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Abstract

In this paper, we introduce new Stochastic Restricted Estimator for SUR model, defined by Stochastic
Restricted Liu Type SUR estimator (SRLTSE) . The proposed estimator has to deal with multicollinearity
in SUR model if there is a degree of uncertainty in the parameters restriction. Moreover, the superiority of
(SRLTSE) was derived with respect to mean squared error matrix (MSEM) criterion. Finally, a simulation
study was conducted. This simulation used standard mean squares error (MSE) criterion to illustrate the
advantage between Stochastic Restricted SUR estimator (SRSE), Stochastic Restricted Ridge SUR
estimator (SRRSE), and Stochastic Restricted Liu Type SUR estimator (SRLTSE) at by several factors.

Keywords: SUR model; Stochastic restricted SUR estimator (SRSE); Stochastic
restricted ridge SUR estimator (SRRSE); Stochastic restricted Liu type SUR estimator
(SRLTSE)

1. Introduction

In the SUR model, there is a wide range of estimators used to deal with multicollinearity.
In this context, the ridge estimator, introduced by Alkhamisi (2007) to solve the ill
condition for SUR model. ( Jibo,2014) proposed the Liu-type estimator in two SUR
model, that combined between the Stein estimator and ridge estimator. In many cases, the
parameters of the SUR modelmay be surrounded by a degree of uncertainty, so
Srivastava and Giles,(1987) suggestedstochastic restricted SUR estimator. Finally, El-
Houssainy et al (2010) introduced general stochastic restricted ridge estimator which
avoids multicollinearity in stochastic restricted SUR model. In these paper, we propose
stochastic restricted Liu-type estimators in SUR model and discuss the priority for SUR
liu-type estimators over SUR Ridge estimator in the case of uncertainty restrictions.

2 The Stochastic Restricted Liu-type for SUR model:
Let the SUR model as the form:
Y=XB+u (1)

Where Y = [Yy,Y,,...Yq]" is ngx1l vector of response variables, X is ngxnq block
diagonal matrix of k independent variables, 3 is nk x1 vector of unknown coefficients
and p is ngx1 of vector of random error in g equations with E(u) = 0,4x4 Vector and
E(up) = Z ® I,,Z is gxq variance covariance matrix for errors
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2 . . .
o i=ji=12.q
VarCov (.uij) = {O'izjln i#j,i=1.2, q}

The OLS estimator is the best linear unbiased estimator (BLUE). However, the high
correlation between independent variables causes a rise in the variance. The ridge
estimator for linear regression proposed by Hoerl and Kennard(1970) that depended on
adding more information to X’Xmatrix to solve the ill condition. In this direction,
Srivastava and Giles(1987) introducedridge estimator (RSE)for SUR model as

Brse(h) = (X 7' @ )X + hlkq)_lx' CTRI)YR >0 )

In order to reach superior estimator over the other estimators that overcome the problem
of ill condition in SUR model, Jibo(2014) propose a Liu-Type estimator for two SUR
model.

a k ) L 2
Burse(h.d) = argming | (Y = XBY(Y = XB) + ) > <hf/>’u - hFdBGLsU)
i

h>0,-0< d< 400 (3)

Then

Burse(hd) = (X 1 Q)X + hlkq)_l(X' C ' ®I,)Y —dBgLs) (4)

In SUR model, let us suppose that, there are prior information about 8 as the following

11 =Rif1 + e
2 = Ryf; + e, (%)
Ty = Rqﬁq + ¢4

We can rewrite the (5) as the stacked form as

r=RpB +e,e~MVN(0,2 ® I, (6)
Wherer = [r1 Iy, ...,r;l]’is lgx 1 independent set for known stochastic vector, lis number
of restriction, R = Dig[Ry, Ry, ...Ry] is a lgxkq prior information, e = [ey, €3, ..., eq] is

lgx 1random vector and Q is known and positive definite.
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For (1) and (5), we building mixed model as form

=Tl o] []~mvvow U
IJ®I, 0
Where ¢ = [0 0 ®11]

We can rewrite the (6) as the stacked form as

Y, =X.B + 1, (8)

Srivastava and Giles,(1987) suggested the stochastic restriction estimator for SUR
model as

Bspse = X'CT' @ L)X +RQ@T @A X C' L)Y +R @ ®I)r) (9)
Observing

S+RO@ITQIDR) T =ST1-SR(Q'Q)+RCE'® In)R’)_lRS‘l
Where:S = X' (1 ® )X

Then

Borse = Bous+ (X CT @ LN R(Q ® ) +RE @ L)R) ™ (r — RPss)
Bise|Bsrse] = E[Bspse] — B =10

MSEM[Bsgse] = X C QL)X +R(Q*QIDR) 1 =C? (10)
Where: C= X" C '@ L)X+ R (2 TQI)R)

For model in (8), we extract The Stochastic Restricted Liu-type estimator for SUR model
(SRLTSE) as

Bsrirss(hd) = (X" (Z71 @ L)X, + hlkg)” (X, (571 @ L)Y, — dfrays)

= (Xr, (2_1 ® In)Xr + hlkq)_l(Xr, (2_1 ® In)Yr - dBRGLS)
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Bsrirse(h,d) = ([X R]< i—l_(;eillr(lg 1(;]) [)Rf] + hlkq>_1 <[X R ?)1_1_(?1[7(18 I(l)] [1’;]

—d([X R] i_ ?11% I(l)] [g]) X RI i_ _(;eillré ](l)] [i])

=X C'QL)X+RW@'®)R+ hlkq)_l[X’ CrIQL)Y+RWOWITRI)r
—d(X CTRQLX+R@W TR HRA)TX TR L)Y + R Q@ I)r)]

=|(x '@ L)X+ RO @ DR+ hig) ((X’ C QL)X +R Q1 QI)R)

— dlig)| (X G @ L)X + R(@7P @ DR) X (57 @ L)Y
+R@ Q1))

Bsrrrse(h, d) = [A™*BlBsrsy = FaPsrsk (11)

Where:A = (X' (571 ® [,)X + R'(2"1 @ )R + hly,), B= 1 QL)X+
R ®I)R) = dlyg = C— dliq and Fy = (X" (C' @ L)X+ R(Q @ IDR +
hlg) (X 1 Q L)X +R (@21 QI)R) — dlig|

The new estimator in (11) contains a set of special cases

o When d=0, fspirse = Bsrrse (R)
e When R=0, , Bspirse = Prrse(h)
e When d=0,R = 0fsp.rsr = Bsur Ridge (h)

Useful Superiority of the new estimators

In order to illustrate the superiority of the new estimators to the other estimators, we will
use mean squared error matrix (MSEM) criteria which defined as

MSEM(B) = E(B - B)(B - B)’ = D(B) + Bias(B)Bias(f)

Where D() is denote the dispersion matrix and Bias(B) = E(B) — B is bias vector. It’s

clear that, for any two estimators, we say that B,is superior to B, in MSEM criteria, iff
A= MSEM(B,) — MSEM(p,) =0
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Now for a statement the superiority of PBgrss LTRidge (, @) overPrss .1 (R, d), the following

lemma can be help.

Lemma (3.1):( Rao et al, 2008) Let N>0, M>0, then N>M, iff A, (MN™1) < 1.

Lemma (3.2):( Rao et al, 2008) Let B]- = Ajy,j = 1,2 be two estimators of B, suppose that D =
Cov(B;) — Cov(B,) >0, then MSEM(B,) — MSEM(B,) >0 iff B, (D+B;B;)™'B, <1,

where B; denotes the bias of B;.

Lemma (3.3): (Farebrother, 1976) Let M be a p.d matrix, a be a non-zero vector, then M —

aa’ =0 iff aM™la < 1.

The properties of the Bgr.rsg (R, d)estimator is given as follows:

The expected value, the bias and MSEM for Bgr,rsz(h, d) estimator are given by:
E[ﬁsRLTSE(h: d)] = FdE[[?SRSE]

Bias|fsrurse(h, d)| = Faf — B = (Fy — Ig)B = (A71B — Iy)B

:[(X' CrRI)X+R@IQIDR+hly) (X C1QL)X+RWQ Q)R —dly,) —

qu]ﬁ

:[(X’ Cr'QL)X+RQTQI)R+ hlkq)_l[X’ CrRI)X+RW TR IR —dlyy —

X T L)X - RO @ DR = hig]|

E[Bsriirse (A D]==[dliq + hlig| (X' @7 ® L)X + R(@ @ DR +hlyg) B (12)
And the dispersion matrix or variance—covariance matrix is
D[BSRLTSE(hf d)] = COV[BRSS vr(h, d)] = F4C™'Fy = A"'BC'B A7V
MSEM|[Bspirse(h, d)] = A'BC™IB"A™Y + (A™'B—DBR(A™*B - 1)
= F4C'F4y + (A"'B—-DBR’(A"B—1)
= FqC Fq" + [dlxg + hi JAT BR°AY [dliq + hikg]
For (10) and (13) we illustrate the difference as a following
A= MSEM (BSRSE (h d)) — MSEM (GSRLTSE( h, d))

= C ' —F4C™'Fq" — [dlkq + hlkq]A_lﬁB,A_l,[dlkq + hlkq], =D-LL (14)
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Where:

D=C"1—F4CFy , L=|[dly+hi,]A'B
SinceC™! > 0,F4C~1F4" > 0, then by lemma (3-1)
When A« [(FqC1Fg)C ] < 1, €71 > F4CtF4

By lemma (3.3) , when LDL" < 1,A> 0.

Choice for d and h

To choose stochastic shrinking parameter (d ),In the (1), we definedX, (X 1 ®I,,) =
X, UX,” X,"U = A = diag(611,812, .., 04) , U U=UU"=1and a, = U'B , where
U, A are the diagonal matrix of eigenvalue and the eigenvector of X,.*” X,." . The optimal
estimators for stochastic shrinking parameter is

2

2l i=12,0.qj=12...k
+af

a
dij =

In this paper, we develop the ideas for Kristofer et al (2012) and use the single value of d
as:

a,>
d = max O,median(1 Li S| i=12,...qj=12...k

s T

ij

For estimate the hparameter, we develop the ideas for Jibo and Yasin (2017) as:

Where b;; is eigenvalues of C and
X C'Q L)X + R Q@ I)R) = Udiag(by1, b1z, .., bgi)U

3 The simulation study

In this section, we use a simulation study to illustrate the Stochastic Restricted Liu-type
estimators for SUR model. This simulation is slightly based on Alkamisi (2010) and Al-
Houssainy etal. (2012). We generate data for the following equation y;; = xﬂj'Bi + W
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andry; =Ry;Bi+ey; i=12,..,q9,i=12..,nl=12.. kand we set the initial value for
B= [B1, B2 Bsl= [(3,4,5),(1,2,3),(2,3,4)]. The independent variables are generated from
multivariate normal distribution MVNp(0,2Zx) where diag(Zx) = 1 and off — diag (Zx) =
Pxij ,i,j =1,2,3,i #j Where Pxij denoted the correlation between the explanatory variables

and we assume that Pxij = 0.85 for high correlation and Pxij = 0.25 for low correlation. We
generate the random error terms from multivariate normal distribution MVN,(0,%,) where
diag(Z,) = 1 and off — diag (Z,) = Puy 1 i =123,i#j and p, . denoted the correlation
between error for i,j equations. We assume that Py = 0.80 for high correlation and and
Puy = 0.20 for low correlation. The restriction matrix for each equations are is given in

Table (1,2) and we generate the random restriction error terms from multivariate normal
distribution MVN,(0,Q.) where diag(Q.) = 1 and off — diag (Q.) = Peji 1] = 1,2,3,1#]

Where where Pej; denoted the correlation between restriction error for i,j equations and we
assume that Peij = 0.80.

Table (1):The restrictions for each equations in simulation study when 1=3

Ry R, R;
2 1 1] 2 2 4 2 1 1
1 5 1 1 1 3 5 2 0
0 2 3] 2 1 0 2 2 1

Table (2):The restrictions for each equations in simulation study when 1=10

Ry R, R, R, R
2 1 1|2 2 4]2 1 1|5 2 o0l2 1 3
1 5 1/1 1 3|5 2 o|l4 2 3|4 1 3
0 2 3|2 1 o0]2 2 1]l2 1 1]2 3 7

Re R, Rg R, Ry
3 1 3|2 1 6]2 1 1|2 1 3]5 4 0
2 5 5|5 2 1|5 5 4|4 2 2]2 1 5
2 2 0|2 1 2]3 1 5[3 3 1[4 6 2

The factors that are used in the simulation are summarized in the table (3).

Table (3):The factors in simulation study

Factors The alternative value
Number of observations 30,100
Number of equations 3,10
Correlation between variables 0.85, 0.15
Correlation between errors 0.80,0.20
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The simulation is repeated 1000 times using Matlap software and we to illustrate the
superiority between estimator, we use the standard mean squares error (MSE) criterion
which is defined as follows:

o i (Bi—B)(B:i—B
MSE(f) = - 100())( :

4 The simulation results

Table (4):The value for MSE for different estimators(p, = 0.85)

Factors Bsrse BsrrsE Bsrutse
T=30,q9=2, p, = 0.20 25.954 18.716 15.824
T=100,q=2,p, = 0.20 23.841 16.874 11.254

T=30,q=10 , p, = 0.20 31.085 23.314 17.726
T=100,q=10, p, = 0.20 27.231 20.517 18.658
T=30,q9=2, p, = 0.80 24.185 17.622 14.212
T=100, =2, p, = 0.80 21.325 15.852 10.571
T=30,9=10, p, = 0.80 29.321 21.325 16.325
T=100,q=10,p, = 0.80 25.365 19.902 17.057

Table (5): The value for MSE for different estimators(p, = 0.15)

Factors Bsrsk BsrrsE BsrutsE

T=30, q=2, Py = 0.20 21.521 14.182 11.245
T=100, q=2,pu = 0.20 20.518 12.941 8.215
T=30,q=10, Py = 0.20 27.321 16.324 14.879
T=100,q=10, p, = 0.20 23.854 18.052 15.365
T=30, =2, p, = 0.80 21.325 16.321 13.987
T=100, q=2, Py = 0.80 18.056 13.214 7.481
T=30,9=10, p, = 0.80 26.325 20.005 15.210
T=100,q9=10, Py = 0.80 23.104 17.258 15.021

For Table (4), (5), we observe that the BSRLTSEhas the best performance according to MSE for

all the situations and it works better at the higher degrees for correlation between variables and
at the lower degrees for correlation between errors. The increase in the number of observations
and number of equations have a good effect on all estimators.

5 Conclusions

In this paper, we presented a liu-type estimator for the restricted SUR model in case of
multicollinearity. This estimator was defined the Stochastic Restricted Liu Type SUR
estimator . The simulation study is use to evaluate the Stochastic Restricted SUR
estimator, Stochastic Restricted Ridge SUR estimator and Stochastic Restricted Liu Type
SUR estimator. The MSE criterion used as a criterion to show the superiority of
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estimators. The MSE criterion shows that, the Stochastic Restricted Liu Type SUR
estimator (SRLTSE) has a better performance than the others. estimators.
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