The Exponentiated Marshall-Olkin Fréchet Distribution

Mahmoud M. Mansour

College of Business Administration, Yanbu Department of MIS
Taibah University, Saudi Arabia

Department of Statistics, Mathematics and Insurance

Benha University, Egypt

mmmansour@taibahu.edu.sa

Enayat M. Abd Elrazik

College of Business Administration, Yanbu Department of MIS,
Taibah University, Saudi Arabia

Department of Statistics, Mathematics and Insurance

Benha University, Egypt

ekhalilabelgawad@taibahu.edu.sa

Nadeem Shafique Butt

Department of Family and Community Medicine

King Abdul Aziz University, Jeddah, Kingdom of Saudi Arabia
nshafiqgue@kau.edu.sa

Abstract

A new five-parameter model called the exponentiated Marshall-Olkin Fréchet distribution is studied.
Various of its mathematical properties including ordinary and incomplete moments, quantile and generating
functions and order statistics are investigated. The proposed density function can be expressed as a linear
mixture of Fréchet densities. The maximum likelihood method is used to estimate the model parameters.
The flexibility of the new distribution is proved empirically using two real data sets.

Keywords: Exponentiated Marshall-Olkin-G Family, Fréchet Distribution, Generating
Function, Goodness-of-fit, Maximum Likelihood, Order Statistic

1. Introduction

The Fréchet distribution, also known as type Il extreme value distribution, is one of the
important distributions in extreme value theory and it has wide applicability in extreme
value theory. This distribution was proposed by Maurice Fréchet (1924), who
investigated it as one possible limit distribution for a sequence of maxima. The Fréchet
distribution is widely used in applications involving stochastic phenomena such as
rainfall, floods, air pollution (Kotz and Nadarajah, 2000), material properties in
engineering applications (Harlow, 2002), analyzing wind speed data (Zaharim et al.,
2009) and advanced mathematical results on point processes and regularly varying
functions (Resnick, 2013), among others. Further details about the Fréchet distribution
and its applications can be explored in Kotz and Nadarajah (2000).

The statistical literature contains many extended forms of the Fréchet distribution. For

example, Nadarajah and Kotz (2003) pioneered the exponentiated Fréchet, Nadarajah and
Gupta (2004) and Barreto-Souza et al. (2011) studied the beta Fréchet, Mahmoud and
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Mandouh (2013) proposed the transmuted Fréchet, Krishna et al. (2013) introduced the
Marshall-Olkin Fréchet, Silva et al. (2013) defined the gamma extended Fréchet, Elbatal
et al. (2014) studied the transmuted exponentiated Fréchet, Mead and Abd-Eltawab
(2014) introduced the Kumaraswamy Fréchet, Afify et al. (2015) investigated the
transmuted Marshall-Olkin Fréchet, Afify et al. (2016a) studied the Kumaraswamy
Marshall-Olkin Fréchet, Afify et al. (2016b) proposed the Weibull Fréchet, Tablada and
Cordeiro (2017) defined the modified Fréchet and Mead et al. (2017) proposed the beta
exponential Fréchet distributions.

In this article, we define and study a new five-parameter model called the exponentiated
Marshall-Olkin Fréchet (EMOFr) distribution and provide some of its properties. We
prove, by means of two applications, that the EMOFr distributions can give better fits
than most of the above mentioned distributions.

The new model is generated by applying the exponentiated Marshal-Olkin-G (EMO-G)
family (Dias et al., 2016) to the Fréchet distribution. Dias et al. (2016) defined the EMO-
G family of continuous distributions with three extra shape parameters by cumulative
distribution function (cdf)

_ (1-[1-61P)*
F(x) = {1—p[1—G(x)]b} ' @)

The probability density function (pdf) of the EMO-G is given by

_ B B _1 {1-[1-6e1}*
f@) = ab(1 =p)g([L = G L= )

where a > 0, b > 0 and p € (—, 1) are shape parameters.

The rest of this chapter is organized as follows. In Section 2, we define the EMOFr
distribution, provide its special cases and some plots for its pdf and hazard rate function
(hrf). In Section 3, we provide a useful mixture representation for its pdf. In Section 4, we
derive some of its mathematical properties. Maximum likelihood estimation of the model
parameters is addressed in Section 5. In Section 6, we provide two applications to real
data to illustrate the importance and flexibility of the new distribution.

2. The EMOFr Distribution

In this section, we define the EMOFr distribution. The new model generated by applying
the exponentiated Marshall-Olkin transformation to the Fréchet distribution.

The cdf of the Frechet distribution is given by (for x > 0)
G(x;a,p) = e_(%)ﬁ

The corresponding pdf is given by
900, = pafxire )

where a > 0 is a scale parameter and £ > 0 is a shape parameter, respectively.
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Now, we proceed to define the new EMOFr distribution. By inserting the cdf of the
Fréchet distribution in equation (1), we obtain the cdf of the EMOFr

|( 1- 1—e‘(%)ﬁ b \l '
FGo) = !—(Q)Jbﬂ . ©
1-p|1-e \x. ] J

The corresponding pdf of the EMOFr is given by

a—-1

{[()’3]}
{1_,, = }

where a > 0, b > 0, p € (—o,1) and § > 0 are shape parameters and « > 0 is a scale
parameter. Henceforth, we denote by X~EMOFr(a, 8, a, b, p) a random variable having
pdf (4).

b—1
£(6) = ab(1 - p)pafxp-te ) [1 - e‘(%)ﬁ] (4)

The hrf of X is given by
B w811 NSl a-1
ab(1 — p)ﬁaﬁx‘ﬁ‘le_(z) ll — e_(}) l {1 — [1 — e—(;) l }

[ioo]s _e—<%>’*]”}““ - [1_e—<%>ﬁlb}a{1_pll_e—<%>ﬁlb}'

Plots of the EMOFr pdf for some parameter values are displayed in Figure 1. Figure 2
displays some possible shapes of the hrf of the EMOFr model for selected parameter
values.

h(x) =

The EMOFr is a flexible model which contains 15 special models are listed in Table 1.

3. Linear Representation

In this section, we derive a useful linear mixture representation for the cdf and pdf of the
EMOFr distribution. The cdf of the EMOFr in (3) can be expressed as

Fx) = {1 - [1 - e‘(%)ﬁrla 1-p [1 - e‘(%)ﬁr}_a.
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Table 1:

Special models of the EMOFr model

a|f|a|l b|p| Reduced Model Author(s)
al|f|lal b|O EG-Fr Cordeiro et al. (2013)
al|2|al b|O EG-IR —
a|l|a| b|O EG-IE —
alB|1] b|p MO-Fr Krishna et al. (2013)
a b|p MO-IR —

b|p MO-IE —
alBl1] b|oO PHR-Fr
a|2|1] b |0 PHR-IR
a| 1| 1] b|O PHR-IE
a|flal] 1|0 PRHR-Fr
a al 110 PRHR-IR
a|l|a|] 1|0 PRHR-IE
al Bl 1] 1]0 Fr Fréchet (1924)
a 11110 IR Keller and Kamath (1982)
a1/ 1] 1]0 IE Trayer (1964)

Abbreviations: IR=Inverse Rayleigh, IE=Inverse Exponential.
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Figure 1: Plots of the EMOFr density function for selected parameter values
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Figure 2: Plots of the EMOFr hrf for selected parameter values

Applying the binomial expansion defined by
- =32, -1 (;9)2
Then, the cdf of the EMOFr reduces to

F) =20 09 () [r- e

we can write

{1 = [1 - e_(%)pr}a — i (—1)/ (Ja) l1 —e G

j=0

Then, equation (6) reduces to

oo

Foo =) (~0pt (79

i,j=0

Using (7), we have

F(x) = Z (_1)i+j+kpi(.

i,j,k=0

Then, the cdf of the EMOFr reduces to
F(x) = X%, vk G(x; ak¥P, B),
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where
_ itk (A (D) (b + )
we= ) 0 (TG ()
1,j=0
and G (x; ak/, B) is the cdf of the Fréchet distribution with scale parameter ak'/# and
shape parameter f3.
By integrating equation (8), we obtain

f() = Eieo vig (x; kM, B), (9)

where g(x; ak'B,p) is the Fréchet density with scale parameter ak'/# and shape
parameter . Equation (9) reveals that the EMOFr density can be written as a linear
combination of Fréchet densities. So, several of its mathematical properties can be
obtained from those of the Fréchet distribution and equation (9).

4. Mathematical Properties

In this section, we derive some mathematical properties of the EMOFr distribution
including ordinary and incomplete moments, quantile and generating functions and order
statistics.

Let Z be a random variable having the Fréchet distribution defined in Section 2. For r <
B, the nth ordinary and incomplete moments of Z are given by

pn=a"T(1=n/B) and @nz(t) =a™y(1—n/B, (a/t)F),
respectively, where T'(a) = fooo y*1leYdy is the complete gamma function and
v(a,z) = fOZ y%~ 1 e~¥dy is the lower incomplete gamma function.

4.1 Ordinary and Incomplete Moments

The nth ordinary moment of X is given by

w, = E(X™ = Z Uy f x™ g(x; akB, B)dx.
k=0 0

For n < f3, we obtain

n
Uy = Z v, a kP F(l _E>

k=0

The mean of X follows from the last equation with n = 1, that is,

= Z v a KYBT(1 = 1/B).
k=0

The skewness and kurtosis measures can be evaluated from the ordinary moments using
well-known relationships.
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The nth incomplete moment is defined by
t

n(t) = f x* f(x)dx.

Using equation (9), we can write
t

95 (6) =20 U f X" g(x; ak /8, B)dx.
0

Then, the nth incomplete moment of the EMOFr distribution is given (for n < ) by

- n a\B
Pu(t) = Feovic @k Py (1 -5k (3) )

The first incomplete moment, denoted by ¢ (t), is
1 anh
P1(t) = oo akM/Py <1 - E’k (?) >

and it has an important applications related to the Bonferroni and Lorenz curves and the
mean residual life (MRL) and the mean inactivity time (MIT). The Bonferroni and
Lorenz curves are very useful in economics, demography, insurance, engineering and
medicine. The MRL and MIT are defined by m,(t) =[1— ¢,(t)]/R(t) —t and
M;(t) =t — @,(t)/F(t), respectively.

4.2 Quantile and Generating Functions

The quantile function of X is determined by inverting (3) as
19y ~1/B

1Nb
Q(w) = a{-log 1—<1‘”“1> 0<u<l.

1-pua

Simulating the EMOFr random variable is straightforward. If U is a uniform variate in
the unit interval (0,1), the random variable X = Q(U) follows (4).

Now, we introduce the moment generating function (mgf) of the Fréchet distribution
defined in Section 2, denoted by M(t; @, ), as derived in Afify et al. (2016b). Based on
M(t; a, B), we will derive the mgf of the EMOFr distribution.

M(t; a,B) = E[exp(tx)] = f exp(tx)g(x)dx.

0
Let y = 1/x, we have
0

M@ p) = paf | exp(5) yP expl-(@)Flay.

Using the exponential series for exp ( ) we can write

2

- y
)= 2
exp i Y

m=0
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Then, we obtain

M(ta ) =pab y — fo yFm1 exp[—(ay)¥]dy.
m=0

After some algebra, we can write

o -y, (5T
m=0

Using the Wright generalized hypergeometric function defined by

o

w [(al,Al) , (ap, p) l B H?=1 F(aj + 4; n)ﬁ
L (,31,31) (:BqlB ) jl=1 F(ﬁj + Bj n) TL'

Thus, the mgf of the Fréchet distribution reduces to

Mt B) = W [ B, 4 t] (10)

Based on equations (9) and (10), the mgf of X, say M (t), is given by
1
M(t) = Z v 1% [T TF D a k8 o],

k=0

4.3 Order Statistics

Let X;,..,X, be a random sample of size n from the EMOFr distribution and
X(1), -, X(ny b€ the corresponding order statistics. Then, the pdf of the ith order statistic

Xims S3Y fin(x), is given by |
fin(0) =522 2pzt <17 (7 7) Feot (11)

Using equations (3) and (4), we can write

B B b—1
FEF@) = ab(1 - p)BabaxF-1e~G) [1 e ]

|- [1_e—<z>‘f]"}“(””_1{1_pll_e—@ﬁr}

Applying the expansions (5) and (7), and after some simplifications, we have

FOOF ()™t = ab(1 — p)Balx=F1 Z (=) HwHkpr

—a(i+j)-1

rw,k=0
—a(i+) = 1\ (ai+ /) = 1\ (b(r + w + 1) = 1\ _—(esn)(2)’
G [ G G Jer ol
By inserting the last equation in equation (11), we obtain
fi:n(x) = Zl?:o Nk g(X; (X(k + 1)1/ﬁ' ﬁ)' (12)
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where g(x; a(k + 1)Y/F,B) denotes the pdf of the Fréchet distribution with parameters
a(k + 1)Y/F and ﬁ and

® ( 1)]+r+w+kprab(1 p) _ s N
e = Z Z) B(in—i+1(k+1) (”]_ )( a(l:]) 1)

X(a(i-lv—vj)—l)(b(r+zv+1)—1).

Equation (12) means that the pdf of the EMOFr order statistics is a linear mixture of
Fréchet densities.

The gth moment of X;.,, (for g < a) is given by
E(x% ) = Z nead (k + 1)V/PT (1 _ 2)_
. k=0 'B

5. Estimation

In this section, we consider the estimation of the unknown parameters of the EMOFr
from complete samples only by maximum likelihood. We investigate the MLEs of the
parameters of the EMOFr(a, B, a, b, p) model. Let x = (x4, ..., x,,) be a random sample
from this model with unknown parameter vector v = (a, 8, a, b, p)T.

The log-likelihood function for 6, say € = £(6), is given by

f = n(loga + logb + log(1 — p) + log(B) + ﬁlog(a)) - Z (%)B
+(b—-1) Z log(1—s;))+(a—1) z log[1 — (1 —s;)?]
—(B+1) ) logx;—(a+1) ) log[l—p(1-s)"],
2 2

g
where s; = e_(’%‘) :

The above equation can be maximized either directly by using the R (optim function),
SAS (PROC NLMIXED sub-routine), Ox program (MaxBFGS) or by solving the
nonlinear likelihood equations obtained by differentiating it.

4
0

¢ 9t 9L 0t 9t \p
( ag 5 ab 3p )". Then, we have

T ( )B o-n$ o)

a B
LGRS 4 si1 =59 poota+ " s (5) (- spht
Z 1-(1-s)b + Z 1—p(1—s,)P

The score vector is given by U(0) = Z
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= o= 3 o3 (2) v (2)
aﬁ ﬁ nloga — ogx; — . % og %

=1

n (2 5 1o (@
g &)

1-(1-s)b

5. (2)" 1 —s0rog (2)

+bp(a+1)z 1= p( =5 )

o0f
£:g+z]og[1—(1—51) Zlogl—P(l—SJ]
E (1 - 5)’log(1 — 5,)
a——z+zl°g<1‘”—(“‘”2 T— (- s)P
(1 —s)"log(1 - s;)
+p(a + 1)2 (=5,

and

n
0f —n (1—s;)P
o @+t z .
dp 1-p (a ). 4 1-p(1=s)°
l:
We can obtain the estimates of the unknown parameters by setting the score vector to
zero, U(B) = 0. By solving these equations simultaneously gives the MLEs &, 3, a, b and
p. These estimates can be obtained numerically using iterative techniques such as the
Newton-Raphson algorithm. For the EMOFr distribution, all the second-order derivatives
exist.

For interval estimation of the model parameters, we require the 5 x5 observed
information matrix J(0) = {J,s} for r,s=a,B,a,b,p Under standard regularity
conditions, the multivariate normal N5(0,/(0)~1) distribution can be used to construct
approximate confidence intervals for the model parameters. Here, J(0) is the total

observed information matrix evaluated at 8. Then, approximate 100(1 — ¢)%
confidence intervals for the model parameters can be determined in the usual way of the
first-order asymptotic theory.
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6. Applications

This section is devoted to illustrate the importance of the EMOFr distribution empirically
using two applications to real data sets. The first data set refers to the survival times, in
weeks, of 33 patients suffering from acute Myelogenous Leukemia (Feigl and Zelen,
1965). The second data set represents the exceedances of flood peaks (in m 3/s) of the
Wheaton River near Carcross in Yukon Territory, Canada.

For the two data sets, we shall compare the fit of the EMOFr distribution with the
Kumaraswamy Marshall-Olkin Fréchet (KMOFr), Kumaraswamy Fréchet (KFr),
exponentiated Fréchet (EFr), gamma extended Fréchet (GEFr), beta Fréchet (BFr), beta
exponential Fréchet (BEXxFr), transmuted Fréchet (TFr) and Fréchet (Fr) distributions
with corresponding pdfs (for x > 0):

-a-1

KMOFr: f(x) = aBab&#x~F~*exp [—a (%)ﬁ] {a + (1 —aexp [_ (g)ﬁ]}

cfo-on o Jfera-ama-@) T

KFr: f(x) = abfaP x~B+D exp [—a (%)ﬁ] {1 — exp [—a (%)ﬁ]} ;

B

6-1

EFr: f(x) = 8BaP x~ B+ exp [— (%)B] {1 — exp [— (%)ﬁ]} ;

GEFr: £(x) = L& x-6+ exp|— (%) | {1~ exp |- (f)ﬁ]}a_l

X {—log{l — exp [— (g)ﬁl}a}b_l ;
sk 1) = fe 0 oo 8] - o[-0
s ) = et ol (0o [0

(t-f-erl- &)

TFr £G) = e exp [~ (&) ] {2+ 1 - 22 exp [~ (&) ]}

The parameters of the above densities are all positive real numbers except for the TFr
distribution for which || < 1.

The fitted distributions are compared using the following criteria: the —22 (Maximized
Log-Likelihood), AIC (Akaike Information Criterion), CAIC (Consistent Akaike
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Information Criterion), BIC (Bayesian Information Criterion) and HQIC (Hannan-Quinn
Information Criterion).

Table 2: Goodness-of-fit statistics for Leukemia data

Model —2? AIC CAIC HQIC BIC wr A*

EMOFr |299.122 | 309.122 | 311.344 | 311.639 | 316.605 | 0.03552 | 0.26312
KMOFr | 304.804 | 314.804 | 317.026 | 317.321 | 322.286 | 0.08367 | 0.54694
KFr 304.832 | 314.832 | 316.261 | 316.846 | 320.818 | 0.09461 | 0.63420
EFr 307.788 | 313.788 | 314.616 | 315.299 | 318.277 | 0.11151 | 0.70509
GEFr | 307.861 | 315.861 | 317.289 | 317.875 | 321.847 | 0.11385 | 0.71476
BFr 307.991 | 315.991 | 317.420 | 318.006 | 321.978 | 0.11569 | 0.72387
BExFr |309.905 | 319.905 | 322.127 | 322.422 | 327.387 | 0.13931 | 0.85497
TFr 311.449 | 317.449 | 318.276 | 318.959 | 321.938 | 0.15502 | 0.94183
Fr 311.997 | 315.997 | 316.397 | 317.004 | 318.990 | 0.16011 | 0.97592

Table 3: MLEs and their standard errors (in parentheses) for Leukemia data

Model Estimates

Fr 7.8652 0.6944

(a, B) (2.0913) (0.0915)

TFr 5.5489 0.7401 -0.4291

(a, B, 1) (2.9837) (0.0995) (0.5549)

EFr 1426.6289 | 0.24909 13.7467

(a, B, 0) (3607.173) | (0.0708) | (13.5121)

KFr 9378.570 0.0842 5.5132 7160.57

(a,B,a,b) (804.3827) | (0.0247) (2.2439) (17494.23)

BFr 24.2231 0.0884 33.5337 60.5680

(a,B,a,b) (305.1054) | (0.119015)| (111.4965) | (161.2934)

GEFr 62.7173 0.0555 189.5528 79.3368

(a,B,a,b) (1756.0625) | (0.1070) | (738.3019) | (388.7273)

EMOFr 70.9780 0.7831 0.12661 6.6523 -110.2490
(a,B,a,b,p) (0.1027) (0.0925) (0.0419) (0.2838) (98.8912)
KMOFr 31946.73 0.6074 4.8067 1.0146 13724.51
(a,B,8,a,b) | (579.3846) | (0.1067) (6.1015) (0.1390) | (10687.72)
BEXFr 0.1162 4.3641 0.0437 9.3849 6.4056
(a,B,1,a,b) (0.0265) (0.0253) (0.0489) (2.7092) (9.6967)

68
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Tables 2 and 4 provide the numerical values of goodness-of-fit statistics or the fitted
models, whereas the values of the MLEs and their corresponding standard errors (in
parentheses) of the model parameters are listed in Tables 3 and 5, respectively.

The plots of fitted densities for the EMOFr model and other models, for both data sets,
are displayed in Figures 3 and 6. Figures 4 and 7 display the QQ plots for both data sets,
respectively. The estimated cdfs, for both data sets, of the competitive models are given

in Figures 5 and 8.

Density

0.00 0.01 002 003 004 0.05 006 0.07

Figure 3: The fitted pdfs of the EMOFr model and other models for Leukemia data
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Figure 4. Q-Q plots for Leukemia data
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Figure 5: Fitted cdfs on empirical cdf for Leukemia data

Tables 2 and 4 compare the EMOFr model with the KMOFr, KFr, EFr, GEFr, BFr,
BExFr, TFr and Fr distributions. The proposed model has the lowest values for all
goodness-of-fit statistics among all fitted models. Thus, the EMOFr model can be chosen
as the best model to fit both data sets. The plots in the Figures 3 through 8 prove that the
EMOFr distribution gives a better fit than other nested and non-nested models for both
data sets.

Table 4: Goodness-of-fit statistics for Wheaton River data

Model —2¢ AIC CAIC HQIC BIC w* A*
EMOFr | 495.369 | 505.369 | 506.278 | 509.901 | 516.753 | 0.04419 | 0.26324
KMOFr | 502.154 | 512.154 | 513.063 | 516.686 | 523.537 | 0.13817 | 0.76472
KFr 506.005 | 514.005 | 514.602 | 517.630 | 523.112 | 0.17337 | 0.97379
EFr 512.243 | 518.243 | 518.596 | 520.962 | 525.073 | 0.24225 | 1.37968
GEFr 514.651 | 522.651 | 523.248 | 526.277 | 531.758 | 0.28449 | 1.60447
BFr 514.765 | 522.765 | 523.362 | 526.39 | 531.872 | 0.28585 | 1.61240
BExFr |521.991 | 531.991 | 532.901 | 536.523 | 543.375 | 0.33941 | 1.96148
TFr 529.984 | 535.984 | 536.337 | 538.703 | 542.814 | 0.41857 | 2.42652
Fr 534.038 | 538.038 | 538.212 | 539.851 | 542.591 | 0.48147 | 2.80181
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Table 5: MLEs and the corresponding SEs (in parentheses) for Wheaton River data

Model Estimates

Fr 2.879 0.6521

(a, B) (0.553) (0.054)

TFr 1.5083 0.7107 -0.7289

(a, B, 1) (0.4374) (0.0589) (0.2338)

EFr 391.9297 0.2677 14.4425

(a,B,0) (398.185) (0.033) (6.62)

KFr 6.3401 0.1332 6.6065 | 478.3001
(a,B,a,b) (0.011) | (1.677.107%) | (0.011) | (0.132)

BFr 38.2262 0.1356 11.712 | 30.3168
(a,B,a,b) (118.541) (0.082) (20.38) | (34.144)

GEFr 40.4813 0.1345 35.7391 | 11.7358
(a,B,a,b) (129.175) (0.081) (42.978) | (20.235)

EMOFr 284.0069 0.4225 0.2157 | 40.2609 | -11.1025
(a,B,a,b,p) | (0.1214) (0.1033) (0.1428) | (25.8295) | (10.1829)
KMOFr 89263.64 0.6814 0.2556 1.2323 | 54816.88
(a,B,8,a,b) |(224.9697)| (0.0619) (0.4076) | (0.1503) | (15004.53)
BEXFr 0.0068 1.8401 0.0494 | 18.8169 22.5355
(a,B,1,a,b) (0.0044) (0.7017) (0.0356) | (4.9244) | (20.6856)

0.15
]

Density
0.10
I
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1
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Figure 6: The fitted pdfs of the EMOFr model and other models for Wheaton River data
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7. Conclusions

In this paper, we study a new five-parameter model named the exponentiated Marshall-
Olkin Fréchet (EMOFr) distribution, which extends the Fréchet and Marshall-Olkin
Fréchet distributions. The EMOFr density function is a linear mixture of Fréchet
densities. We derive explicit expressions for its mathematical properties including the
ordinary and incomplete moments, quantile and generating function and order statistics.
The model parameters are estimated by maximum likelihood. The new distribution
applied to two real data sets provides better fits than some other competitive models.
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