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Abstract 
 
A new four-parameter distribution called the beta Lindley-geometric distribution is proposed. The hazard 

rate function of the new model can be constant, decreasing, increasing, upside down bathtub or bathtub 

failure rate shapes. Various structural properties including of the new distribution are derived. The 

estimation of the model parameters is performed by maximum likelihood method. We present simulation 

results to assess the performance of the maximum likelihood estimation.The usefulness of the new 

distribution is illustrated using a real data set. 

 

Keywords: Lindley-geometric distribution, Moments, Moment generating function, 
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1. Introduction 

 

The Lindley distribution (Lindley, 1958) is important for studying stress-strength 

reliability modeling. Besides, some researchers have proposed new classes of 

distributions based on modifications of the Lindley distribution. The Lindley distribution 

specified by the probability density function (PDF)  

 𝑓𝐿(𝑥, 𝜃) =
𝜃2

𝜃+1
(1 + 𝑥)𝑒−𝜃𝑥, 𝑥 > 0, 𝜃 > 0. 

 

The corresponding cumulative distribution function (CDF) is given by 

 𝐹𝐿(𝑥, 𝜃) = 1 − (1 +
𝜃𝑥

𝜃+1
)𝑒−𝜃𝑥, 𝑥 > 0, 𝜃 > 0. 

 

Sankaran (1970) introduced the discrete Poisson-Lindley distribution by combining the 

Poisson and Lindley distributions. Ghitany et al.(2008) investigated most of the statistical 

properties of the Lindley distribution, showing this distribution may provide a better 

fitting than the exponential distribution. Recently a new extension of the Lindley 

distribution, called extended Lindley distribution, which offers a more flexible model for 

lifetime data is introduced by Bakouch et al. (2012). Adamidis and Loukas (1998) 

introduced a two-parameter lifetime distribution, called exponential geometric 

distribution, with decreasing failure rate by compounding the exponential and geometric 
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distributions. Zakerzadeh and Mahmoudi (2012) introduced the Lindley-geometric (LGc) 

distribution with CDF and PDF given by 

 

 𝐹𝐿𝐺(𝑥, 𝜃, 𝑝) =
1−(1+

𝜃𝑥

𝜃+1
)𝑒−𝜃𝑥

1−𝑝(1+
𝜃𝑥

𝜃+1
)𝑒−𝜃𝑥

, 𝑥 > 0, 𝜃 > 0,0 < 𝑝 < 1 (1) 

and 

 𝑓𝐿𝐺(𝑥, 𝜃, 𝑝) =
𝜃2

𝜃+1
(1 − 𝑝)(1 + 𝑥)𝑒−𝜃𝑥 [1 − 𝑝 (1 +

𝜃𝑥

𝜃+1
) 𝑒−𝜃𝑥]

−2

, (2) 

respectively. 

 

Let 𝐺(𝑥; 𝜙) be the baseline CDF of an absolutely continuous random variable, where 𝜙 

is a 𝑝 × 1 parameter vector. A general class generated from the logit of a beta random 

variable is introduced by Eugene et al. (2002) and it is called the beta-G (B-G) family 

with the CDF  

 𝐹(𝑥; 𝑎, 𝑏, 𝜙) =
1

𝐵(𝑎,𝑏)
∫ 𝑤𝑎−1(1 − 𝑤)𝑏−1𝑑𝑤

𝐺(𝑥;𝜙)

0
=

𝐵(𝐺(𝑥;𝜙);𝑎,𝑏)

𝐵(𝑎,𝑏)
= 𝐼𝐺(𝑥;𝜙)(𝑎, 𝑏),

 (3) 

 

where 𝑎 > 0 and 𝑏 > 0 are two additional shape parameters whose role is to introduce 

skewness and to vary tail weight, 𝐵(𝑦; 𝑎, 𝑏) = ∫ 𝑤𝑎−1(1 − 𝑤)𝑏−1𝑑𝑤
𝑦

0
 is the incomplete 

beta function with 𝐵(𝑎, 𝑏) = 𝐵1(𝑎, 𝑏) and 𝐼𝑦(𝑎, 𝑏) =
𝐵(𝑦;𝑎,𝑏)

𝐵(𝑎,𝑏)
 is the incomplete beta 

function ratio. One major benefit of this class of distributions is its ability of fitting 

skewed data that cannot be properly fitted by existing distributions. If 𝑏 = 1, 𝐹(𝑥) =
𝐺(𝑥)𝑎 and then 𝐹 is usually called the exponentiated 𝐺 distribution (or the Lehmann 

type-I distribution). 

 

Some special cases of 𝐵𝐺 distributions are given below:  

 

(i) If 𝐺(𝑥; 𝜙) is the CDF of a standard uniform distribution, then the CDF given in 

Equation (3) yields the CDF of a beta distribution with parameters 𝑎 and 𝑏.  

 

(ii) If 𝑎 is an integer value and 𝑏 = 𝑛 − 𝑎 + 1, then the CDF (3) becomes  

 𝐹(𝑥; 𝑎, 𝑏, 𝜙) =
1

𝐵(𝑎,𝑛−𝑎+1)
∫ 𝑤𝑎−1(1 − 𝑤)𝑏−1𝑑𝑤

𝐺(𝑥;𝜙)

0
 

              = ∑ (
𝑛
𝑖

) [𝐺(𝑥; 𝜙)]𝑖[1 − 𝐺(𝑥; 𝜙)]𝑛−𝑖,𝑛
𝑖=𝑎  

 

which is really the CDF of the 𝑎𝑡ℎ order statistic of a random sample of size 𝑛 from 

distribution 𝐺(𝑥; 𝜙).  

 

(iii) If 𝑎 = 𝑏 = 1, then the CDF (3) reduces to 𝐹(𝑥; 𝜙) = 𝐺(𝑥; 𝜙).  

 

(iv) If 𝑎 = 1, then the CDF (3) reduces to 𝐹(𝑥; 𝑏, 𝜙) = [1 − 𝐺(𝑥; 𝜙)]𝑏 .  
 

(v) If 𝑏 = 1, then the CDF (3) reduces to 𝐹(𝑥; 𝑎, 𝜙) = [𝐺(𝑥; 𝜙)]𝑎.  
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The two classes given in (iv) and (v) are called, respectively, the frailty parameter and 

resilience parameter families with underlying distribution 𝐺(𝑥; 𝜙) (Marshall and Olkin, 

2007). Clearly, for positive integer values of 𝑏 (or 𝑎), the CDF given in (iv) ((v)) above is 

the CDF of a series (parallel) system with 𝑏 (or 𝑎) independent components all having the 

CDF 𝐺(𝑥; 𝜙). Some well-known distributions belonging to the resilience parameter 

family are the exponentiated Weibull distribution (Mudholkar et al., 1995), the 

generalized exponential distribution proposed by Gupta and Kundu (1999), the 

exponentiated type distributions introduced by Nadarajah and Kotz (2006).  

 

For general 𝑎 and 𝑏, we can express  the CDF (3) in terms of the well-known 

hypergeometric function defined by 

 𝐹(𝑥; 𝑎, 𝑏, 𝜙) =
𝐺(𝑥;𝜙)𝑎

𝑎𝐵(𝑎,𝑏)2
𝐹1(𝑎, 1 − 𝑏, 𝑎 + 1; 𝐺(𝑥; 𝜙)), 

where 

  2𝐹1(𝛼, 𝜃, 𝛾; 𝑥) = ∑
(𝛼)𝑖(𝜃)𝑖

(𝛾)𝑖𝑖!
𝑥𝑖 , |𝑥| < 1,∞

𝑖=0  

where (𝛼)𝑖 =
Γ(𝛼+𝑖)

Γ(𝛼)
= 𝛼(𝛼 + 1). . . (𝛼 + 𝑖 − 1) denotes the ascending factorial of 𝛼. We 

obtain the properties of 𝐹(𝑥) for any beta -𝐺 distribution defined from a parent 𝐺(𝑥; 𝜙) 

in (3) could, in principle, follow from the properties of the hypergeometric function 

which are well established in the literature; see, for example, Section 9.1 of Gradshteyn 

and Ryzhik (2000). The PDF and hazard rate function (HRF) of the B-G family are given 

by  

 𝑓(𝑥; 𝑎, 𝑏, 𝜙) =
𝑔(𝑥;𝜙)

𝐵(𝑎,𝑏)
𝐺(𝑥; 𝜙)𝑎−1[1 − 𝐺(𝑥; 𝜙)]𝑏−1              (4) 

and 

 ℎ(𝑥; 𝑎, 𝑏, 𝜙) =
𝑔(𝑥;𝜙)𝐺(𝑥;𝜙)𝑎−1{1−𝐺(𝑥;𝜙)}𝑏−1

𝐵(𝑎,𝑏)𝐼[1−𝐺(𝑥;𝜙)](𝑎,𝑏)
, 

 

respectively, where 𝐼[1−𝐺(𝑥;𝜙)](𝑎, 𝑏) = 1 − 𝐼𝐺(𝑥;𝜙)(𝑎, 𝑏) = 𝐹(𝑥; 𝑎, 𝑏, 𝜙) is the survival 

function of the B-G class. 

 

The distributions that have been explored based on the B-G class are: the beta normal 

(Eugene et al., 2002), the beta exponential (Nadarajah and Kotz, 2006), the beta weibull 

geometric (Cordeiro et al., 2013), the beta exponential-geometric (Bidram, 2012) and the 

beta Weibull geometric distributions (Bidram et al., 2013). The beta transmuted-H and 

beta WeibullG families due to Afify et al. (2017) and Yousof et al. (2017), respectively.  

 

In this article, we propose a new extension of the LGc distribution of Zakerzadeh and 

Mahmoudi (2012) by taking 𝐺(𝑥; 𝜙) in (3) to the CDF of the LGc distribution. The new 

model is referred to as the beta Lindley geometric (BLGc) distribution. We also study 

some of its mathematical properties and its applications to real data. 

 

The reminder of the paper is organized as follows. In Section 2, we define the BLGc 

distribution and provide some plots for its PDF and HRF to show its flexibility. The 

expansion for the CDF and PDF of the BLGc distribution and some other properties are 

discussed in Section 3. In Section 4, the maximum likelihood estimation of the model 
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parameters is performed. In Section 5, the potentiality of the new model is illustrated via 

two applications to real data. 

 

2. The BLGc distribution 

 

Replacing 𝐺(𝑥; 𝜙) in Equation (3) by the CDF (1) yields the CDF of the BLGc model as 

 

 𝐹  𝐵𝐿𝐺𝑐
(𝑥; 𝜑) = 𝐼𝐺(𝑥;𝜃,𝑝)(𝑎, 𝑏) =

1

𝐵(𝑎,𝑏)
𝐵 (

1−(1+
𝜃𝑥

𝜃+1
)𝑒−𝜃𝑥

1−𝑝(1+
𝜃𝑥

𝜃+1
)𝑒−𝜃𝑥

; 𝑎, 𝑏) , 𝑥 > 0, (5) 

 

where 𝑎 > 0, 𝑏 > 0 and 0 < 𝑝 < 1 are shape parameters and 𝜃 > 0 is a scale parameter. 

A random variable 𝑋 with the CDF (5) is said to have a BLGc distribution and will be 

denoted by 𝑋~BLGc(𝜑) where 𝜑 = (𝜃, 𝑝, 𝑎, 𝑏). 

The PDF of the BLGc distribution takes the form 

 𝑓  𝐵𝐿𝐺𝑐
(𝑥; 𝜑) =

𝜃2(1−𝑝)𝑏(1+𝑥)𝑒−𝑏𝜃𝑥(1+
𝜃𝑥

𝜃+1
)𝑏−1(1−(1+

𝜃𝑥

𝜃+1
)𝑒−𝜃𝑥)

𝑎−1

𝐵(𝑎,𝑏)(𝜃+1)[1−𝑝(1+
𝜃𝑥

𝜃+1
)𝑒−𝜃𝑥]

𝑎+𝑏 . (6) 

 

One of the characteristic in reliability analysis is the hazard rate function (HRF) defined 

by 

 ℎ  𝐵𝐿𝐺𝑐
(𝑥; 𝜑) =

𝜃2(1−𝑝)𝑏(1+𝑥)𝑒−𝑏𝜃𝑥(1+
𝜃𝑥

𝜃+1
)𝑏−1(1−(1+

𝜃𝑥

𝜃+1
)𝑒−𝜃𝑥)

𝑎−1

𝐵(𝑎,𝑏)(𝜃+1)[1−𝑝(1+
𝜃𝑥

𝜃+1
)𝑒−𝜃𝑥]

𝑎+𝑏
𝐼[1−𝐺(𝑥;𝜃,𝑝)](𝑎,𝑏)

. 

 

The BLGc distribution reduces to the exponentiated LGc model for 𝑏 = 1 and reduces to 

the LGc model for 𝑎 = 𝑏 = 1. Figure 1 displays some plots of the PDF of the BLGc 

distribution for some selected values of the parameters. Its HRF plots are provided in 

Figure 2. 

 

 
Figure 1: The PDF plots of the BLGc model for some parameter values 
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The plots in Figure 1 reveal that the BLGc can provide concave down, symmetric, 

unimodal, left skewed or right skewed shapes for its PDF. One can see, from Figure 2, 

that the BLGc HRF can HRF can be constant, decreasing, increasing, upside down 

bathtub or bathtub failure rate shapes. Then, it seems to be a useful model which has the 

ability to provide all important shapes of failure rate which are quite common in 

reliability and biological studies. 

 

There are following motivations of the BLGc distribution:  

(i) To obtain a generalized version of LGc distribution that includes different other sub-

models useful for explaining typical types of uncertainties. 

(ii) To obtain an improvement on the hazard rate function that may accommodate 

constant, decreasing, increasing, upside down bathtub or bathtub failure rate shapes. 

(iii) To  find specific characteristic, if any, of the proposed density function. 

(iv) To identify better applicability of the proposed distribution and to establish 

competency over the other popular lifetime models. 

  

 

 
Figure 2: The HRF plots of the BLGc model for some parameter values 

 

 

3. Statistical properties 

 

In this section, we discuss some properties of the BLGc distribution. 

 

3.1 Expansion for the BLGc CDF and PDF 

 

In this subsection, we present some representations of CDF and PDF of the BLGc 

distribution. The mathematical relation given below will be useful in this subsection. 
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Here and henceforth, let 𝑋 be a random variable having the BLGc(𝜑), we can obtain  

some alternative expressions for Equations (5) and (6). 

If 𝑏 is a positive real non-integer and |𝑧| < 1 then 

 (1 − 𝑧)𝑏−1 = ∑
(−1)𝑖Γ(𝑏)

Γ(𝑏−𝑖)𝑖!
𝑧𝑖∞

𝑖=0  (7) 

Using the expansion (7), we can write (5) as  

 𝐹  𝐵𝐿𝐺𝑐
(𝑥, 𝜑) =

1

𝐵(𝑎,𝑏)
∫ 𝑤(𝑎−1)(1 − 𝑤)𝑏−1𝑑𝑤

1−(1+
𝜃𝑥

𝜃+1
)𝑒−𝜃𝑥

1−𝑝(1+
𝜃𝑥

𝜃+1
)𝑒−𝜃𝑥

0
 

 =
Γ(𝑏)

𝐵(𝑎,𝑏)
∑ (

(−1)𝑖

Γ(𝑏−𝑖)𝑖!
)∞

𝑖=0 ∫ 𝑤𝑎+𝑗−1𝑑𝑤

1−(1+
𝜃𝑥

𝜃+1
)𝑒−𝜃𝑥

1−𝑝(1+
𝜃𝑥

𝜃+1
)𝑒−𝜃𝑥

0
 

 =
Γ(𝑎+𝑏)

Γ(𝑎)
∑

(−1)𝑖Γ(𝑏)

Γ(𝑏−𝑖)𝑖!(𝑎+𝑖)
(

1−(1+
𝜃𝑥

𝜃+1
)𝑒−𝜃𝑥

1−𝑝(1+
𝜃𝑥

𝜃+1
)𝑒−𝜃𝑥

)

𝑎+𝑖

∞
𝑖=0 . 

Using the series representation  

 (1 − 𝑧)−𝑘 = ∑
Γ(𝑘+𝑖)

Γ(𝑘)𝑖!
𝑧𝑖, |𝑧| < 1, 𝑘 > 0∞

𝑖=0 . 

The PDF (6) can be expressed as 

 𝑓  𝐵𝐿𝐺𝑐
(𝑥, 𝜑) = ∑ ∑ (−1)𝑖 (

𝑎 − 1
𝑖

) (
𝑖 + 𝑗
𝑘

)
Γ(𝑎+𝑏+𝑗)

Γ(𝑎+𝑏)𝑗!

𝑖+𝑗
𝑘=0

∞
𝑖,𝑗=0  

 ×
𝜃2(1−𝑝)𝑏𝑝𝑗

𝐵(𝑎,𝑏)(𝜃+1)
(

𝜃

1+𝜃
)

𝑘

𝑥𝑘(1 + 𝑥)𝑒−𝜃(𝑏+𝑖+𝑗)𝑥 

 = ∑ ∑ 𝜔𝑖,𝑗,𝑘(𝑥𝑘 + 𝑥𝑘+1)𝑒−𝜃(𝑏+𝑖+𝑗)𝑥𝑖+𝑗
𝑘=0

∞
𝑖,𝑗=0 . (8) 

where  

 𝜔𝑖,𝑗,𝑘 = (−1)𝑖 (
𝑎 − 1
𝑖

) (
𝑖 + 𝑗
𝑘

)
Γ(𝑎+𝑏+𝑗)

Γ(𝑎+𝑏)𝑗!

𝜃2(1−𝑝)𝑏𝑝𝑗

𝐵(𝑎,𝑏)(𝜃+1)
(

𝜃

1+𝜃
)

𝑘

. 

 

3.2 Moments 

The 𝑟th moment of 𝑋 follows from (8) as  

 𝜇𝑟
 ′ = ∑ ∑ 𝜔𝑖,𝑗,𝑘 [

Γ(𝑟+𝑘+1)

[𝜃(𝑏+𝑖+𝑗)]𝑟+𝑘+1 (1 +
(𝑟+𝑘+1)

𝜃(𝑏+𝑖+𝑗)
)] .

𝑖+𝑗
𝑘=0

∞
𝑖,𝑗=0  

 

 The moment generating function (mgf) of the BLGc distribution is given by 

 𝑀𝑋(𝑡) = ∑ ∑ 𝜔𝑖,𝑗,𝑘 [
Γ(𝑘+1)

[𝜃(𝑏+𝑖+𝑗)−𝑡]𝑘+1
(1 +

(𝑘+1)

𝜃(𝑏+𝑖+𝑗−𝑡)
)] .

𝑖+𝑗
𝑘=0

∞
𝑖,𝑗=0  

 

For lifetime models, it is also of interest to obtain the conditional moments, the mean 

residual lifetime (MRL) and mean inactivity time (MIT). Further, it is of interest to 

known the 𝑟th lower and upper incomplete moments of 𝑋 defined (for 𝑠 > 0) by 𝑣𝑠(𝑡) =

𝐸(𝑋𝑠|𝑋 < 𝑡) = ∫ 𝑥𝑠𝑓(𝑥, 𝜙)𝑑𝑥
𝑡

0
  and 𝜂𝑠(𝑡) = 𝐸(𝑋𝑠|𝑋 > 𝑡) = ∫ 𝑥𝑠𝑓(𝑥, 𝜙)𝑑𝑥

∞

0
, 

respectively. 

The 𝑟th lower incomplete moment of the BLGc distribution is 

 𝑣𝑠(𝑡) = ∫ 𝑥𝑠𝑓(𝑥)𝑑𝑥
𝑡

0
= 𝜔𝑖,𝑗,𝑘 ∫

𝑡

0
(𝑥𝑠+𝑘 + 𝑥𝑠+𝑘+1)𝑒−𝜃(𝑏+𝑖+𝑗)𝑥𝑑𝑥. 

Or 
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𝑣𝑠(𝑡) = ∑ ∑ 𝜔𝑖,𝑗,𝑘{(𝛾(𝑠 + 𝑘 + 1, 𝜃(𝑏 + 𝑖 + 𝑗)𝑡)) + 𝛾(𝑠 + 𝑘 + 2, 𝜃(𝑏 + 𝑖 +
𝑖+𝑗
𝑘=0

∞
𝑖,𝑗=0

𝑗)𝑡)},     (9)  

 

where 𝛾(𝑠, 𝑡)  = ∫ 𝑥𝑠−1𝑒−𝑥𝑑𝑥
𝑡

0
 is the lower incomplete gamma function. 

The 𝑟th upper incomplete moment of the BLGc distribution is 

 𝜂𝑠(𝑡) = ∫ 𝑥𝑠𝑓(𝑥)𝑑𝑥
∞

𝑡
= 𝜔𝑖,𝑗,𝑘 ∫

∞

𝑡
(𝑥𝑠+𝑘 + 𝑥𝑠+𝑘+1)𝑒−𝜃(𝑏+𝑖+𝑗)𝑥𝑑𝑥 

= ∑ ∑ 𝜔𝑖,𝑗,𝑘{(Γ(𝑠 + 𝑘 + 1, 𝜃(𝑏 + 𝑖 + 𝑗)𝑡))

𝑖+𝑗

𝑘=0

∞

𝑖,𝑗=0

 

  

+Γ(𝑠 + 𝑘 + 2, 𝜃(𝑏 + 𝑖 + 𝑗)𝑡)}, 

where Γ(𝑠, 𝑡)  = ∫ 𝑥𝑠−1𝑒−𝑥𝑑𝑥
∞

𝑡
 is the upper incomplete gamma function. 

 

The MRL has many applications in biomedical sciences, life insurance, maintenance and 

product quality control, economics and social studies, demography and product 

technology (see Lai and Xie, 2006). Guess and Proschan (1988) gave an extensive 

coverage of possible applications of the mean residual life. The MRL (or the life 

expectancy at age 𝑡) represents the expected additional life length for a unit, which is 

alive at age 𝑡. The MRL is given by 

 𝑚 𝑋(𝑡) = 𝐸(𝑋|𝑋 > 𝑡) =
𝜂1(𝑡)

𝐹(𝑡)
− 𝑡, 

where 𝜂1(𝑡) is the first incomplete moment of 𝑋 and by setting 𝑠 = 1 in equation (9), we 

get 

 𝑚 𝑋
(𝑡) = ∑ ∑

𝜔𝑖,𝑗,𝑘

𝐹(𝑡)
{(Γ(𝑘 + 2, 𝜃(𝑏 + 𝑖 + 𝑗)𝑡))𝑖+𝑗

𝑘=0
∞
𝑖,𝑗=0  

 +Γ(𝑘 + 3, 𝜃(𝑏 + 𝑖 + 𝑗)𝑡)} − 𝑡 

The MIT represents the waiting time elapsed since the failure of an item on condition that 

this failure had occurred in (0, 𝑡). The MIT of 𝑋 is defined (for 𝑡 > 0) by  

 𝜏 𝑋(𝑡) = 𝐸(𝑋|𝑋 < 𝑡) = 𝑡 −
𝑣1(𝑡)

𝐹(𝑡)
 

 = 𝑡 − ∑ ∑
𝜔𝑖,𝑗,𝑘

𝐹(𝑡)
(Γ(𝑘 + 2, 𝜃(𝑏 + 𝑖 + 𝑗)𝑡)) + Γ(𝑘 + 3, 𝜃(𝑏 + 𝑖 +

𝑖+𝑗
𝑘=0

∞
𝑖,𝑗=0

𝑗)𝑡). 
The mean, variance, skewness and kurtosis of the BLGc distribution are computed 

numerically for  

some selected values of 𝜃, 𝑝, 𝑎 and 𝑏. The numerical values displayed in Table I indicate 

that the skewness of the BLGc distribution can range in the interval (1.52,253.35). The 

spread for its kurtosis is much larger ranging from 6.08 to 4896.44. 

 

 

Table 1: Mean, variance, skewness and kurtosis of the BLGc distribution 

𝜃 𝑝 𝑎 𝑏 Mean Variance Skewness Kurtosis 

0.75 0.50 0.50 1.50 1.448297 1.777968 1.521557 6.089516 

0.75 0.50 1.50 1.50 0.194821 0.630747 4.927939 31.00787 

0.75 0.50 3.50 1.50 0.029752 0.127514 13.73352 215.7578 

0.75 0.50 5.00 1.50 0.012576 0.059556 21.72350 527.4776 

0.75 0.50 10.0 1.50 0.002162 0.012230 55.35067 3317.415 
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0.75 0.50 0.50 3.50 0.021575 0.031670 11.19085 156.3427 

0.75 0.50 1.50 5.00 0.000037 0.000060 253.3699 74163.69 

2.75 0.75 2.50 1.50 0.019083 0.018668 8.422746 84.57181 

2.75 0.75 2.50 2.50 0.000232 0.000172 65.55413 4896.447 

1.50 0.95 1.50 1.50 0.003761 0.006918 26.36931 814.0115 

3.3 Mean deviation 

The amount of scatter in a population is evidently measured to some extent by the totality 

of deviations from the mean and median. One can derive the mean deviations about the 

mean 𝜇 = 𝐸(𝑋) and the mean deviations about the median 𝑀 which are defined by  

 𝛿1(𝑥) = ∫ |𝑥 − 𝜇|𝑓(𝑥)𝑑𝑥
∞

0
 

and 

 𝛿2(𝑥) = ∫ |𝑥 − 𝑀|𝑓(𝑥)𝑑𝑥,
∞

0
 

respectively. The measures 𝛿1(𝑥) and 𝛿2(𝑥) can be calculated using the relationships 

 𝛿1(𝑥) = ∫ |𝑥 − 𝜇|𝑓(𝑥)𝑑𝑥
∞

0
= 2[𝜇𝐹(𝜇) − 𝐽(𝜇)] 

and  

 𝛿2(𝑥) = ∫ |𝑥 − 𝑀|𝑓(𝑥)𝑑𝑥
∞

0
= 𝜇 − 2𝐽(𝑀), 

where 

 𝐽(𝑑) = ∑ ∑ 𝜔𝑖,𝑗,𝑘(Γ(𝑘 + 2, 𝜃(𝑏 + 𝑖 + 𝑗)𝑑)) + Γ(𝑘 + 3, 𝜃(𝑏 + 𝑖 + 𝑗)𝑑)
𝑖+𝑗
𝑘=0

∞
𝑖,𝑗=0 . 

 

3.4 Bonferroni and Lorenz curves 

The Bonferroni and Lorenz curves (Bonferroni 1930) and the Bonferroni and Gini indices 

have applications not only in economics to study income and poverty, but also in other 

fields like reliability, demography, insurance and medicine. 

The Bonferroni and Lorenz curves are given, respectively, by 

 𝐵(𝜋) =
𝐽(𝑞)

𝜋𝜇
= ∑ ∑

𝜔𝑖,𝑗,𝑘(Γ(𝑘+2,𝜃(𝑏+𝑖+𝑗)𝑞))+Γ(𝑘+3,𝜃(𝑏+𝑖+𝑗)𝑞)

𝜋𝜇

𝑖+𝑗
𝑘=0

∞
𝑖,𝑗=0  

and 

 𝐿(𝑝) = ∑ ∑
𝜔𝑖,𝑗,𝑘(Γ(𝑘+2,𝜃(𝑏+𝑖+𝑗)𝑞))+Γ(𝑘+3,𝜃(𝑏+𝑖+𝑗)𝑞)

𝜇

𝑖+𝑗
𝑘=0

∞
𝑖,𝑗=0 . 

4. Estimation and simulation 

In this section, we determine the maximum likelihood estimates (MLEs) of the 

parameters of the BLGc distribution from complete samples only. Let 𝑋1, 𝑋2, . . . , 𝑋𝑛 be a 

random sample of size 𝑛  from this distribution with the parameter vector 𝜑 =
(𝜃, 𝑝, 𝑎, 𝑏)𝑇. The log likelihood function for 𝜑 can be written as 

 ℓ = 𝑛𝑏log(1 − 𝑝) + 2𝑛log(𝜃) − 𝑛log[𝐵(𝑎, 𝑏)] − 𝑛log(1 + 𝜃) −
𝑏𝜃 ∑ 𝑥𝑖

𝑛
𝑖=1  

 +(𝑏 − 1) ∑ log (1 +
𝜃𝑥

𝜃+1
)𝑛

𝑖=1 + (𝑎 − 1) ∑ log (1 − (1 +
𝜃𝑥

𝜃+1
)𝑒−𝜃𝑥)𝑛

𝑖=1  

 −(𝑎 + 𝑏) ∑ log [1 − 𝑝 (1 +
𝜃𝑥

𝜃+1
) 𝑒−𝜃𝑥]𝑛

𝑖=1 + ∑ log(1 − 𝑥𝑖)
𝑛
𝑖=1 . 
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The associated score function is given by  

 𝑈𝑛(𝜑) = [
∂ℓ

∂𝜃
,

∂ℓ

∂𝑝
,

∂ℓ

∂𝑎
,

∂ℓ

∂𝑏
]

𝑇

. 

The log-likelihood can be maximized either directly or by solving the nonlinear 

likelihood equations obtained by differentiating the log-likelihood function. The 

components of the score vector are given by  

 
∂ℓ

∂𝜃
=

2𝑛

𝜃
−

𝑛

1−𝜃
− 𝑏 ∑ 𝑥𝑖

𝑛
𝑖=1 + (𝑎 − 1) ∑

𝑒−𝜃𝑥𝑖(𝑧𝑖−
1

(1+𝜃)2)

(1−𝑧𝑖𝑒−𝜃𝑥𝑖)

𝑛
𝑖=1  

 +(𝑏 − 1) ∑
𝑥𝑖

𝑧𝑖(1+𝜃)2
𝑛
𝑖=1 + 𝑝(𝑎 + 𝑏) ∑

𝑒−𝜃𝑥𝑖(𝑧𝑖−
1

(1+𝜃)2)

[1−𝑝𝑧𝑖𝑒−𝜃𝑥𝑖]

𝑛
𝑖=1 , 

 

 
∂ℓ

∂𝑝
= (𝑎 + 𝑏) ∑

𝑧𝑖𝑒−𝜃𝑥𝑖

[1−𝑝𝑧𝑖𝑒−𝜃𝑥𝑖]

𝑛
𝑖=1 −

𝑛𝑏

1−𝑝
, 

 

 
∂ℓ

∂𝑎
= 𝑛𝜓(𝑎 + 𝑏) − 𝑛𝜓(𝑎) + ∑ log(1 − 𝑧𝑖𝑒

−𝜃𝑥𝑖)𝑛
𝑖=1 − ∑ log[1 − 𝑝𝑧𝑖𝑒

−𝜃𝑥𝑖]𝑛
𝑖=1  

and 

 
∂ℓ

∂𝑏
= 𝑛𝜓(𝑎 + 𝑏) − 𝑛𝜓(𝑏) +

𝑛

log(1−𝑝)
− 𝜃 ∑ 𝑥𝑖

𝑛
𝑖=1  

 + ∑ log𝑧𝑖
𝑛
𝑖=1 − ∑ log[1 − 𝑝𝑧𝑖𝑒

−𝜃𝑥𝑖]𝑛
𝑖=1 , 

where 𝑧𝑖 = (1 +
𝜃𝑥𝑖

𝜃+1
). The maximum likelihood estimation (MLE) of 𝜑, say 𝜑̂ , is 

obtained by solving the nonlinear system 𝑈𝑛(𝜑) = 0. These equations cannot be solved 

analytically, and statistical software can be used to solve them numerically via iterative 

methods. We can use iterative techniques such as a Newton–Raphson type algorithm to 

obtain the estimate 𝜑̂. Applying the usual large sample approximation, MLE of 𝜑, i.e 𝜑̂ 

can be treated as being approximately 𝑁4(𝜑, 𝐽𝑛(𝜑)−1), where 𝐽𝑛(𝜑) = 𝐸[𝐼𝑛(𝜑)]. Under 

conditions that are fulfilled for parameters in the interior of the parameter space but not 

on the boundary, the asymptotic distribution of √𝑛(𝜑̂ − 𝜑) is 𝑁4(0, 𝐽(𝜑)−1) , where 

𝐽(𝜑) = lim𝑛→∞𝑛−1𝐼𝑛(𝜑) is the unit information matrix. This asymptotic behavior 

remains valid if 𝐽(𝜑) is replaced by the average sample information matrix evaluated at 

𝜑̂, say 𝑛−1𝐼𝑛(𝜑̂). The estimated asymptotic multivariate normal 𝑁4(𝜑, 𝐼𝑛(𝜑̂)−1) 

distribution of 𝜑̂ can be used to construct approximate confidence intervals for the 

parameters and for the hazard rate and survival functions. An 100(1 − 𝜉) asymptotic 

confidence interval for each parameter 𝜑𝑟 is given by 

 𝐴𝐶𝐼𝑟 = (𝜑̂𝑟 − 𝑧𝜉

2

√𝐼𝑟𝑟̂ , 𝜑̂𝑟 + 𝑧𝜉

2

√𝐼𝑟𝑟̂) 

where 𝐼𝑟𝑟̂ is the (𝑟, 𝑟) diagonal element of 𝐼𝑛(𝜑̂)−1 for 𝑟 = 1,2,3,4, and 𝑧𝜉

2

 is the quantile 

1 −
𝜉

2
 of the standard normal distribution. 

We now perform a small Monte Carlo simulation study to verify the finite sample 

behavior of the MLEs of the parameters. All simulation results are obtained from 1 000 

Monte Carlo replications.  

Table 2 lists the bias and mean square errors (MSE) of the MLEs of the model parameters 

by taking sample sizes n = 25, 75, 150, 250 and 400. From Table 2, it is clear that if the 

sample size increases, the empirical biases and MSEs tend to 0. 
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Table 2: The bias and MSE values for BLGc(𝜽 =0.5, 𝒑 =0.7, 𝒂 =0.9, 𝒃 =0.4) 

𝑛 25 75 150 250 400 

 Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE 

𝜽 0.357 0.187 0.288 0.177 0.199 0.128 0.105 0.019 0.055 0.005 

𝒑 0.217 0.112 0.199 0.107 0.187 0.087 0.123 0.059 0.075 0.019 

𝒂 0.231 0.103 0.126 0.057 0.100 0.046 0.019 0.330 0.012 0.320 

𝒃 0.119 0.105 0.112 0.101 0.103 0.074 0.088 0.066 0.076 0.054 

5. Application 

In this section, the flexibility of the BLGc distribution is illustrated using a real data set. 

The data contain 128 observations and represents the remission times (in months) of a 

random sample of bladder cancer patients (Lee and Wang, 2003). These data have been 

analyzed by Mead and Afify (2017), Aldahlan and Afify (2018) and Cordeiro et al. 

(2019). 

 

The fitted models are compared using −2ℓ̂ (where ℓ̂ is the maximized log-likelihood), 

𝑊∗ (Cramér-Von Mises), 𝐴∗ (Anderson-Darling) and KS (Kolmogorov Smirnov with its 

p-value (PV)) statistics. 

We compare the fits of the BLGc distribution to the fits of some related distributions: 

 

The Lindley geometric (LGc) due to Zakerzadeh and Mahmoudi (2012) with the PDF 

 

 𝑓(𝑥) =
𝜃2

𝜃+1
(1 − 𝑝)(1 + 𝑥)𝑒−𝜃𝑥 [1 − 𝑝(1 +

𝜃𝑥

𝜃+1
)𝑒−𝜃𝑥]

−2

 

for 𝑥 > 0, 𝜃 > 0 and 0 < 𝑝 < 1; the five-parameter Lindley (FPL) distribution due to 

Al-Babtain et al. (2015) with the PDF 

 

 𝑓(𝑥) =
𝜃2

𝜂+𝜃𝑘
[

𝑘(𝜃𝑥)𝛼−1

Γ(𝛼)
+

𝜂(𝜃𝑥)𝛽−1

𝜃Γ(𝛽)
] 𝑒−𝜃𝑥 

for 𝑥 > 0, 𝜃 > 0, 𝛼 > 0, 𝛽 > 0, 𝜂 ≥ 0 and 𝑘 ≥ 0; the transmuted two-parameter Lindley 

(TTL) due to Kemaloglu and Yilmaz (2017) with the PDF 

 

 𝑓(𝑥) =
𝑎2

𝛼+𝑎
(1 + 𝛼𝑥)exp(−𝑎𝑥) [1 − 𝜆 + 2𝜆

𝛼+𝑎+𝛼𝑎𝑥

𝛼+𝑎
exp(−𝑎𝑥)] 

for 𝑥 > 0, 𝜃 > 0, 𝛼 > 0 and |𝜆| ≤ 1; the Weibull Lindley (WL) due to Asgharzadeh et 

al. (2018) with the PDF 

 

 𝑓(𝑥) =
exp[−𝜆𝑥−(𝛽𝑥)𝛼]

1+𝜆
[𝛼𝜆(𝛽𝑥)𝛼 + 𝛼𝛽(1 + 𝜆)(𝛽𝑥)𝛼−1 + 𝜆2(1 + 𝑥)] 

for 𝑥 > 0, 𝛼 > 0, 𝛽 > 0 and 𝜆 > 0; the Quasi Lindley (QL) due to Shanker and Mishra 

(2013) with the PDF 

 

 𝑓(𝑥) =
𝑎

𝛼+1
(𝛼 + 𝑎𝑥)exp(−𝑎𝑥) 

for 𝑥 > 0, 𝑎 > 0 and 𝛼 > −1; the complementary geometric transmuted Lindley 

(CGcTL) due to Afify et al. (2018) with the PDF 
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 𝑓(𝑥) =
𝜃𝛼2

1+𝛼
(1+𝑥)exp(−𝛼𝑥)[1−𝜆+2𝜆

1+𝛼+𝛼𝑥

1+𝛼
exp(−𝛼𝑥)]

{1−(1−𝜃)[1−
1+𝛼+𝛼𝑥

1+𝛼
exp(−𝛼𝑥)][1+𝜆

1+𝛼+𝛼𝑥

1+𝛼
exp(−𝛼𝑥)]}

2 

for 𝑥 > 0, 𝛼 > 0, 𝜃 ∈ (0,1) and |𝜆| ≤ 1; the new weighted Lindley (NWL) due to 

Asgharzadeh et al. (2016)  with the PDF 

 𝑓(𝑥) =
𝑎2(1+𝛼)2(1+𝑥)[1−exp(−𝛼𝑎𝑥)]exp(−𝑎𝑥)

𝑎𝛼(1+𝛼)+𝛼(2+𝛼)
 

for 𝑥 > 0, 𝛼 > 0 and 𝑎 > 0; the Lindley distribution with the PDF 

 𝑓(𝑥) =
𝜃2

1+𝜃
(1 + 𝑥)exp(−𝜃𝑥) 

for 𝑥 > 0 and 𝜃 > 0. 

Table 3 lists the values of −2ℓ̂, 𝑊∗, 𝐴∗, KS, PV based on the KS statistic (in 

parentheses), the parameter estimates and standard errors (SEs) (in parentheses) for the 

fitted BLGc distribution and other fitted models. 

 

The fitted PDFs of the fitted distributions and the empirical histogram are given in Figure 

3. The corresponding probability (PP) plots are given in Figure 4. Figure 5 displays the 

estimated CDF and estimated survival function (SF) of the BLGc distribution. 

 

Table 3: The −𝓵̂, 𝑾∗, 𝑨∗, KS and estimates for cancer data 
  Distribution   −2ℓ̂   𝑊∗   𝐴∗    KS    Estimates  

 BLGc    818.476    0.013    0.083    0.028   𝜃    0.0496(0.0404)  

         (0.999)   𝑝    0.9330(0.0845)  

          𝑎    1.0160(0.2092)  

          𝑏    1.2107(0.3282)  

 LGc    819.186    0.015    0.1037    0.040   𝜃    0.0741(0.0351)  

         (0.984)   𝑝    0.8899(0.0991)  

 FPL    820.007    0.026    0.166    0.039   𝜃    0.1792(0.0348)  

         (0.988)   𝛼    7.6843(2.0177)  

          𝛽    1.4085(0.1853)  

          𝑘    0.1935(14.434)  

          𝜂    0.7703(57.446)  

 TTL    825.882    0.117    0.687    0.063   𝛼    0.1578(0.1670)  

         (0.677)   𝑎    0.1170(0.0293)  

          𝜆    0.7128(0.2068)  

 WL    828.176    0.131    0.786    0.070   𝛼    1.0478(0.0675)  

         (0.556)   𝛽    0.1045(0.0093)  

          𝜆    0.0010(0.0176)  

 QL    828.686    0.119    0.716    0.084   𝛼    117.887(1483)  

         (0.318)   𝑎    0.1076(0.0146)  

 CGcTL    830.326    0.104    0.617    0.089   𝛼    0.1558(0.0203)  

         (0.252)   𝜃    0.9990(0.2547)  

          𝜆    0.6169(0.1695)  

 NWL    838.928    0.169    1.012    0.116   𝛼    235.080(558.73)  

         (0.061)   𝑎    0.1961(0.0123)  

 L    839.058    0.171    1.025    0.116   𝜃    0.1960(0.0123)  

         (0.062)      
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From Table 2, we conclude that the BLGc distribution has the lowest values for all 

goodness-of-fit  statistics among all fitted distributions. So, it can be chosen as the best 

model to fit this data set. 

 
Figure 3: Fitted PDFs of the fitted distributions for cancer data 
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Figure 4: PP plots of the fitted distributions for cancer data 

  

Figure 5: Estimated CDF of the BLGc distribution (left panel) and estimated SF of 

the BLGc distribution (right panel) 

 

6. Conclusions 

 

In this paper, we propose a new four-parameter model, called the beta Lindley-geometric 

(BLGc) distribution, which extends the Lindley-geometric distribution due to Zakerzadeh 

and Mahmoudi  

(2012). We derive explicit expressions for the moments, mean deviation and Bonferroni 

and Lorenz curves. We discuss the maximum likelihood estimation of the model 

parameters and present a simulation results to assess the performance of the maximum 

likelihood estimation. An application illustrates that the BLGc model provides 

consistently better fit than other competitive  
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