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Abstract 

A new lifetime model called the odd exponentiated half-logistic Burr XII distribution is defined and 

studied. Its density function can be expressed as a linear mixture of Burr XII densities. The proposed model 

is capable of modeling various shapes of hazard rate including decreasing, increasing, decreasing-

increasing-constant, reversed J-shape, J-shape, unimodal or bathtub shapes. Various of its structural 

properties are investigated. The maximum likelihood method is adopted to estimate the model parameters. 

The flexibility of the new model is proved empirically using two real data sets. It can serve as an alternative 

model to other lifetime distributions in the existing literature for modeling positive real data in many areas. 

Keywords: Burr XII distribution, Maximum likelihood, Moment generating function, 

Odd exponentiated half-logistic-G family, Order statistics. 

1.   Introduction  

The statistical literature contains hundreds of distributions which have several 

applications in various applied areas such as reliability, engineering, economics, 

insurance, life testing and biomedical sciences, among other. These applications have 

indicated that there are many data sets following the classical models are more often the 

exception rather than the reality. Since, a significant progress has been made towards the 

generalization of some classical distributions and their successful applications to 

problems in these areas. 

 

The Burr XII (BXII) distribution (Burr, 1942) with two positive shape parameters, 𝑎 and 

𝑏, has the cumulative distribution function (CDF) and probability density function (PDF) 

given (for 𝑥 > 0) by  

 𝐺(𝑥; 𝑎, 𝑏) = 1 − (1 + 𝑥𝑎)−𝑏    and    𝑔(𝑥; 𝑎, 𝑏) = 𝑎𝑏𝑥𝑎−1(1 + 𝑥𝑎)−𝑏−1 (1) 

 

The statistical literature contains several generalized forms of the BXII model such as the 

beta BXII due to Paranaíba et al. (2011), the Kumaraswamy BXII due to Paranaíba et al. 

(2013), the beta exponentiated BXII due to Mead (2014), the Marshall-Olkin extended 

BXII due to Al-Saiarie et al. (2014), the McDonald BXII due to Gomes et al. (2015), the 

exponentiated Burr XII Poisson due to da Silva et al. (2015), the Kumaraswamy 

exponentiated BXII due to Mead and Afify (2017), the Weibull BXII due to Afify et al. 

(2018) and the odd Lindley BXII due to Abouelmagd et al. (2018). 
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In this paper, we study a new extension of the BXII model called the odd exponentiated 

half-logistic Burr XII (OEHLBXII) distribution which provides more flexibility in 

modelling data in several areas. The new model is constructed based on the odd 

exponentiated half-logistic-G (OEHL-G) family defined by Afify et al. (2017). 

 

Let 𝐺(𝑥; 𝝃) be a bsaeline CDF with parameter vector 𝝃. Then, the CDF of the OEHL-G 

class is defined (for 𝑥 ∈ ℜ) by  

𝐹(𝑥; 𝛼, 𝜆, 𝝃) = {
1−exp[

−𝜆 𝐺(𝑥;𝝃)

1−𝐺(𝑥;𝝃)
]

1+exp[
−𝜆 𝐺(𝑥;𝝃)

1−𝐺(𝑥;𝝃)
]
}

𝛼

.     (2) 

 

The corresponding PDF of  (2) is given by 

𝑓(𝑥; 𝛼, 𝜆, 𝝃) = 2𝛼𝜆𝑔(𝑥; 𝝃) 
exp[

−𝜆 𝐺(𝑥;𝝃)

1−𝐺(𝑥;𝝃)
]{1−exp[

−𝜆 𝐺(𝑥;𝝃)

1−𝐺(𝑥;𝝃)
]}
𝛼−1

[1−𝐺(𝑥;𝝃)]2{1+exp[
−𝜆 𝐺(𝑥;𝝃)

1−𝐺(𝑥;𝝃)
]}
𝛼+1 ,   (3) 

where 𝑔(𝑥; 𝝃) is a bsaeline PDF and 𝛼 and 𝜆 are positive shape parameters which provide 

more flexibility in accommodating all forms of the hazard rate function (HRF) of the 

generated model. 

 

Now, we define the OEHLBXII distribution and provide some plots for its PDF and 

HRF. The CDF of the OEHLBXII distribution follows, by inserting the CDF (1) in 

Equation (2), as 

𝐹(𝑥; 𝛼, 𝜆, 𝑎, 𝑏) = (
1−exp{𝜆[1−(1+𝑥𝑎)𝑏]}

1+exp{𝜆[1−(1+𝑥𝑎)𝑏]}
)
𝛼

, 𝑥 > 0.    (4) 

 

The PDF of the OEHLBXII distribution reduces to 

𝑓(𝑥; 𝛼, 𝜆, 𝑎, 𝑏) =
2𝛼𝜆𝑎𝑏𝑥𝑎−1exp{𝜆[1−(1+𝑥𝑎)𝑏]}(1−exp{𝜆[1−(1+𝑥𝑎)𝑏]})

𝛼−1

(1+𝑥𝑎)−𝑏+1(1+exp{𝜆[1−(1+𝑥𝑎)𝑏]})
𝛼+1 ,  (5) 

where 𝛼, 𝜆, 𝑎 and 𝑏 are positive shape parameters which can provide more flexibility to 

model various data in areas such as survival and lifetime data, engineering, income 

inequality and others. 

 

The OEHLBXII distribution exhibits all important forms of the HRF including J-shape, 

reversed J-shape, decreasing, increasing, decreasing-increasing-constant, unimodal or 

bathtub hazard rate shapes.  

 

The PDF and HRF plots of the OEHLBXII distribution are displayed in Figures 1 and 2, 

respectively. Figure 1 reveals that the PDF of the OEHLBXII distribution can be reversed 

J-shape, symmetric, concave down right-skewed or left-skewed. The HRF of the 

OEHLBXII model can be J-shape, reversed J-shape, decreasing, increasing, unimodal or 

bathtub hazard rate shapes. 
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Figure 1: Some possible shapes for the PDF of the OEHLBXII distribution 

 
 

Figure 2: Some possible shapes for the HRF of the OEHLBXII distribution 
 

 

The rest of the paper is outlined as follows. Section 2, is devoted to derive some 

mathematical properties of the OEHLBXII distribution. In Section 3, we use maximum 

likelihood to estimate the model parameters. Two real data sets are analyzed to prove the 

flexibility of the OEHLBXII model in Section 4. Finally, some concluding remarks are 

presented in Section 5. 

2.   The OEHLBXII properties 

Some properties of the OEHLBXII distribution including linear representation, quantile 

functoin (QF), ordinary and incomplete moments, moment generating function (MGF), 

mean residual life (MRL), mean inactivity time (MIT) and order statistics are derived in 

this section. 
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2.1 Linear representation 

Using Equation (8) in Afify et al. (2017), the PDF of the OEHLBXII distribution can be 

expressed as 

𝑓(𝑥) = ∑∞𝑘,𝑙=0 𝑎𝑘,𝑙  ℎ𝑘+𝑙+1(𝑥),      (6) 

where 

𝑎𝑘,𝑙 = 2𝛼𝜆 ∑

∞

𝑗,𝑖=0

(−1)𝑗+𝑘+𝑙[𝜆(𝑗 + 𝑖 + 1)]𝑘

𝑘! (𝑘 + 𝑙 + 1)
(
−𝛼 − 1

𝑖
) (
𝛼 − 1

𝑗
)(
−𝑘 − 2

𝑙
) 

and  ℎ𝑘+𝑙+1(𝑥) = (𝑘 + 𝑙 + 1)𝑎𝑏𝑥
𝑎−1(1 + 𝑥𝑎)−𝑏−1[1 − (1 + 𝑥𝑎)−𝑏]𝑘+𝑙 is the 

exponentiated BXII density with power parameter (𝑘 + 𝑙 + 1). 

 

Using the generalized binomial expansion, Equation (6) reduces to 

𝑓(𝑥) = ∑∞𝑚=0 𝜐𝑚 𝑔𝑏(𝑚+1)(𝑥),       (7) 

where  𝑔𝑏(𝑚+1)(𝑥) = 𝑎𝑏(𝑚 + 1)𝑥𝑎−1(1 + 𝑥𝑎)−𝑏(𝑚+1)−1 is the BXII density with 

parameters 𝑎 and 𝑏(𝑚 + 1) and 𝜐𝑚 is the constant term given by  

𝜐𝑚 = ∑

∞

𝑗,𝑖,𝑘,𝑙=0

(−1)𝑗+𝑘+𝑙+𝑚2𝛼𝜆𝑘+1

𝑘! (𝑚 + 1)(𝑗 + 𝑖 + 1)−𝑘
(
−𝛼 − 1

𝑖
) (
𝛼 − 1

𝑗
) (
−𝑘 − 2

𝑙
) (
𝑘 + 𝑙

𝑙
). 

 

Equation (7) can be used to derive some properties of the OEHLBXII distributions from 

those of the BXII distribution. 

 

Let 𝑌 be a random variable having the distribution in Equation (1). The 𝑛th ordinary and 

incomplete moments of 𝑌are, respectively, given (for 𝑟 < 𝑎𝑏) by  

𝜇𝑛
′ = 𝑏 𝐵 (𝑏 −

𝑛

𝑎
,
𝑛

𝑎
+ 1)   𝑎𝑛𝑑  𝜑𝑛(𝑡) = 𝑏 𝐵 (𝑡

𝑎; 𝑏 −
𝑛

𝑎
,
𝑛

𝑎
+ 1), 

𝐵(𝑘, s) = ∫ 𝑤𝑘−1(𝑤 + 1)−𝑘−𝑠𝑑𝑤
∞

0
 and 𝐵(𝑡; 𝑘, s) ∫ 𝑤𝑘−1(𝑤 + 1)−𝑘−𝑠𝑑𝑤

𝑡

0
 are, 

respectively, the beta and the incomplete beta functions of the second type. 

2.2 Quantile functoin 

The QF of the OEHLBXII distribution, denoted by 𝑄(𝑢), where 0 < 𝑢 < 1, is calculated 

by solving 𝐹(𝑄(𝑢)) = 𝑢 in (4) for 𝑄(𝑢) in terms of 𝑢. Then, we have 

𝑄(𝑢) =

{
 

 

[1 −
−log(1 − 𝑢

1

𝛼) + log (1 + 𝑢
1

𝛼)

𝜆 − log (1 − 𝑢
1

𝛼) + log (1 + 𝑢
1

𝛼)
]

−1

𝑏

− 1

}
 

 

1

𝑎

. 

2.3 Some moments 

The 𝑟th ordinary moment of 𝑋, follows from (7) (for 𝑎𝑏(𝑚 + 1) > 𝑟) as  

 𝜇𝑟
′ = ∑

∞

𝑚=0

𝜐𝑚 𝑏(𝑚 + 1) 𝐵 (𝑏(𝑚 + 1) −
𝑟

𝑎
,
𝑟

𝑎
+ 1).  
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The mean of 𝑋 follows by setting 𝑟 = 1 in the above equation.  

 

The mean, variance, skewness and kurtosis for different values of 𝛼, 𝜆, 𝑎 and 𝑏 are 

calculated in Table 1.  

Table 1:  Mean, variance, skewness and kurtosis of the OEHLBXII model for 

selected parameter values 

𝛼 𝜆 𝑎 𝑏 Mean Variance Skewness Kurtosis 

0.5 0.5 0.5 0.5 586.198 16325871 -0.43829 0.12761 

0.5 1.5 0.5 0.5 14.6524 5785.34 33.3841 3932.66 

0.5 2.5 0.5 0.5 3.23592 200.339 25.4845 2197.98 

0.5 4.0 0.5 0.5 0.90732 11.5900 19.1760 1163.47 

0.5 10 0.5 0.5 0.09861 0.08711 11.5524 349.575 

0.5 0.5 1.5 2.5 0.50390 0.11932 0.42536 2.37306 

0.5 1.5 1.5 2.5 0.28190 0.04424 0.65144 2.75647 

0.5 2.5 1.5 2.5 0.21016 0.02618 0.74982 2.98720 

0.5 4.0 1.5 2.5 0.15860 0.01562 0.83029 3.20736 

0.5 10 1.5 2.5 0.08945 0.00529 0.94961 3.59136 

1.5 0.5 1.5 0.5 7.52231 35.24625 1.95525 9.67425 

2.5 0.5 1.5 0.5 9.70655 40.56937 1.77991 8.70444 

4.0 0.5 1.5 0.5 11.9016 44.92013 1.67496 8.15449 

6.0 0.5 1.5 0.5 13.9106 48.34586 1.61195 7.82817 

10 0.5 1.5 0.5 16.56889 52.36171 1.55452 7.52876 

1.5 2.5 0.5 2.0 0.11527 0.01937 2.79773 16.06151 

1.5 2.5 1.5 2.0 0.41878 0.03175 0.34075 2.93500 

1.5 2.5 2.5 2.0 0.57904 0.02442 -0.16393 2.86783 

1.5 2.5 4.0 2.0 0.70406 0.01538 -0.50166 3.31814 

1.5 2.5 10 2.0 0.86550 0.00415 -0.91961 4.48742 

1.5 2.5 2.5 0.5 1.22759 0.20584 0.59692 3.70374 

1.5 2.5 2.5 1.5 0.66278 0.03423 -0.08306 2.86930 

1.5 2.5 2.5 2.5 0.52340 0.01917 -0.21209 2.87639 

1.5 2.5 2.5 4.0 0.42622 0.01197 -0.28382 2.90206 

1.5 2.5 2.5 10 0.29045 0.00524 -0.35499 2.94266 

 

This table shows that, for fixed 𝛼, 𝑎 and 𝑏, the mean and variance are decreasing 

functions of 𝜆, while the skewness and kurtosis are increasing functions of 𝜆. Also, for 

fixed 𝜆, 𝑎 and 𝑏, the mean and variance are increasing functions of 𝛼, while the skewness 

and kurtosis are decreasing functions of 𝛼. For fixed 𝛼, 𝜆 and 𝑏, the mean is increasing 

function of 𝑎, while the variance, skewness and kurtosis are decreasing functions of 𝑎. 

Further, for fixed 𝛼, 𝜆 and 𝑎, the mean, variance, skewness and kurtosis are decreasing 

functions of 𝑏. It is noted that, the OEHLBXII distribution can be left skewed or right 

skewed. Then, the OEHLBXII distribution is a flexible distribution that can be used to 

model skewed data. 
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The 𝑟th incomplete moment of the OEHLBXII distribution follows from (7) as 

𝜑𝑟(𝑡) = ∑

∞

𝑚=0

𝜐𝑚 𝑏(𝑚 + 1) 𝐵 (𝑡𝑎; 𝑏(𝑚 + 1) −
𝑟

𝑎
,
𝑟

𝑎
+ 1). 

 

The first incomplete moment of 𝑿 follows from the last equation, with 𝒓 = 𝟏, as 

𝜑1(𝑡) = ∑

∞

𝑚=0

𝜐𝑚 𝑏(𝑚 + 1) 𝐵 (𝑡𝑎; 𝑏(𝑚 + 1) −
1

𝑎
,
1

𝑎
+ 1) 

which is important to calculate the Bonferroni and Lorenz curves and the MRL and MIT. 

The MRL or life expectancy at age 𝑡 is defined by  

 𝑚𝑋(𝑡) =
1 − 𝜑1(𝑡)

1 − 𝐹(𝑡)
− 𝑡.  

 

Using 𝜑1(𝑡), we obtain  

 
𝑚𝑋(𝑡) =

1

1 − 𝐹(𝑡)
∑

∞

𝑚=0

𝜐𝑚 𝑏(𝑚 + 1) 𝐵 (𝑡𝑎; 𝑏(𝑚 + 1) −
1

𝑎
,
1

𝑎
+ 1) − 𝑡. 

 

 

The MIT is defined (for 𝑡 > 0) by  

𝑀𝑋(𝑡) = 𝑡 −
𝜑1(𝑡)

𝐹(𝑡)
. 

 

By inserting 𝜑1(𝑡) in the above equation, we have the MIT of 𝑋 as  

 𝑀𝑋(𝑡) = 𝑡 −
1

𝐹(𝑡)
∑

∞

𝑚=0

𝜐𝑚 𝑏(𝑚 + 1) 𝐵 (𝑡𝑎; 𝑏(𝑚 + 1) −
1

𝑎
,
1

𝑎
+ 1).  

2.4 Moment generating function 

The MGF of 𝑋 follows from (7) as 

𝑀𝑋(𝑡) = ∑∞𝑚=0 𝜐𝑚 𝑀𝑏(𝑚+1)(𝑡),       (8) 

 

where  𝑀𝑏(𝑚+1)(𝑡) is the MGF of the BXII distribution with two parameters 𝑎 and 

𝑏(𝑚 + 1). Paranaíba et al. (2011) provided a simple formula for the MGF of BXII 

distribution with two-parameter 𝑎 and 𝑏 (for 𝑡 < 0) as 

𝑀(𝑡) = 𝑠 𝐼 (−𝑡,
𝑠

𝑏
− 1,

𝑠

𝑏
, −𝑏 − 1).      (9) 

 

Combining Equations (8) and (9), the MGF of 𝑋 reduces to 

 𝑀𝑋(𝑡) = 𝑠 ∑

∞

𝑚=0

𝜐𝑚 𝐼 (−𝑡,
𝑠

𝑏(𝑚 + 1)
− 1,

𝑠

𝑏(𝑚 + 1)
,−𝑏(𝑚 + 1) − 1)  
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2.5 Order statistics   

Let 𝑋1, … , 𝑋𝑛 be a random sample of size 𝑛 from the OEHLBXII distribution and let 

𝑋(1), … , 𝑋(𝑛) be the corresponding order statistics. Then, the pdf of the 𝑖th order statistic, 

denoted by 𝑋𝑖:𝑛, is given by 

𝑓𝑖:𝑛(𝑥) = 𝑑𝑓(𝑥)∑
𝑛−𝑖
𝑗=0 (−1)

𝑗 (𝑛−𝑖
𝑗
)𝐹𝑗+𝑖−1(𝑥),      (10) 

where 𝑑 = 𝑛!/(𝑖 − 1)! (𝑛 − 𝑖)!. 
 

Using Equation (20) in Afify et al. (2017), one can write 

𝑓(𝑥)𝐹𝑗+𝑖−1(𝑥) = ∑

∞

𝑠,𝑤,𝑘,𝑙=0

(−1)𝑠+𝑘+𝑙2𝛼𝜆𝑘+1

𝑘! (𝑠 + 𝑤 + 1)−𝑘
(
𝛼(𝑗 + 𝑖) − 1

𝑠
) (
−𝛼(𝑗 + 𝑖) − 1

𝑤
)(
−𝑘 − 2

𝑙
) 

× 𝑎𝑏𝑥𝑎−1(1 + 𝑥𝑎)−𝑏−1[1 − (1 + 𝑥𝑎)−𝑏]𝑘+𝑙 . 
 

After applying the generalized binomial expansion, the last equation can be expressed as 

𝑓(𝑥)𝐹𝑗+𝑖−1(𝑥) = ∑

∞

𝑠,𝑤,𝑘,𝑙,𝑚=0

(−1)𝑠+𝑘+𝑙+𝑚2𝛼𝜆𝑘+1

𝑘! (𝑠 + 𝑤 + 1)−𝑘
(
𝛼(𝑗 + 𝑖) − 1

𝑠
) (
−𝛼(𝑗 + 𝑖) − 1

𝑤
) 

× (
−𝑘 − 2

𝑙
) (
𝑘 + 𝑙

𝑚
)𝑎𝑏𝑥𝑎−1(1 + 𝑥𝑎)−𝑏(𝑚+1)−1. 

 

By combining the above equation and Equation (10), the PDF of 𝑋𝑖:𝑛 reduces to 

𝑓𝑖:𝑛(𝑥) = ∑
∞
𝑚=0 𝑢𝑚 𝑔𝑏(𝑚+1)(𝑥),       (11) 

where 

 

𝑢𝑚 = 𝑑 ∑

∞

𝑠,𝑤,𝑘,𝑙=0

∑

𝑛−𝑖

𝑗=0

(−1)𝑗+𝑠+𝑘+𝑙+𝑚2𝛼𝜆𝑘+1

𝑘! (𝑠 + 𝑤 + 1)−𝑘
(
𝑛 − 𝑖

𝑗
) 

× (
𝛼(𝑗 + 𝑖) − 1

𝑠
) (
−𝛼(𝑗 + 𝑖) − 1

𝑤
) (
−𝑘 − 2

𝑙
) (
𝑘 + 𝑙

𝑚
) 

 

 

and 𝑔𝑏(𝑚+1) denotes to the BXII PDF with parameters 𝑎 and 𝑏(𝑚 + 1). 
 

The 𝑟th moment of 𝑋𝑖:𝑛 follows from Equation (11) as 

 𝐸(𝑋𝑖:𝑛
𝑟 ) = ∑

∞

𝑚=0

𝑢𝑚 𝑏(𝑚 + 1) 𝐵 (𝑏(𝑚 + 1) −
𝑟

𝑎
,
𝑟

𝑎
+ 1).  

3.   Estimation 

The unknown parameters of the OEHLBXII distribution are estimated using the 

maximum likelihood from complete samples only. Consider a random sample of size 𝑛, 
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𝑥1, … , 𝑥𝑛, is drawn from this distribution with parameter vector 𝜽 = (𝛼, 𝜆, 𝑎, 𝑏)𝑇. Then, 

the log-likelihood function for 𝜽, denoted by ℓ(𝜽), reduces to 

ℓ(𝜽) = 𝑛log(2𝛼𝜆𝑎𝑏) + (𝑎 − 1)∑

𝑛

𝑖=1

log𝑥𝑖 + 𝜆∑

𝑛

𝑖=1

s𝑖 + (𝑏 − 1)∑

𝑛

𝑖=1

log(2 − s𝑖)

+ (𝛼 − 1)∑

𝑛

𝑖=1

log[1 − exp(𝜆𝑠𝑖)] − (𝛼 + 1)∑

𝑛

𝑖=1

log[1 + exp(𝜆s𝑖)], 

where s𝑖 = 1 − (1 + 𝑥𝑖
𝑎)𝑏. 

 

The score vector elements, 𝑼(𝜽) =
𝜕ℓ

𝜕𝜃
= (𝑈(𝛼),𝑈(𝜆), 𝑈(𝑎), 𝑈(𝑏))𝑇, are given by 

𝑈(𝛼) =
𝑛

𝛼
+∑

𝑛

𝑖=1

log[1 − exp(𝜆𝑠𝑖)] −∑

𝑛

𝑖=1

log[1 + exp(𝜆s𝑖)], 

𝑈(𝜆) =
𝑛

𝜆
+∑

𝑛

𝑖=1

s𝑖 − (𝛼 − 1)∑

𝑛

𝑖=1

𝑠𝑖exp(𝜆𝑠𝑖)

1 − exp(𝜆𝑠𝑖)
− (𝛼 + 1)∑

𝑛

𝑖=1

𝑠𝑖exp(𝜆s𝑖)

1 + exp(𝜆s𝑖)
, 

𝑈(𝑎) =
𝑛

𝑎
+∑

𝑛

𝑖=1

log𝑥𝑖 − 𝜆𝑏∑

𝑛

𝑖=1

𝑑𝑖 + 𝑏(𝑏 − 1)∑

𝑛

𝑖=1

𝑑𝑖
2 − s𝑖

+ 𝜆𝑏(𝛼 − 1)∑

𝑛

𝑖=1

𝑑𝑖exp(𝜆𝑠𝑖)

1 − exp(𝜆𝑠𝑖)

+ 𝜆𝑏(𝛼 + 1)∑

𝑛

𝑖=1

𝑑𝑖exp(𝜆s𝑖)

1 + exp(𝜆s𝑖)
 

and 

𝑈(𝑏) =
𝑛

𝑏
− 𝜆∑

𝑛

𝑖=1

𝑘𝑖 + (𝑏 − 1)∑

𝑛

𝑖=1

𝑘𝑖
2 − s𝑖

+ 𝜆(𝛼 − 1)∑

𝑛

𝑖=1

𝑘𝑖exp(𝜆𝑠𝑖)

1 − exp(𝜆𝑠𝑖)

+ 𝜆(𝛼 + 1)∑
𝑘𝑖exp(𝜆s𝑖)

1 + exp(𝜆s𝑖)

𝑛

𝑖=1

, 

where 𝑑𝑖 = 𝑥𝑖
𝑎(1 + 𝑥𝑖

𝑎)𝑏−1log𝑥𝑖 and 𝑘𝑖 = (1 + 𝑥𝑖
𝑎)𝑏log(1 + 𝑥𝑖

𝑎). 
 

The estimates of the unknown parameters can be obtained by setting the score vector to 

zero, 𝐔(𝜽̂) = 0. We can get the MLEs 𝜽̂ by solving the above system of equations 

simultaneously using numerical method with iterative techniques such as the Newton-

Raphson algorithm.  

4.   Real data applications 

In this section, the flexibility and importance of the OEHLBXII distribution are 

illustrated via two real data sets. The first data set consists of 63 observations of the 

strengths of 1.5 cm glass fibres, originally obtained by workers at the UK National 

Physical Laboratory (Smith and Naylor, 1987). The data are: 0.55, 0.74, 0.77, 0.81, 0.84, 

0.93, 1.04, 1.11, 1.13, 1.24, 1.25, 1.27, 1.28, 1.29, 1.30, 1.36, 1.39, 1.42, 1.48, 1.48, 1.49, 

1.49, 1.50, 1.50, 1.51, 1.52, 1.53, 1.54, 1.55, 1.55, 1.58, 1.59, 1.60, 1.61, 1.61 ,1.61, 1.61, 

1.62, 1.62, 1.63, 1.64, 1.66, 1.66, 1.66, 1.67, 1.68, 1.68, 1.69, 1.70, 1.70, 1.73, 1.76, 1.76, 

1.77, 1.78, 1.81, 1.82, 1.84, 1.84, 1.89, 2.00, 2.01, 2.24. 
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The second data set refers to the remission times (in months) of a random sample of 128 

bladder cancer patients (Lee and Wang, 2003). The data are: 0.08, 2.09, 3.48, 4.87, 6.94, 

8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 4.98, 6.97, 9.02, 13.29, 0.40, 2.26, 3.57, 5.06, 7.09, 

9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 

7.28, 9.74, 14.76, 26.31, 0.81, 2.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 

7.39,10.34, 14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 1.05, 2.69, 

4.23, 5.41, 7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 

4.33, 5.49, 7.66, 11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 1.40, 3.02, 4.34, 

5.71, 7.93, 11.79, 18.10, 1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 6.25, 8.37, 

12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 6.76, 12.07, 21.73, 2.07, 3.36, 

6.93, 8.65, 12.63, 22.69. 

 

The fits of the OEHLBXII distribution is compared with some competitive models using 

the Cramér-von Mises (𝑊∗) and Anderson-Darling (𝐴∗) statistics which are used widely 

for comparing non-nested models. The competitive distributions are the Weibull BXII 

(WBXII) and beta BXII (BBXII), Kumaraswamy exponentiated BXII (KEBXII), Lindley 

Weibull (LiW) (Cordeiro et al., 2017), Weibull Fréchet (WFr) (Afify et al., 2016) and 

BXII distributions whose PDFs are given by 

WBXII: 𝑓(𝑥) = 𝑎𝑏𝛼𝛽𝑥𝛼−1
[1−(1+𝑥𝛼)−𝛽]

𝑏−1

(1+𝑥𝛼)−𝛽𝑏+1
 exp {−𝑎[(1 + 𝑥𝛼)𝛽 − 1]

𝑏
} ;  

BBXII: 𝑓(𝑥) =
𝑐𝜃𝛽−𝑐

𝐵(𝑎,𝑏)
𝑥𝑐−1 [1 + (

𝑥

𝛽
)
𝑐

]
−𝜃𝑏−1

{1 − [1 + (
𝑥

𝛽
)
𝑐

]
−𝜃

}

𝑎−1

; 

KEBXII: 𝑓(𝑥) =
𝑎 𝑏 𝑐 𝜃 𝛽𝑥𝑐−1

(1+𝑥𝑐)𝜃+1
[1 − (1 + 𝑥𝑐)−𝜃]

𝑎𝛽−1
{1 − [1 − (1 + 𝑥𝑐)−𝜃]

𝑎𝛽
}
𝑏−1

; 

LiW: 𝑓(𝑥) =
𝜃2𝛽

𝜃+1
(𝛼𝛽𝑥𝛽−1 + 𝛼2𝛽𝑥2𝛽−1)exp[−𝜃(𝛼𝑥)𝛽]; 

WFr: 𝑓(𝑥) = 𝑎 𝑏 𝛽 𝛼𝛽𝑥−𝛽−1𝑒−𝑏(
𝛼

𝑥
)
𝛽

{1 − exp [− (
𝛼

𝑥
)
𝛽

]}
−𝑏−1

exp (−𝑎 {exp [− (
𝛼

𝑥
)
𝛽

] −

1}
 −𝑏

) ; 

All the above parameters are positive real numbers. 

 

Tables 2 and 3 list the MLEs (corresponding standard errors in parentheses) and the 

values of 𝑊∗ and 𝐴∗ statistics. 

 

Tables 2 and 3 compare the fits of the OEHLBXII distribution with the WBXII, BBXII, 

KEBXII, LiW, WFr and BXII distributions. The values in these tables show that the 

OEHLBXII distribution has the lowest values of 𝑊∗ and 𝐴∗ among all fitted models. So it 

could be chosen as the best model for both data sets. 
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Table 2:    MLEs (their standard errors in parentheses), 𝑾∗ and 𝑨∗ for glass fibres 

data 

Model  Estimates  𝑊∗ 𝐴∗ 

OEHLBXII 

(𝜶, 𝝀, 𝒂, 𝒃) 

1.0833 

(0.472) 

0.0554 
(0.080) 

2.9437  

(2.746) 

2.0259 
(2.171) 

 
0.138 0.780 

WBXII 

(𝛼, 𝛽, 𝑎, 𝑏) 

 1.6077  

(0.376) 

 2.7409 

 (1.010) 

 0.0026  

(0.003) 

 1.8888  

(0.768) 

 
0.192 1.055 

LiW 

(𝛼, 𝛽, 𝜃) 

0.7792 

(0.182)   

 4.9441 

(0.659)   

 0.5349 

(0.486)   
 

 
0.195 1.075 

WFr 

(𝛼, 𝛽, 𝑎, 𝑏) 

 0.3865 

(0.799)   

 0.2436 

(0.285)   

 1.4762 

(4.782)   

 16.8561 

(20.485)  

 
0.277 1.485 

KEBXII 

(𝑎, 𝑏, 𝑐, 𝜃, 𝛽) 

 4.0220  

(24.141) 

137.8974  

(115.511) 

 1.0241  

(0.665) 

 1.3285  

(1.297) 

 4.0102  

(26.065) 
0.436 2.349 

BBXII 

(𝑎, 𝑏, 𝑐, 𝜃, 𝛽) 

 26.1629  

(14.588) 

 14.7050 

(12.885)   

 0.9271 

(0.213)   

 5.5864 

(5.215)   

 8.2620 

(8.132)   
0.645 3.501 

BXII 

( 𝑎, 𝑏) 

7.4821 

(1.285) 

0.3207 

(0.065) 
  

 
1.177 7.366 

Table 3:   MLEs (their standard errors in parentheses), 𝑾∗ and 𝑨∗ for cancer data 

 

The histogram and the estimated densities for both data sets are displayed in Figures 3 

and 4. These plots reveal that the OEHLBXII distribution is the best model to fit both 

data sets. The  fitted PDF, CDF, survival function (SF) and PP plots of the OEHLBXII 

distribution for both data sets are shown in Figures 5 and 6, respectively. 

Model    Estimates  𝑊∗ 𝐴∗ 

OEHLBXII 

(𝜶, 𝝀, 𝒂, 𝒃) 

2.9623 

(4.826) 

0.7077 

(1.763) 

0.5081 

(1.138) 

1.1006 

(3.199) 

 
0.032 0.213 

WBXII 

(𝛼, 𝛽, 𝑎, 𝑏) 

0.789 

(0.418) 

0.2008 

(0.312) 

6.7391 

(43.919) 

2.4552 

(1.402) 

 
0.049 0.326 

KEBXII 

(𝑎, 𝑏, 𝑐, 𝜃, 𝛽) 

3.0170 

(8.796) 

67.6736 

(102.60) 

0.3383 

(0.376) 

0.8386 

(1.674) 

2.8394 

(8.279) 
0.048 0.318 

BBXII 

(𝑎, 𝑏, 𝑐, 𝜃, 𝛽) 

1.0891 

(0.451) 

1.3905 

(2.405) 

1.5728 

(0.441) 

0.8665 

(1.017) 

6.3741 

(1.582) 
0.041 0.297 

WFr 

(𝛼, 𝛽, 𝑎, 𝑏) 

51.2054 

(155.86) 

0.2206 

(0.086) 

19.5182 

(49.010) 

2.4642 

(1.081) 
 0.062 0.405 

LiW 

(𝛼, 𝛽, 𝜃) 

0.0171 

(0.013)   

1.0381 

(0.068)   

  7.3474 

(5.639)   
  0.136 0.819 

BXII 

( 𝑎, 𝑏) 

2.3354 

(0.354) 

0.2337 

(0.040) 
  

 
0.694 5.370 
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Figure 3: Fitted PDF of the OEHLBXII distribution and other fitted PDFs for glass fibres 

data 

 

  

Figure 4: Fitted PDF of the OEHLBXII distribution and other fitted PDFs for cancer data 
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Figure 5: Fitted PDF, CDF, SFand PP plots for glass fibres data 

 
Figure 6: Fitted PDF, CDF, SFand PP plots for cancer data 

5.   Conclusions 

We study a new four-parameter model called the odd exponentiated half-logistic Burr XII 

(OEHLBXII) distribution which generalizes the two-parameter Burr XII distribution. We 

provide some mathematical properties of the new model including explicit expansions for 

the quantile function, ordinary and incomplete moments, mean residual life, mean 

inactivity time and order statistics. The maximum likelihood estimation of the model 

parameters is investigated. We prove emprically, via two real data applications, that the 

OEHLBXII distribution can provide better fits than some other well-known competitive 

models. 
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