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Abstract 

Moving extreme ranked set sampling(MERSS)(Al-Saleh and Al-Hadrami 2003 a, b) is 
one of useful modifications of the usualranked setsampling(RSS).This method uses only 
extremes ranks with varied set size to reduce error in ranking. In this paper, Bayes 
estimation of the mean of normal distribution based on MERSSwas considered and 
compared with simple random sampling (SRS). counterpart. The suggested 
estimatorsare found to be more efficient than that from SRS. 
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1.   Introduction  

There are some studies investigated ranked set sampling (RSS) from a Bayesian 
point of view. Al-Saleh and Muttlak (1998) investigated Bayesian estimators of 
the mean of the exponential distribution. Lavine (1999) studied some aspects of 
Bayesian RSS. Kim and Arnold (1999) considered Bayesian estimation under 
both balanced and generalized RSS. Al-Saleh and Muttlak (2000) considered 
Bayesian estimation using RSS and found a Bayes estimator of exponential 
distribution under conjugate prior and gave an application of real data. Al-
Salehand Abu Hawwas (2002) used the notion of multiple imputations to 
characterize the Bayes estimators using RSS. This characterization was used to 
approximate complicated Bayesian estimators and was applied to the case of 
normal distribution with conjugate prior. For more details about RSS see 
Koyuncu and Kadilar (2009), Li and Balakrishnan (2008), Al-Omari and Jaber 
(2008), and Al-Omari, et al. (2009).  

 
Moving extreme ranked set sampling was proposed by Al-Odat and Al-Saleh 
(2001). This method uses only extremes with varied set size to reduce error in 
ranking. Al-Saleh and Al-Hadhrami (2003a,b) investigated the method 
parametrically and found maximum likelihood estimators (MLE) of some 
parameters of normal, exponential and uniform distributions. Based on MERSS, 
several ratio, product and chain type estimators were studied by Al-Hadhrami 
(2007). Abu-Dayyeh and Al-Sawi (2007) investigated inference about the mean 
of the exponential distribution using MERSS. Estimation of the mean using 
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concomitant variable was studied by Al-Saleh and Al-Ananbeh (2007). Al-
Hadhrami et al. (2009) found the MLE of variance of the normal distribution and 
investigated its properties. This MLE is unbiased estimator and more efficient 
than the competitor estimator from SRS. Bayesian inference on the variance of 
normal distribution using MERSS was considered by Al-Hadhrami and Al-Omari 
(2010). Generalized MLE, confidence intervals, and different testing hypotheses 
were considered. It was shown that the modified inferences using MERSS are 
more efficient than their counterparts based on SRS. Al-Saleh and Samawi 
(2010) considered the estimation of the odds, F/(1 − F) based on MERSS, and 
showed that the estimator based on MERSS have some advantages over that 
based on SRS. 
 
In this paper, Bayesian estimator of the population mean of normal distribution is 
considered and compared with estimators based on simple random sampling. 
 
The remaining part of this paper is organized as follows: Bayes estimator of the 
mean based on MERSS is given in Section 2. In Section 3, Bayes estimators of 
the mean of normal distribution are considered based on constant and conjugate 

priors. An approximation of ˆ
MERSSθ  is given in Section 4. In Section 5 a simulation 

study is presented to evaluate the performance of the suggested estimators. 
Finally, conclusions are given in Section 6. 

 

2.  Bayes estimator of the mean based on MERSS 

The MERSS can be summarized as follows: 
 

Step 1: Select m  random samples of size 1, 2, 3,…, m , respectively. 
Step 2: Identify the maximum of each set, visually or by any cost free method 

without actual measurement of the variable of interest. 
Step 3: Measure accurately the selected judgment identified maxima. 
Step 4: Repeat Steps 1, 2, 3 but for minimum of each set. 
Step 5: Repeat the above steps r times until the desired sample size, 

rmn 2=  is obtained.  
For one cycle, the following MERSS sample is obtained 

: 1: 1 2: 2 1:1, , ,...,m m m m m mX X X X− − − − , 1: 1: 1 1: 2 1:1, , ,...,m m mX X X X− − , 

where :i jX is the element of rank i from a set of size .j For simplicity, use iX for 

:i iX  and jY for 1: jX . Then, the sample of one cycle is given by 

1 2 3, , ,..., ,mX X X X 1 2 3, , ..., mY Y Y Y  

The notion of multiple imputations used by Al-Salehand Abu Hawwas (2002) can 
be also applied for MERSS with similar formula developed for RSS. Assume that

* *
1 2,X X ,…, *

2mX to be a SRS with density *( | )f x θ  and cumulative distribution 

function *( | )F x θ . Let 1,X 2 ,X …, 1 2, , , ,m mX Y Y YL be a MERSS of one cycle from 

this distribution obtained using a full data of ( 1)m m + observations. 
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Let � (� ) be a prior density of �  and ( )| ,x yπ θ
 
be the posterior density of θ  given 

,x y  and ( )*| xπ θ
 
is the posterior density of θ  given .x* Now, let us introduce the 

following identity based on MERSS that is similar to one provided by Rubin 
(1978).  

( ) ( ) ( )
*

* * *| , |  | ,
x

x y x m x x y dxπ θ π θ= ∫ ,     (1) 

where  

( )
( )

( )

*

*
, ,

| ,
,

m x x y
m x x y

m x y
= , ( ) ( )* *, , ( ) , , |m x x y f x x y dπ θ θ θ

∞

−∞

= ∫ , 

and  

( ) ( )
*

* *, , ,
x

m x y m x x y dx= ∫ . 

Based on this identity, the posterior density of θ  given a MERSS data of size 2m
is the expected value of the posterior density of θ , given the SRS data of size 

( 1)m m + , i. e., full data. The expectation is with respect to the predictive 

distribution, ( )* | ,m x x y . 
 

Bayes estimator of θ under the squared error loss function (SELF) is the mean of 
the posterior density. Therefore, from (1) we have 

( ) ( ) ( )
*

* * *| , |  | ,
x

x y d x m x x y dx d
θ θ

θπ θ θ θ π θ θ
 

=  
  

∫ ∫ ∫ ,  

and 

( )
*

* * *ˆ | , ( | )MERSS

x

m x x y x d dx
θ

θ θπ θ θ
 

=  
 

∫ ∫ ( )
*

* *ˆ | ,SRS

x

m x x y dxθ= ∫ ,  (2) 

where ˆ
MERSSθ and ˆ

SRSθ are the Bayes estimators of θ using MERSS and SRS 

methods, respectively. 
 

Formula (2) shows that the MERSS Bayes estimator is the expected value of the 
SRS Bayes estimator based on the full data with respect to the predictive 
distribution. 
 

From the relation 

( ) ( ) ( )* *Var | , Var | | , Var | | ,x y E x x y E x x yθ θ θ   = +   
, 

we got 

( ) ( ) ( )* *ˆ Var | , Var | | , Var | ,SRSx y E x x y x x yθ θ θ   = +   
.   (3) 

The Bayes risk of ˆ
MERSSθ  is 

 

 
( )( ) ( )

2

,
ˆ ˆ, ,MERSS x y MERSSr x y E Eθθ π θ θ = −

  
,  

and the Bayes risk of ˆ
SRSθ is  
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 ( )( ) ( )*

2
*ˆ ˆ,SRS SRSx

r x E Eθθ π θ θ = −
  

.  

Then, using (3), we obtain 

( )( ) ( ){ } ( ){ }* *ˆ ˆ , , Var | | , Var | ,MERSS SRSr x y E E x x y E x x yθ π θ θ ∗   = +     

( )( ) ( )( )* *ˆ ˆ, Var | ,SRS SRSr x E x x yθ π θ = +
 

.     (4) 

3. Bayes estimator of the mean of normal distribution  

Assume that f is the density of a normal random variable with mean θ and 

variance 1, )1,(~ θNX . Our interest is to get Bayes estimate of θ  based on 

MERSS. For simplicity, we use iX , iY  for iiX :  and iY :1 , respectively. The joint 

density function of X and Y is 

( ) ( ) ( ) ( ) ( )
-1 -12

1

, ; , , , 1- , .
m

i i

i i i i
i

f x y i f x F x f y F yθ θ θ θ θ
=

   =    ∏   (5) 

Substitute )(),( θφθ −= xxf and )(),( θθ −Φ= xxF  in (5), we get 

( ) ( ) ( ) ( ) ( )
1 12

1

, ; 1 .
m

i i

i i i i
i

f x y i x x y yθ φ θ θ φ θ θ
− −

=

   = − Φ − − − Φ −   ∏  

Now, suppose that ~ ( )hθ θ as a prior density. Thus, the posterior density is given 

by 

( ) [ ]

[ ] [ ]

1 12

1

1 12

1

( ) ( ) ( ) 1 ( )

( ; , )

( ) ( ) ( ) ( ) 1 ( )

m
i i

i i i i
i

m
i i

i i i i
i

h i x x y y

h x y

h i x x y y d

θ φ θ θ φ θ θ

θ

θ φ θ θ φ θ θ θ

− −

=
∞

− −

=−∞

 − Φ − − − Φ − 
=

− Φ − − − Φ −

∏

∏∫
.  (6) 

The Bayes estimator using square error loss function, which is the mean of 
posterior distribution is 

[ ] [ ]

[ ] [ ]

1 12

1

1 12

1

. ( ) ( ) ( ) ( ) 1 ( )
ˆ

( ) ( ) ( ) ( ) 1 ( )

m
i i

i i i i
i

m
i i

i i i i
i

h i x x y y d

h i x x y y d

θ θ φ θ θ φ θ θ θ

θ

θ φ θ θ φ θ θ θ

∞
− −

=−∞
∞

− −

=−∞

− Φ − − − Φ −

=

− Φ − − − Φ −

∏∫

∏∫
. (7) 

In the following we will introduce the Bayes estimators of the θ  based on 
constant and conjugate priors. 

3.1 Bayes estimator of the mean of normal distribution with constant prior 

Assuming that ( ) 1π θ = , then the Bayes estimator of θ  is 

[ ]

[ ]

11

1

11

1

( ) ( ) ( ) 1 ( )
ˆ .

( ) ( ) ( ) 1 ( )

m
ii

i i i i
i

MERSS m
ii

i i i i
i

x x y y d

x x y y d

δ θ

θ

θ φ θ θ φ θ θ θ

θ

φ θ θ φ θ θ θ

−−

=

−−

=

− Φ − − − Φ −

=

− Φ − − − Φ −

∏∫

∏∫
  (8) 

The following lemma summarizes some properties of this estimator. 
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Lemma 1: For any scalar “a”, and ( , ,....., )a a a=a , we have 

1.  ˆ ˆ( , ) ( , )MERSS MERSSx a y a x y aδ δθ θ+ + = + . 

2.  ˆ ˆ( ( , ))  ( , )MERSS MERSSx y x yδ δθ θ− = − . 

3. ˆ
MERSS
δθ is an unbiased estimator of .θ  

4. The risk function of ˆ
MERSS
δθ  is free of .θ  

Proof: 
1. Consider the sample ,x a+ y a+ . Then, the estimator based on these 

observations is given by 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

11

1

11

1

1
ˆ

1

m
ii

i i i i
i

MERSS m
ii

i i i i
i

a a x a x a y a y a d

x a x a y a y a d

δ θ

θ

θ φ θ θ φ θ θ θ

θ

φ θ θ φ θ θ θ

−−

=

−−

=

 + − + − Φ + − + − − Φ + − 
=

 + − Φ + − + − − Φ + − 

∏∫

∏∫
 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

11

1

11

1

( ) ( ) ( ) ( ) 1 ( )

( ) ( ) ( ) 1 ( )

m
ii

i i i i
i

m
ii

i i i i
i

a x a x a y a y a d

a

x a x a y a y a d

θ

θ

θ φ θ θ φ θ θ θ

φ θ θ φ θ θ θ

−−

=

−−

=

 − − − Φ − − − − − Φ − − 
= +

 − − Φ − − − − − Φ − − 

∏∫

∏∫
 

∴ ˆ ˆ( , ) ( , )MERSS MERSSx a y a x y aδ δθ θ+ + = + . 

 
2. Consider the sample - , -x y  . Then, the estimator based on these 

observations is 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

11

1

11

1

1
ˆ

1

m
ii

i i i i
i

MERSS m
ii

i i i i
i

x x y y d

x x y y d

δ θ

θ

θ φ θ θ φ θ θ θ

θ

φ θ θ φ θ θ θ

−−

=

−−

=

 − − Φ − − − − − Φ − − 
=

 − − Φ − − − − − Φ − − 

∏∫

∏∫
 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

11

1

11

1

( ) 1 ( )

( ) 1 ( )

m
ii

i i i i
i

m
ii

i i i i
i

x x y y d

x x y y d

θ

θ

θ φ θ θ φ θ θ θ

φ θ θ φ θ θ θ

−−

=

−−

=

 + Φ − + + − Φ − + 
=

 + Φ − + + − Φ − + 

∏∫

∏∫
, 

 and since –x has the same distribution as y, we got 

( )ˆ ˆ( , )  ( , )MERSS MERSSx y x yδ δθ θ− = − . 

 
3.  Since φ  is symmetric around θ , we have 

 

( )ˆ ˆ( , ) ( ), ( )MERSS MERSSE x y E x yδ δθ θ θ θ θ θ   − − = − − − −   
 

( )ˆ ,MERSSE x yδθ θ θ = − − − 
, 

 and thus  

 
ˆ ( , ) 0MERSSE x yδθ θ θ − − = 

.  
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From (1), we have 
ˆ ˆ( , ) ( , )MERSS MERSSE x y E x yδ δθ θ θ θ θ θ   = + − − =   

. 

 
4. Follows from (1). 

3.2 Bayes estimator of the mean of normal distribution with conjugate prior 

Now, if 1 2, , , mX X XL is a SRS from the normal distribution N(θ ,1), then the 

Bayes estimator using N(0,1) as a prior distribution for θ  is ˆ /(1 )SRS mX mθ = + , with 

Bayes risk = 1/( 1)m + . Also, the Bayes estimator ˆ
SRS
δθ based on constant prioris X

with risk function1/ m . 
 

If *X  is the average of SRS of size ( 1)m m + (full data), and *ˆ ( )SRS xθ  is the Bayes 

estimator forθ based on the full data, then, from Formula (2) we have 

( )( )*ˆ ˆ( , ) | ,MERSS SRSx y E x x yθ θ=  

( )
2

*

2
| ,

1

m m
E x x y

m m

+
=

+ +
 

( )
2

2
ˆ | ,

1
SRS

m m
E x y

m m
δθ

+
=

+ +
 

2

2
ˆ ( , )

1
MERSS

m m
x y

m m
δθ

+
=

+ +
.(9) 

Some properties of the Bayes estimator of the mean of normal distribution using 
conjugate prior are stated in the next lemma. 
 
Lemma 2: 

1.  ( )
2

2
ˆ ( , )

1
MERSS

m m
E x y

m m
θ θ

 +
=  

+ + 
. 

2.  The Bayes risk is given by  

( ) ( ) ( )
2

2

2 2

1ˆ ˆ( , ), Var ( , ) | 1
( 1)

MERSS MERSSr x y m m x y
m m

δθ π θ θ = + +
  + +

, 

3.  The efficiency =
( )

( )

ˆ ,
1

ˆ ,

SRS

MERSS

r

r

θ π

θ π
≥ . 

Proof: 
1.  To prove (1), take the expectation of the both sides of  

 

2

2
ˆ ˆ( , ) ( , )

1
MERSS MERSS

m m
x y x y

m m
δθ θ

 +
=  

+ + 
 

as 

( ) ( )
2

2
ˆ ˆ( , ) ( , )

1
MERSS MERSS

m m
E x y E x y

m m
δθ θ

+
=

+ +
, 
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which by Lemma(1) will be 

( )
2

2
ˆ ( , )

1
MERSS

m m
E x y

m m
θ θ

 +
=  

+ + 
. 

 

2. The variance of ˆ ( , )MERSS x yθ is 

( ) ( )
22

2
ˆ ˆVar ( , ) Var ( , )

1
MERSS MERSS

m m
x y x y

m m
δθ θ

 +
=  

+ + 
, 

which is free of θ  by Lemma (1).  
Hence,  

( ) ( ) 2ˆ ˆ( , ), Var ( , ) | ( )MERSS MERSSR x y x y biasθ θ θ θ= +  

( )
22 2

2 2 2
ˆVar ( , )

1 ( 1)
MERSS

m m
x y

m m m m
δ θ

θ
 +

= + 
+ + + + 

, 

and Bayes risk for ˆ
MERSSθ is 

( )ˆ ˆ( , ), ( ( , ), )MERSS MERSSr x y E R x yθθ π θ θ =  
 

( )( )2
2

2 2

1 ˆVar( ( , ) | ) 1
( 1)

MERSSm m x y
m m

δθ θ= + +
+ +

. 

 

3. Since the Bayes risk of ˆ
SRSθ with size a sample of size 2mis 

( ) 1ˆ ,
2 1

SRSr
m

θ π =
+

,the efficiency of ˆ
MERSSθ with respect to ˆ

SRSθ is 

( )
( )

ˆ ,

ˆ ,

SRS

MERSS

r
eff

r

θ π

θ π
= . 

 
The Bayes estimator has the smallest Bayes risk among all other estimators, 

( ) ( )ˆ ˆ, ,MERSSr rθ π θ π≤ . Now, let 
2ˆ

2 1

mw

m
θ =

+
, where w and *X  are the averages 

based on 2m units using MERSS and SRS, respectively. Thus,  

( ) 2ˆ , ,
2 1

MERSS

mw
r r

m
θ π π

 
≤  + 

 

22
Var | ( )

2 1

mw
E bias

m
π θ

  
= +  +  

 

2

2

2 1
Var( | )

2 1 (2 1)

m
w

m m
θ

 
= + + + 

 

( )2 *

2

1
4 Var( | ) 1

(2 1)
m x

m
θ≤ +

+
 

1
.

2 1m
=

+
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Thus, ( ) 1ˆ ,
2 1

MERSSr
m

θ π ≤
+

. Since ( )*Var( | ) Var |w xθ θ≤
 
by Al-Odat and Al-Saleh (2000). 

Therefore, 

( )
( )

ˆ , 1/(2 1)
1

ˆˆ ( , ),

SRS

MERSSMERSS

r m
eff

rr

θ π

θ πθ π

+
= = ≥ . 

4. Approximation of ˆ
MERSSθ  

From Section (3), we got the Bayes estimator of the mean of normal distribution 
in the form  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 12

1

1 12

1

( ) 1
ˆ

( ) 1

m
i i

i i i i
i

m
i i

i i i i
i

h i x x y y d

h i x x y y d

θ θ φ θ θ φ θ θ θ

θ

θ φ θ θ φ θ θ θ

∞
− −

=−∞
∞

− −

=−∞

   − Φ − − − Φ −   
=

   − Φ − − − Φ −   

∏∫

∏∫
. (10) 

This estimator is very complicated. However, it can be approximated using 
numerical methods (see Ross 1997). One can use Monte Carlo method of 

approximation. That is, if it is possible to generate random variables 1 2, ,..., rθ θ θ  
from ( )h θ , where r  goes to ∞+ , then we can approximate the Bayes estimator 

by 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 12

1 1
1

1 12

1 1

1
ˆ

1

mr
i i

t i t i t i t i t
t i

mr
i i

i t i t i t i t
t i

i x x y y

i x x y y

θ φ θ θ φ θ θ

θ

φ θ θ φ θ θ

− −

= =

− −

= =

   − Φ − − − Φ −   
=

   − Φ − − − Φ −   

∑ ∏

∑∏
,  

5. Simulation Study 

In order to evaluate the behavior of the Bayes estimator, a simulation was 
conducted. Some values of θ  was generated from (0,1)N  and samples are 

selected from ( ,1)N θ  using MERSS. Then, 1θ̂
 
was calculated from the sample 

and the risk function was obtained and compared with that from simple random 
sample. The results are reported in Table 1.  
 
Table 1: Simulation results for comparison between Bayes risks of the 

estimators using MERSS and SRS 3,5, 7,10,15m = . 

m MERSSR  SRSR  Efficiency 

3 0.1122 0.1461 1.30 
5 0.0596 0.0913 1.53 
7 0.0384 0.0660 1.72 
10 0.0241 0.0478 1.99 
15 0.0141 0.0322 2.28 
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Based on Table 1, the efficiency is greater than 1 for the set sizes considered in 
this study and is increasing with .m  This indicates that MERSS estimator is more 
efficient than SRS estimator when estimating the mean of normal distribution. 

6. Conclusions 

The Bayes estimation of the mean of normal distribution using MERSS is 
considered and compared with the estimators based SRS. It is recommended to 
use MERSS for estimating the population mean of the normal distribution using 
Bayes estimation. 

References 

1. Abu-Dayyeh, W. and Al-Sawi, E. (2007). Modified inference about the 
mean of the exponential distribution using moving extreme ranked set 
sampling. Statistical  Papers, 50(2): 249-259. 

2. Al-Hadhrami, S.A. (2007). Estimation of the population mean using ranked 
set sampling with auxiliary variable. PhD Thesis, UKM, Malaysia. 

3. Al-Hadhrami, S.A. and Al-Omari, A.I. (2010). Bayesian inference on the 
variance of normal distribution using moving extreme ranked set sampling. 
Journal of Modern Applied Statistical Methods, 8(1), 273-281. 

4. Al-Hadhrami, S.A., Al Omari, A.E. and Al-Saleh, M.F. (2009). Estimation of 
standard deviation of normal distribution using moving extreme ranked set 
sampling. World Academy of Science, Engineering and Technology. 37, 
988-993. 

5. Al-Odat, M.T. and Al-Saleh, M.F. (2001).A variation of ranked set sampling. 
Journal of Applied Statistical Science, 10, 137-146. 

6. Al-Omari, A.I., Ibrahim, K., Jemain, A.A. and Al-Hadhrami, S.A. (2009). 
Multistage balanced groups ranked set samples for estimating the 
population median, Statistics in Transition, 10(2), 223-233. 

7. Al-Omari, A.I. and Jaber, K. (2008). Percentile double ranked set sampling. 
Journal of Mathematics and Statistics, 4(1), 60-64. 

8. Al-Saleh, M.F. and Al-Ananbeh, A.M. (2007). Estimation of the means of 
the bivariate normal using moving extreme ranked set sampling with 
concomitant variable. Statistical Papers, 48(2): 179-195. 

9. Al-Saleh, M.F. and Abu Hawwas J. (2002).Characterization of ranked set 
sampling Bayes estimators with application to the normal distribution. 
Soochow Journal of Mathematics, 28, 223-234. 

10. Al-Saleh, M.F. and Al-Hadhrami, S. (2003a).Parametric estimation for the 
location parameter for symmetric distributions using moving extremes 
ranked set sampling with application to trees data. Environmetrics, 14(7), 
651-664. 

11. Al-Saleh, M.F. and Al-Hadhrami, S. (2003b). Estimation of the mean of 
exponential distribution using moving extreme ranked set sampling. 
Statistical Papers, 44, 367-387. 



Said Ali Al-Hadhrami, Amer Ibrahim Al-Omari 

Pak.j.stat.oper.res.  Vol.VIII  No.1 2012   pp21-30 30

12. Al-Saleh, M.F., Al-Sharfat. K. and Muttlak, H. (2000). Bayesian estimation 
using ranked set sampling. Biometrical Journal, 42, 1-12. 

13. Al-Saleh, M.F. and Samawi, H. (2010).On estimating the odds using 
moving extreme ranked set sampling. Statistical Methodology, 7 (2),  
133- 140. 

14. Al-Saleh, M.F. and Muttlak, H. (1998). A note on the estimation of the 
parameter of the exponential distribution using Bayesian RSS. Pakistan 
Journal of Statistics, 14, 49-56. 

15. Kim and Arnold (1999). Parameter estimation under generalized ranked set 
sampling. Statistics and Probability Letters, 42, 353-360. 

16. Koyuncu, N. and Kadilar, C. (2010). Ratio and product estimators in 
stratified random sampling. Journal of Statistical Planning and Inference, 
139, 2552-2558. 

17. Lavine, M. (1999). The Bayesics of ranked set sampling. Journal of 
Environmental and Ecological Statistics, 6, 47-57. 

18. LI, T. and Balakrishnan, N. (2008). Best linear unbiased estimators of 
parameters of a simple linear regression model based on ordered ranked 
set samples. Journal of Statistical Computation and Simulation, 78(12), 
1267–1278. 

19. Rubin, D. (1987). Multiple imputations for nonresponse in sample surveys 
and censuses. Wiley, New York.  

20. Sheldom, M. Ross (1997). Simulation, 2nd Edition, Academic Press, USA. 


