ = 1.5 are presented in Figure 3. We have
observed that the reliability and distribution functions behaved complement to each
other. In order to failure time t, we observed increasing, increasing then decreasing
and decreasing then increasing and constant hazard rates from the shapes.

6.4 Random Numbers Generation

The random sample from cubic transmuted exponential distribution can be obtained
by setting the distribution function (10) equal to u, where u is a uniform random
variable, that is the random number from cubic transmuted exponential distribution
is obtained by solving

(1 + λ1)
(
1− e−

x
θ

)
+ (λ2 − λ1)

(
1− e−

x
θ

)2 − λ2 (1− e−xθ )3 = u,

where u ∼ U(0, 1). On simplification, this can be presented as

X = θ [−ln(y)], (14)

where y is given in (13) with d = 1 − u. The random sample from cubic trans-
muted exponential distribution can be obtained by using (14) for various values of
the parameters θ, λ1 and λ2.

7. Parameter Estimation and Inference

In this section, we have obtained maximum likelihood estimators (MLEs) for param-
eters of the cubic transmuted exponential distribution. For this, let X1, X2, · · · , Xn

be a random sample of size n from cubic transmuted exponential distribution. The
likelihood function is, then, given by

L =

(
1

θ

)n
e−

∑n
i=1

xi
θ

n∏
i=1

1 + λ1 +
2(λ2 − λ1)(
1− e−

xi
θ

)−1 − 3λ2

(
1− e−

xi
θ

)2 .
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The log-likelihood function l = ln(L) is given as

l = −n · ln(θ)−
n∑
i=1

(xi
θ

)
+

n∑
i=1

ln

[
1 + λ1 + 2(λ2 − λ1)

(
1− e−

xi
θ

)
− 3λ2

(
1− e−

xi
θ

)2]
.

(15)

The MLEs of θ, λ1 and λ2 are obtained by maximizing (15). The derivatives of (15)
wrt the unknown parameters are given as

∂l

∂θ
= −n

θ
+

n∑
i=1

(xi
θ2

)
+

n∑
i=1

6e−xi/θ(1−e−xi/θ)xiλ2
θ2

− 2e−xi/θxi(λ2−λ1)
θ2

1 + λ1 − 3 (1− e−xi/θ)2 λ2 +
2(1−e−xi/θ)
(λ2−λ1)−1

,

∂l

∂λ1
=

n∑
i=1

1− 2
(
1− e−xi/θ

)
1 + λ1 − 3 (1− e−xi/θ)2 λ2 + 2(1− e−xi/θ)(λ2 − λ1)

,

∂l

∂λ2
=

n∑
i=1

2
(
1− e−xi/θ

)
− 3

(
1− e−xi/θ

)2
1 + λ1 − 3 (1− e−xi/θ)2 λ2 + 2 (1− e−xi/θ) (λ2 − λ1)

.

The likelihood equations are given as

∂l

∂θ
= 0,

∂l

∂λ1
= 0, and

∂l

∂λ2
= 0,

gives the maximum likelihood estimator Θ̂ =
(
θ̂, λ̂1, λ̂2

)′
of Θ = (θ, λ1, λ2)

′. As

n→∞ the asymptotic distribution of the MLE
(
θ̂, λ̂1, λ̂2

)
for the cubic transmuted

exponential distribution is given as, see for examples, transmuted Weibull distribution
(Aryal and Tsokos, 2011), transmuted exponential distribution (Owoloko et al., 2015)
and modified Weibull distribution (Zaindin and Sarhan, 2009), θ̂

λ̂1
λ̂2

 ∼ N

 θ
λ1
λ2

 ,

 V̂11 V̂12 V̂13
V̂21 V̂22 V̂23
V̂31 V̂32 V̂33

 ,
where

V −1 = −E


∂2l
∂θ2

∂2l
∂θ·∂λ1

∂2l
∂θ·∂λ2

∂2l
∂θ·∂λ1

∂2l
∂λ21

∂2l
∂λ1·∂λ2

∂2l
∂θ·∂λ2

∂2l
∂λ1·∂λ2

∂2l
∂λ22

 . (16)

The asymptotic variance and covariance matrix of the estimates θ̂, λ̂1 and λ̂2; see
Appendices 1, is obtained by inverting (16). An approximate 100(1−α)% asymptotic
confidence intervals for θ, λ1 and λ2 are, respectively, given by

θ̂ ± Zα/2
√
V̂11, λ̂1 ± Zα/2

√
V̂22 and λ̂2 ± Zα/2

√
V̂33,
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where Zα is the αth upper percentile of the standard normal distribution.

8. Numerical Studies

In this section, an extensive Monte Carlo simulation study is carried out to assess the
performance of estimation method. We have also considered two real-life datasets to
investigate the applicability of the proposed model.

8.1 Simulation Study

Table 2: Average estimates of model parameters and MSEs

Sample Estimate MSE
Size θ λ1 λ2 θ λ1 λ2

50 1.993 0.478 -0.516 0.808 0.591 0.748

100 2.015 0.506 -0.535 0.384 0.209 0.302

200 1.999 0.509 -0.553 0.157 0.086 0.138

500 2.009 0.510 -0.528 0.060 0.032 0.054

1000 2.009 0.512 -0.517 0.025 0.014 0.026

A Monte Carlo simulation study is carried out for samples of sizes 50, 100, 200, 500
and 1000, drawn from cubic transmuted exponential distribution. The samples have
been drawn for θ = 2, λ1 = 0.5 and λ2 = −0.5 and maximum likelihood estimators for
the parameters θ, λ1 and λ2 are obtained. The procedure has been repeated for 10000
and the mean and mean square error for the estimates are computed. The results
are summarized in Table 2. We have found that the simulated estimates are closed
to the true values of parameters and hence the estimation method is adequate. We
have also observed that estimated mean square errors (MSEs) consistently decreases
with increasing sample size.

8.2 Life Test Data

This dataset represents the lifetimes of 50 devices and has been used by Aarset (1987)
and Lai et al. (2003). The summary statistics of the data presented in Table 3.

Table 3: Summary statistics for selected datasets

Min. Q1 Median Mean Q3 Max.
Life Test Data 0.10 13.50 48.50 45.69 81.25 86.00
Electronics Data 0.03 0.78 1.80 1.94 2.90 5.09

In order to assess the performance of the cubic transmuted exponential distribu-
tion we have computed various measures for quadratic transmuted exponential, beta
exponential and exponentiated exponential distributions. The estimated values of
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Figure 4: Upper panels: Estimated pdf and cdf for life test dataset; Lower panels:
Estimated pdf and cdf for electronics dataset.

Table 4: MLEs of the parameters and respective SEs for selected models

Distribution Parameter Estimate SE

Cubic Transmuted Exponential
θ
λ1
λ2

33.765
-0.064
-0.971

5.044
0.320
0.739

Transmuted Exponential
θ
λ

41.157
-0.243

6.556
0.242

Beta Exponential
θ
λ1
λ2

0.235
0.524
0.085

0.213
0.172
0.074

Exponentiated Exponential
θ
λ

0.019
0.780

0.004
0.135

parameters alongside the standard errors (SEs) for various distributions are given in
Table 4. Estimated pdf and cdf of the lifetimes of 50 devices are plotted over empiri-
cal density and distribution functions respectively and presented in the upper panels
of Figure 4. Table 5 provides the log-likelihood, Akaike’s information criterion (AIC),
corrected Akaike’s information criterion (AICc) and Bayesian information criterion
(BIC). From Table 5, we can see that the cubic transmuted exponential distribution
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Table 5: Selection criteria estimated for selected models

Distribution LogLik AIC AICc BIC

Cubic Transmuted Exponential -236.018 478.036 478.558 483.772

Transmuted Exponential -240.677 485.355 485.610 489.179

Beta Exponential -238.120 482.240 482.762 487.976

Exponentiated Exponential -239.995 483.990 484.246 487.814

is a good fit to the data as it has smallest values of the criterion.

8.3 Electronics Data

The dataset provides lifetimes of 20 electronic components and has been used by
Murthy et al. (2004). The summary statistics are presented in Table 3.

Table 6: MLEs of the parameters and respective SEs for selected models

Distribution Parameter Estimate SE

Cubic Transmuted Exponential
θ
λ1
λ2

4.063
0.799
0.940

0.991
0.623
1.487

Transmuted Exponential
θ
λ

1.581
-0.472

0.373
0.382

Beta Exponential
θ
λ1
λ2

0.025
1.163
24.373

8.5× 10−3

0.328
5.9× 10−6

Exponentiated Exponential
θ
λ

0.560
1.139

0.154
0.332

We have fitted quadratic transmuted exponential, cubic transmuted exponential, beta
exponential and exponentiated exponential distributions to the data. The MLEs
with their corresponding SEs are given in Table 6. Estimated pdf and cdf of the life-
times of 20 electronic components are plotted over empirical density and distribution
functions respectively and presented in the lower panels of Figure 4. The computed
Log-likelihood, AIC, AICc and BIC values are provided in Table 7. We have observed,
on the basis of the criteria used, that the cubic transmuted exponential distribution
is the most appropriate model for this data.

9. Concluding Remarks

In this article, we have introduced a general family of transmuted distributions with
special reference to the cubic transmuted family of distributions. We have found
the cubic transmuted distributions are flexible enough and are capable to capture
the bi-modality of the data. In order to assess the performance of this new class of
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Table 7: Selection criteria estimated for selected models

Distribution LogLik AIC AICc BIC

Cubic Transmuted Exponential -31.070 68.139 69.639 71.126

Transmuted Exponential -32.714 69.429 70.135 71.420

Beta Exponential -33.070 72.140 73.640 75.128

Exponentiated Exponential -33.110 70.220 70.926 72.212

distributions, we have focused on the exponential distribution and the cubic trans-
muted exponential distribution has been explored in detail. We have fitted the cubic
transmuted exponential distribution for two datasets and have found that the cubic
transmuted exponential distribution adequately fit the two datasets as compared with
the other distributions used in the comparison.
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Appendices 1. The Hessian matrix for cubic transmuted exponential distribution

The Hessian matrix is given as

H =

 H11 H12 H13

H21 H22 H23

H31 H32 H33

 ,

where the variance-covariance matrix V is obtained by

V =

 V11 V12 V13
V21 V22 V23
V31 V32 V33

 =

 H11 H12 H13

H21 H22 H23

H31 H32 H33

−1 ,
with the elements of Hessian matrix are obtained as

H11 = − δ
2l

δθ2
=

n∑
i=1

2xi
θ3

+
n∑
i=1

[
n

θ2
+

{
6λ2xie

−xi
θ ηi−2(λ2−λ1)xie−

xi
θ

}2

θ4

{−3λ2η2i + 2 (λ2 − λ1) ηi + λ1 + 1}2

−
6λ2x2i e

−xi
θ ηi

θ4
− 6λ2x2i e

− 2xi
θ

θ4
− 2(λ2−λ1)x2i e

−xi
θ

θ4
+ 4(λ2−λ1)xie−

xi
θ

θ3
− 12λ2xie

−xi
θ ηi

θ3

−3λ2η2i + 2 (λ2 − λ1) ηi + λ1 + 1

]
,

H12 = − δ2l

δθ · δλ1
= −

n∑
i=1

[
2xie

−xi
θ

θ2 {−3λ2η2i + 2 (λ2 − λ1) ηi + λ1 + 1}

−
{1− 2ηi} 1

θ2

{
6λ2xie

−xi
θ ηi − 2 (λ2 − λ1)xie−

xi
θ

}
{−3λ2η2i + 2 (λ2 − λ1) ηi + λ1 + 1} 2

]
,

H13 = − δ2l

δθ · δλ2
= −

n∑
i=1

[ {
1
θ2

6xie
−xi
θ ηi − 1

θ2
2xie

−xi
θ

}
−3λ2η2i + 2 (λ2 − λ1) ηi + λ1 + 1

−
{2ηi − 3η2i }

{
1
θ2

6λ2xie
−xi
θ ηi − 1

θ2
2 (λ2 − λ1)xie−

xi
θ

}
(−3λ2η2i + 2 (λ2 − λ1) ηi + λ1 + 1)

2

]
,
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H22 = − δ
2l

δλ21
=

n∑
i=1

{1− 2ηi}2

(−3λ2η2i + 2 (λ2 − λ1) ηi + λ1 + 1)
2 ,

H23 = − δ2l

δλ1 · δλ2
=

n∑
i=1

{1− 2ηi} {2ηi − 3η2i }
(−3λ2η2i + 2 (λ2 − λ1) ηi + λ1 + 1)

2 ,

H33 = − δ
2l

δλ22
=

n∑
i=1

{2ηi − 3η2i }
2

(−3λ2η2i + 2 (λ2 − λ1) ηi + λ1 + 1)
2 ,

where ηi =
(

1− e−
xi
θ

)
.
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