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Abstract 
Mixed Logit model  (MXL) is generated from Multinomial Logit model (MNL) for discrete, i.e. nominal, 

data. It eliminates its limitations particularly on estimating the correlation among responses.  In the MNL, 

the probability equations are presented in the closed form and it is contrary with in the MXL. Consequently, 

the calculation of the probability value of each alternative get simpler in the MNL, meanwhile it needs the 

numerical methods for estimation in the MXL.  In this study, we investigated the performance of maximum 

likelihood estimation (MLE) in the MXL and MNL into two cases, the low and high correlation 

circumstances among responses. The performance is measured based on differencing actual and estimation 

value.  The simulation study and real cases show that the MXL model is more accurate than the MNL model. 

This model can estimates the correlation among response as well. The study concludes that the MXL model 

is suggested to be used if there is a high correlation among responses. 
 

Keywords:   Logit; Maximum Likelihood; Monte Carlo simulation; Utility model 

 

Introduction  

Discrete choice models (DCM) describe decision maker’s choices among alternatives. The 

decision makers can be people, households, firms, or  any other decision-making unit, and 

the alternatives might represent competing products, courses of action, or any other options 

or items over which choices must be made. Multinomial Probit Model  (MNP), MNL and 

Mixed Logit Model (MXL) are part of DCM. These models are often used to analyze the 

discrete choices made by individuals recorded in survey data. These models have been 

applied in marketing,  transportation,  political  research, energy, housing etc. 

(Camminatiello and Lucadamo, 2010; Yang, 2010; Lovreglio et al., 2016; Merkert and 

Beck, 2017). 

 

Each model has advantages and disadvantages. The advantage of MNL is to have a simpler 

form of equation in estimating the model. The weakness of MNL is that the model is 

prepared by using irrelevant alternative independence (IIA). Meanwhile, MNP was 

developed to overcome MNL weakness in terms of IIA. However MNP has an open form 

of equation, so its model estimation requires simulation and iteration methods such as 

Newton-Raphson. 

 

The MXL has been developed to overcome the limitations of both of the MNL and the 

MNP for both of the IIA assumption and the computational aspects. MXL can be derived 

under a variety of different behavioral specifications, and each derivation provides a 

particular interpretation. The MXL is defined on the basis of the functional form for its 

choice probabilities. Any behavioral specification which derived the choice probabilities 

will take this particular form, is called an MXL (Train, 2003). Refer to vast and popular 

applications of  the MXL,  it was stated that  the MXL as the model of the future (Bhat, 

1998; Bolduc, 1999;  Lovreglio et al., 2016; Train, 2016) which proposed a flexible 
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procedure to represent the distribution of the random parameter model (Train, 2016).  

However it raises the next issue on how accurate the MXL compared to MNL. 

 

This paper, the profile of MXL for detecting the correlation among alternatives on utilities 

models is studied. Model was constructed and applied for simulation data on several rank 

of dependency (correlation) among alternatives and R.3.1.1 software was adopted to run 

the computational work. Parameters in MXL and MNL are estimated by using the MLE 

method which has good properties for large samples, especially asymptotically  efficient 

and asymptotic bias in simulated maximum likelihood estimation (Lee, 1995; Horowitz, 

and Savin, 2001; Lee, 1992). Based on these properties, the estimator accuracy can be 

measured by using the distance between the estimator and of the parameters at various 

levels of correlation. 

 

Aim of study is to evaluate the effect of correlation among choice on MXL and MNL 

models. In order to organize the scheme of study, the specification of MNL and MXL, how 

to perform parameter estimation using MLE and accuracy of parameters estimation in the 

MNL and MXL using simulation data are presented. Some examples of the application of 

MNL and MXL in real cases are also described. 

Utility Model 

To fit in a discrete choice framework, the set of alternatives, called the choice set, needs to 

exhibit three characteristics. First, the alternatives must be mutually exclusive from the 

decision maker’s perspective. The decision maker chooses only one alternative from the 

choice set. Second, the choice set must be exhaustive, in that all possible alternatives are 

included. The decision maker necessarily chooses one of the alternatives. Third, the 

number of alternatives must be finite. A decision maker (respondent),  denoted as i was 

faced with  a choice among J alternatives. The respondent has a certain level utility (or 

profit) for each alternative j. Uij  for j=1,...,J  is the utility that respondent i obtain from 

alternative j and the real value of Uij that is unkonwn by researcher. The decision maker 

chooses the alternative that provides the greatest utility. Researcher did not know the value 

of utility for respondents in each option and looked at the attributes, is denoted Zij, that 

exist for each choice and respondents attribute is denoted Xi. 

 

A function that relates these observed factors to the decision maker’s utility is denoted Vij  

and is often called representative utility, 

𝑉𝑖𝑗 =  𝛼𝑗 + 𝛽𝑗𝑋𝑗 + 𝛾𝑗𝑍𝑖𝑗       (1) 

where i=1,...,n and j=1,...,J. Vij is assigned as representative utility. Equation (1) is  a model 

constructed and reported by Boulduc (1999).  Due to the unkown value of Uij , therefore 

𝑈𝑖𝑗 = 𝑉𝑖𝑗 + 𝜀𝑖𝑗 .        (2) 

𝜺𝑖 = (𝜀𝑖1, … , 𝜀𝑖𝐽)′ is a random variable  having density of 𝑓(𝜺𝑖),  where  Vij is observed 

factor and 𝜀𝑖𝑗 is unobserved factor in utility. The density 𝑓(𝜺𝑖) is the distribution of the 

unobserved portion of utility within the population of people who face the same observed 

portion of utility. Different choice models are derived under different specifications of the 

density of unobserved factors, 𝑓(𝜺𝑖).  

Multinomial Logit Model (MNL) 

MNL model is derived  under the assumption that 𝜀𝑖𝑗 is independent and identically 

distributed (iid) extreme value for all j,  Function of extreme value density type I (Gumbel) 

is 
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𝑓(𝜀𝑖𝑗) = exp(−𝜀𝑖𝑗) . exp (−exp (−𝜀𝑖𝑗) .    (3) 

Mean and the variance from this distribution are 0.5772 and 𝜋2/6, respectively. 

Cummulative distribution  of Extreme Value type I is 

𝐹(𝜀𝑖𝑗) = exp (−exp (−𝜀𝑖𝑗) .      (4) 

The Extreme Value distribution and the Standard Normal distribution can be shown in 

Figure 1. 

 
Figure 1: Extreme Value and Standard Normal distribution 

 

Based on Figure 1, it can be seen that the Extreme Value distribution is almost symmetrical 

distribution with a standard normal distribution. Though this distribution has a thicker or 

heavy tail  compared to the normal distribution. The probability of  decision maker i choice 

k alternative  is stated as: 

𝜋𝑖𝑘 =
exp (𝑉𝑖𝑘)

∑ exp (𝑉𝑖𝑗)
𝐽
𝑗=1

.        (5) 

This formula is assigned as logit probability (Train, 1998). Parameters (𝛼𝑗, 𝛽𝑗, 𝛾) can be 

estimated by using MLE. 

Mixed Logit Model (MXL) 

Mixed logit assumes that the unobserved portions of utility are a mixture of an independent 

and identically distributed (iid) extreme value term and another multivariate distribution 

selected by the researcher. This general specification allows MXL to avoid imposing the 

IIA property on the choice probabilities. Further, MXL is a flexible tool for examining 

heterogeneity in responden behavior through random coefficients specifications. Mixed 

Logit is a very flexible model that can be approached by several random utility models  

(McFadden  and Train, 2000). In Equation (2), if a 𝛿𝑗 random variable having density 𝑓(𝛿𝑗) 

is added then utility model can served in the following form: 

𝑈𝑖𝑗 = 𝑉𝑖𝑗 + 𝛿𝑗 + 𝜀𝑖𝑗.        (6) 

Generally, the assumption of 𝑓(𝛿𝑗) in standard normal distribution is used, 𝛿𝑗~𝑁(0,1) and  

𝜹 = (𝛿1, … , 𝛿1)~𝑁(𝟎,). 
 

It is assumed  that 𝜀𝑖𝑗 has an extreme value distribution and is independent to 𝛿𝑗. The MXL 

is a standard integral Logit in respect to density 𝜹. The probabily of i-th respondent  chooses 

the k-th alternative can be formulated into: 

𝜋𝑖𝑘 = ∫ 𝑔𝑖𝑘(𝜹)𝒇(𝜹)𝒅𝜹       (7) 
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where  𝑔𝑖𝑘(𝜹) is logit probability that can be writen as: 

𝑔𝑖𝑘(𝜹) =
exp (𝑉𝑖𝑘+𝛿𝑘)

∑ exp (𝑉𝑖𝑗+𝛿𝑖𝑗)
𝐽
𝑗=1

       (8) 

 

The probability in MXL is a weighted mean to the logit by using weighting density function 

𝑓(𝜹). The MXL is a mixed form of  logit function and density function 𝑓(𝜹) and the value 

of probability in Equation (8) can be approached/computed by using simulation. The steps 

of simulation are as following (Train, 2003)  :  

a. Take a value of 𝜹 from density 𝑓(𝜹) and label it as 𝛿(𝑟). At the first take r=1. 

b. Calculate the logit probability 𝑔𝑖𝑘(𝛿(𝑟)) from equation (8). 

c. Repeate the steps 1 and 2 for R–times and evaluate the average 

�̃�𝑖𝑘 =
1

𝑅
∑ 𝑔𝑖𝑘(𝛿(𝑟))𝑅

𝑟=1        (9) 

Maximum Likelihood Estimation (MLE) on Multinomial Distribution 

Let Y1,Y2,...,Yn be random variables having pooled density: 

𝑓(𝒚|𝜽) = 𝑓(𝑦1, … , 𝑦𝑛|𝜃1, … , 𝜃𝐽)      (10) 

These functions depend on parameters 𝜽 = (𝜃1, … , 𝜃𝐽). As Yi is independent each other, 

then we have 

𝑓(𝒚|𝜽) = 
=

n

i

iyf
1

),(          (11) 

The Likelihood function, labeled 𝐿(𝜽|𝒚),  is a function of the parameters of a statistical 

model given data, is 

𝐿(𝜽|𝒚) = 
=

n

i

iyf
1

)|(         (12) 

Suppose  that is a probable/possible set of values for vector parameter 𝜽 and is also 

assigned as parameter space.  In another experiment. it was defined  that MLE for 𝜽,  

denoted as �̂�𝑀𝐿𝐸  is value of 𝜽 which maximizes the likelihood function 𝐿(𝜽|𝒚) on  data y 

(Greene, 2005). 

�̂�𝑀𝐿𝐸 = );L(maxarg y


       (13) 

If Y1, Y2,...,Yn are random samples having multinomial density, then 

𝑓(𝑦𝑖|𝜋1, … , 𝜋𝐽) = 𝜋1
𝑦𝑖1 … 𝜋𝐽

𝑦𝑖𝐽
 for i=1,...,n. 

The 𝜋𝑖𝑗 is the probability of  the i-th decision maker choose the j-th alternative as in the 

equations (5) and (7) that obtained parameter 𝜽. Therefore, 𝜋𝑖𝑗 = 𝜋𝑖𝑗(𝜽). The Likelihood 

function for parameter 𝜽  can be constructed as: 

𝐿(𝜽) = ∏ 𝜋𝑖1
𝑦𝑖1 … 𝜋

𝑖𝐽

𝑦𝑖𝐽𝑛
𝑖=1   

The log-likelihood function is 

𝑙𝑜𝑔 𝐿(𝜽) =  
= = =

=
n

i

n

i

J

j

ijijyL
1 1 1

i ]log[)(log       (14) 

MLE is the value  of 𝜽 that maximizes the log 𝐿(𝜽) function or 

�̂�𝑀𝐿𝐸 = 
= =

=
n

i

J

j

ijijy
1 1

]log[maxarg)logL(maxarg 


   
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In MXL model, 𝜋𝑖𝑗 is a double integral that can be calculated/computed by 

using/implementing the simulation method. For example �̃�𝑖𝑗 is the value of 𝜋𝑖𝑗 that was 

calculated by using the simulation in Equation (9).  The simulated likelihood  function was 

obtained by subtituting the 𝜋𝑖𝑗 value into log-likehood function in Equation (14) by 

simulating the  �̃�𝑖𝑗 value. 

𝑠𝑖𝑚𝑙𝑜𝑔 𝐿(𝜽) =  
= = =

=
n

i

n

i

J

j

ijiji yL
1 1 1

]~log[)(simlog    

The �̂�𝑀𝑆𝐿 is the  𝜽  value which maximizes the 𝑠𝑖𝑚𝑙𝑜𝑔 𝐿(𝜽). 

�̂�𝑀𝑆𝐿 = 
= =

=
n

i

J

j

ijijyL
1 1

]~log[maxarg)(simlog  maxarg 


    (15) 

Simulation Studies 

In order to detect the influence of correlation among alternatives, the multinomial data was 

generated for J=3. Three alternatives were chosen as representative for the correlation 

structure among alternatives for J case in general. First, there is a correlation between 

alternative j and j’, meanwhile there is no correlation among them. Therefore, conclusion 

from the simulation at case J=3 can be generalized for all value of J. It is assumed that there 

is a correlation among the first and the second, but there is no correlation for the third 

alternative.  

 

For example an application in the selection of the mode of transport, there are three 

alternatives: private car, taxi, and public transport. Taxi is probably related to the private 

car, in a sense that for someone has no private car then taxi will be chosen and vice versa. 

Furthermore, the simulated data is generated using the following utility model: 

𝑈𝑖1 = 𝑉𝑖1 + 𝛿𝑖1 + 𝜀𝑖1; 𝑈𝑖2 = 𝑉𝑖2 + 𝛿𝑖2 + 𝜀𝑖2; 𝑈𝑖3 = 𝑉𝑖3 + 𝜀𝑖3  (16) 

where 𝜀𝑖𝑗~Extreme Value type I, 𝛿𝑖1~𝑁(0,1), 𝛿𝑖2~𝑁(0,1), 𝜹 = (𝛿1, 𝛿2)~𝑁(𝟎,) i=1,...,n;  

j=1,2,3 and  = 








1

1

12

12




. 

It is assumed that  𝑉𝑖𝑗 =  𝛼𝑗 + 𝛽𝑗𝑋𝑗 + 𝛾𝑍𝑖𝑗. Xi is a characteristic individual/decision maker 

and Zij is the attribute of the alternative. Third  alternative was assumed as a baseline,  𝛼3 =
𝛽3 = 0. Data was generated on parameter  𝛼1 = −1 ,  𝛼2 = 1,  𝛽1 = 0.5, 𝛽2 = −0.5, 𝛾 =
1 and on several value of 𝜎12. Based on these simulation data was estimated by using MNL 

and MXL. Furthermore, based on several values of  𝜎12, estimators obtained on MXL are 

compared to those were obtained by MNL. 

Results and Discussion 

It is clear from Equation (3) that 𝑉𝑎𝑟(𝜀𝑖𝑗) = 𝜋2/6 and is assumed that 𝜀𝑖𝑗 and 𝛿𝑖𝑗 are 

independent. Therefore, the covariance  among alternatives on Equation (16) is 

𝐶𝑜𝑣(𝑈𝑖) =












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     (17) 

The correlation between alternative 1 and alternative 2 is 



Jaka Nugraha 

Pak.j.stat.oper.res.  Vol.XV  No.III 2019  pp563-575 568 

𝜌 = 𝐶𝑜𝑟(𝑈𝑖1, 𝑈𝑖2) = 0

6

2

12

12 

+





 and  𝜎12 =
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21

2

21

ii

ii
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−



  (18) 

The equation (18) shows a relationship between covarians (𝜎12) to the correlation (𝜌) value. 

Data were generated on several values , and they are served in Table 1. 

Table 1: Relationship between covarians (𝝈𝟏𝟐) to the correlation (𝝆) value. 
No. 𝝈𝟏𝟐 𝝆 No. 𝝈𝟏𝟐 𝝆 No. 𝝈𝟏𝟐 𝝆 No. 𝝈𝟏𝟐 𝝆 
1 0.1 0.06 6 2 0.55 11 7 0.81 16 12 0.88 
2 0.2 0.11 7 3 0.65 12 8 0.83 17 13 0.89 
3 0.3 0.15 8 4 0.71 13 9 0.85 18 14 0.89 
4 0.5 0.23 9 5 0.75 14 10 0.86 19 15 0.90 
5 1 0.38 10 6 0.79 15 11 0.87    

 

Packages of R.3.1.1 software were employed to generate data and estimate the parameter.  

Some packages in R software are:  

a. randtoolbox : to generate Halton series that can be used to calculate normal density 

integral, 

b. micEcon : to calculate MLE on MNL model, 

c. mnormt : to generate multivariate normal data, 

d. adapt : to evaluate maximum point from log-likelihood function on Mixed Logit model.  

 

Before simulation using correlation structure as presented in Table 1, it is important to 

conduct simulation to observe the influence of sample size towards parameter estimation 

value. The observation on the effect of sample size to the estimator was conducted for the 

independent structure 𝜎12 = 0 or 𝜌 = 0  for n=50, n=100, n=500, n=1000 and n=5000. The 

parameter estimation was perforemd by using geepack packages in R software. The 

estimation results are presented in Figure 2 – 4.  
 

  
Figure 2.: Box plot of parameter 𝛼1 = −1 and 𝛼2 = 1 

  
Figure 3.:Box plot of parameter 𝛽1 = 0.5 and 𝛽2 = −0.5 
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Figure 4. : Box plot of parameter 𝛾 = 1  

From Figure 2-4 it is seen that for the sample size less than 100, the big variance is resulted. 

This is due to the wide deviation which resulted from some samples. It is concluded that 

for n=50 and 100 the resulted estimators are instable. Moreover, the estimator resulted from 

n=500, 1000 and 5000 are stable enough which there is no such wide deviation from the 

targeted value. The bigger sample size, the obtained estimator approaching and fit to the 

real values. Morever, the bigger n, the more stable estimator or the variance of each 

estimator is smaller. 

 

Eventhough n is big enoughr (n=5000), the bias is still available. The reasons are, first, the 

generated data are in normal distribution (not from the extreme value distribution), which  

the normal and extreme value distribution have different variances. Mean and the variance 

from distribution of Extreme Value type I are 0.5772 and π2/6, respectively Generalized 

estimating equation (GEE) model, as utilized for geepack packages is based on the Extreme 

Value distribution.  

 

Furthermore, the simulation was performed in order to evaluate the influence of towards 

estimator of all parameters with the sample size, n=1000. The actual correlation value and 

its estimation value are presented in Figure 5. 

 
Figure 5: Plot of actual and estimate correlation  

From Figure 5., it can be seen that MXL could estimate the correlation parameter, 

particularly on the correlation value more than 0.4. By using the hypothesis H0 :  
𝜌𝑎𝑐𝑡𝑢𝑎𝑙=𝜌𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒, it can be concluded that there is insignificant correlation among actual 

and estimated value on the p-value of 0.833413.  It suggests that MXL has better ability to 

estimate the correlation of the parameter. 
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Further the bias of each parameter  (𝛼1,  𝛼2,  𝛽1, 𝛽2, 𝛾) are illustrated in  Figure 6 to Figure 

10. 

 
Figure 6: Comparison on estimator of 𝛼1 in MNL and MXL 

 
Figure 7: Comparison on estimator of  𝛼2 in MNL and MXL 

According to Figures 6 and 7, the 𝛼 estimator  in MNL has a great bias is proportional to 

the magnitude of the correlation between the response. At the level of correlation is high 

(more than 0.7), the magnitude of the bias in 𝛼 estimator reaches more than 50%.  

Meanwhile, MXL is not affected by the correlation between the response.  The estimators 

in MNL always smaller than the MXL. On the actual parameter 𝛼1 = −1, the mean of 

estimator in both MNL and MXL are -1.2560 and -0.9873 respectively.  By using 

hypothesis H0: 𝛼1 = −1,  the significant difference among actual and estimated value was 

observed in MNL, with the p-value of 4.011x10-9. Meanwhile, MXL gives the insignificant 

result among them at the p-value of 0.626. 

 

For the actual parameter 𝛼2 = 1, the estimator mean in MNL and MXL are  0.5578 and 

1.0333 respectively.  By using hypothesis H0: 𝛼2 = 1,  insignificant values of the actual 

and estimated values are observed using MXL with the p-value of 0.441. On tare he MNL, 

the p-value of 3.801x10-6 is observed, indicating the significant difference among actual 

and estimated value.  
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Figure 8: Comparison on estimator of 𝛽1 in MNL and MXL 

Based on Figure 8, 𝛽1 estimator in the model MNL and MXL is the same mean of 0.5488 

and 0.5557 respectively. By the actual value 𝛽1 = 0.5,  it can be concluded that there is 

no significant difference between actual and estimated values.  

 

On the 𝛽2 = −0.5, the almost similar result is obtained with whose observed on the 

parameter , MNL gives significant difference of estimator among significant and actual 

values with p-value 5.659x10-5. The mean of estimator 𝛽2 on MNL model is -0.3759, while 

insignificant estimator among both values is observed in the MXL with p-value of 0.415. 

Mean of estimator 𝛽2 on model MNL is -0.4800.   

 

The results is in line with the parameter  that has actual value of 1 in that the MNL model 

produces the predictor value of 0.7347 that gives significantly difference among actual and 

estimated values (p-value of 3.508x10-7), meanwhile the MXL  model gives the estimator 

value of 1.0115, insignificant difference with actual value. P-value of MXL model is 0.566. 
 

 
Figure 9: Comparison on estimator of 𝛽2 in MNL and MXL 
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Figure 10: Comparison on estimator of 𝛾 in MNL and MXL 

 

Figures 9 and 10 illustrate that the  𝛽2 estimator  and 𝛾  estimator  in MNL have a great 

bias is proportional to the magnitude of the correlation between (or among) the response. 

Meanwhile, MXL is not affected by the correlation between (or among) the response. 

These results are similar to those seen in the 𝛼 parameter. 
 

Some conclusions which can be derived from Figures 5 to 10 are:  

a. Correlation parameters can be well estimated by MXL. 

b. In general the bias on MNL model is higher than on MXL. 

c. For the intercept parameters (i.e : 𝛼1, 𝛼2). In case of the high correlation (more than 

0.7) presents then the MNL produces a higher bias in comparison to the MXL. 

d. For coefficient parameter X (i.e : 𝛽1). bias from MNL model is relatively equal to MXL. 

For coefficient parameter Z (i.e : 𝛾). In case of high correlation (more than 0.5) then MNL 

produces a higher bias than MXL. 

Applications in Real Cases 

In this section, we apply the MNL and MXL in real problems. There are two cases, each 

represents the state of the low and high correlation circumstances. The first case represents 

a weak correlation is taken from data “Electricity” and the second one represents a high 

correlation, is taken from the data “Heating”. Both of them are from mlogit package in 

R.3.1.1 

 

Case 1. Data “Electricity” are taken from mlogit package in R.3.1.1. A sample of 

residential electricity customers were asked a series of choice experiments. In each 

experiment, four hypothetical electricity suppliers were described. The person  as asked 

which of the four suppliers he/she would choose (j=1,2,3,4). In the experiments, the 

characteristics of each supplier were stated. Pf is fixed price at a stated cents per kWh for 

each choice (electricity suppliers). Cl is the length of contract that the supplier offered, in 

years (such as 1 year or 5 years).  

As the first supplier (j=1) is stated as base line, the representative utility models 

can be expressed as  
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𝑉𝑖𝑗 = 𝛼𝑗 + 𝛾1𝑓𝑖𝑗 + 𝛾2𝐶𝑙𝑖𝑗  for j=2,3,4. 

The results of estimating MNL and MXL  are presented in Table 2. 
Table 2 : Estimator of the parameter for  data “Electricity” 

Parameter MNL MXL 

Estimate       p-value    Estimate       p-value 

𝛼2 0.081999   0.072198 0.145438 0.031174 

𝛼3 0.085752 0.070240 0.149103 0.032027 

𝛼4 0.174372 0.018980 0.200542 0.017271 

𝛾1 0.055185 0.001551 0.076797 0.001710 

𝛾2 -0.058379 0.005354 -0.084129 0.003903 

Var(Pf)   0.145916 0.000993 

Cov(Cl.Pf)   0.059773 0.009869 

Var(Cl)   0.249205 0.000919 

𝒍𝒐𝒈 𝑳(�̂�)  -5827.6 -5413.1 

Likelihood Ratio     266.6 1095.7 

Time 3 iterations. 0h:0m:0s 13 iterations. 0h:1m:9s 

 

Based on the results in Table 2, the correlation values obtained is   

�̂� =
𝐶𝑜𝑣(𝐶𝑙.𝑃𝑓)

√𝑉𝑎𝑟(𝑃𝑓)𝑉𝑎𝑟(𝐶𝑙)
 = 0.313453 

The value of this correlation still include low correlation, so that the MNL and MXL 

relatively the same. The calculation process in the MXL takes longer than the MNL.  

 

The Likelihood Ratio statistic (LR) is an alternative for testing hypotheses about  

defined by 

𝐿𝑅 = −2𝑙𝑜𝑔
𝐿(𝜃0)

𝐿(�̂�)
                                                          (19) 

where 𝜃 denotes the MLE of 𝜃  and 𝜃0 denotes the restriction that H0 is true. H0 states that 

all parameters 𝜽 = 𝟎. L(𝜃) is the value of the likelihood function at the estimated 

parameters dan L(0) is its value when all parameters are set equal to zero. Statistic LR is 

Chi Square distributed with the degree of freedom equal to tested parameters. The value of 

LR on MXL model is 1095.7 which is higher compared to that of derived by MNL model 

(266.6). This means that MXL model give more reliable conclusion compared with MNL 

model. Similar pattern is also obtained from partial test in that the p-value of MXL model 

is less that 0.04 while MNL model gives p-value of 𝛼2  and 𝛼3 more are higher than 0.07 

parameter.       

 

Train (2003) reported that likelihood ratio index can be utilized for measure the fitness of 

model and data. The likelihood index is defined as 

𝑅2 = 1 −
𝐿𝑜𝑔 𝐿(�̂�)

𝐿𝑜𝑔 𝐿(𝜃0)
        (20) 

R2 of MXL is 0.092 which is larger than the MNL which is 0.022. Its means that MXL 

model better than MNL model.  
 

Case 2. Data “Heating” are taken from mlogit  package in  R.3.1.1 

The observations consist of single-family houses in California that were newly built and 

had central air conditioning. The choice is among heating systems. Five types of systems 

are considered to have been possible: gas central (gc), gas room (gr), electric central (ec), 

electric room (er), heat pump (hp). There are two characteristic variable (installation cost 

and annual operating cost). Ic is the installation cost for the five  alternatives. Oc is the 
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annual operating cost for the 5 alternatives. As type ec is stated as base line, representative 

utility models can be expressed as:  

𝑉𝑖𝑗 = 𝛼𝑗 + 𝛾1𝐼𝑐 + 𝛾2𝑂𝑐𝑖𝑗    for j=2,3,4,5. 

 

From 900 observations,  the results of estimating MNL and MXL  are presented in Table 

3. 

Table 3. Estimator of the MXL and MNL parameter for Data “Heating” 
Parameter MNL MXL 

Estimate p-value Estimate p-value 

2 (er intercept)   0.194591 0.166861 0.788838 0.032164 

3 (gc intercept) 0.052133 0.314373 0.203964 0.299783 

4 (gr intercept) -1.350583 0.039336 -4.139536 0.013045 

5 (hp intercept) -1.658846 0.021676 -4.526849 0.008003 

1 -0.001533 0.044845 0.010199 0.004768 

2 -0.006996 0.014967 -0.019823 0.007853 

Var(Ic)   0.051509 0.001188 

Cov(Ic.Oc)   0.064543 0.001270 

Var(Oc)   0.082927 0.000996 

log L(𝜃) -1008.2 -1400.9 

Likelihood Ratio  27.99 757.28 

Time 6 iterations. 0h:0m:0s 3 iterations. 0h:0m:16s  

 

The correlation values obtained   

�̂� =
Cov(Ic.Oc)

√Var(Ic)Var(Oc)
  = 0.987545 

Therefore the MXL model is recommended. 

 

The LR value on MXL model is 757.28 which is higher compared with that of derived by 

MNL model (27.99).  It means that MXL model gives more reliable conclusion rather than 

the MNL model. The R2 of MXL model (0.213) is higher than the MNL model (R2=0.014) 

means that the MXL model is better than the MNL model. Based on these two examples, 

the estimator on MXL model is always higher compared to the estimator on MNL model, 
|𝜃𝑀𝑋𝐿| > |𝜃𝑀𝑁𝐿|.  
Conclusions 

Based on data simulation, the conclusions obtained are: MXL can be used to estimate the 

correlation parameter properly (small bias) and MXL is better than MNL especially for 

alternatives of the correlation presents among alternatives. Some suggestions for further 

research are: a) for practitioners who will use the discrete responses in modelling and there 

is a correlation among alternatives, then the MXL is more appropriate than MNL. If there 

is no correlation among alternatives then the MNL can be used. b) Statistician can improve 

the computational method: where the Mixed Logit model requires a long time calculation 

than MNL model and  other estimation methods can also be developed. 
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