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Abstract 

Huang S. and Oluyede (2016), Oluyede et al. (2016), Krishnarani (2016) and Rather and Rather (2017) 

consider the "McDonald Log-Logistic", the "Exponentiated Log-Logistic Weibull", the "Power 

Transformation Half-Logistic" and "k-Generalized Exponential" distributions, respectively, and study 

certain properties and applications of these distributions. The present short note is intended to complete, in 

some way, the above mentioned works via establishing certain characterizations of these distributions in 

different directions. 

1.   Introduction  

Characterizations of distributions is an important research area which has recently 

attracted the attention of many researchers. This short note deals with various 

characterizations of the McDonald Log-Logistic (McLLoG), the Exponentiated Log-

Logistic Weibull (ELLoWG), the Power Transformation Half-Logistic (PTHL) and the k-

Generalized Exponential (k-GE) distributions to complete, in some way, the above 

mentioned works. These characterizations are based on: (𝑖) a simple relationship between 

two truncated moments; (𝑖𝑖) the hazard function; (𝑖𝑖𝑖) reverse hazard function and (𝑖𝑣) 

conditional expectation of a function of the random variable. It should be mentioned that 

for characterization (𝑖) the 𝑐𝑑𝑓 (cumulative distribution function) is not required to have 

a closed form. 

 

Huang S. and Oluyede (2016) introduced the McLLoG distribution with 𝑐𝑑𝑓 and 𝑝𝑑𝑓  

(probability density function) given, respectively, by 

𝐹(𝑥; 𝑎, 𝑏, 𝑐, 𝜆, 𝛾) =
1

𝐵(𝑎𝑐−1,𝑏)
∫

(1+𝜆𝑥−𝛾)

0
𝑤𝑎𝑐−1−1(1 − 𝑤)𝑏−1, 𝑥 ≥ 0,  (1.1) 

and  

𝑓(𝑥; 𝑎, 𝑏, 𝑐, 𝜆, 𝛾) 

=
𝑐𝜆𝛾

𝐵(𝑎𝑐−1,𝑏)
𝑥−𝛾−1(1 + 𝜆𝑥−𝛾)𝑎−1[1 − (1 + 𝜆𝑥−𝛾)−𝑐]𝑏−1, 𝑥 > 0,  (1.2) 

where 𝑎, 𝑏, 𝑐, 𝜆, 𝛾 are all positive parameters. 

 

Oluyede et al. (2016) proposed the ELLoWG distribution with 𝑐𝑑𝑓 and 𝑝𝑑𝑓 given, 

respectively, by 

𝐹(𝑥; 𝛼, 𝛽, 𝛾, 𝑐, 𝑠) = [1 − (1 + (
𝑥

𝑠
)
𝑐

)
−1

𝑒−𝛼𝑥𝛽
]
𝛾

, 𝑥 ≥ 0,   (1.3) 
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and  

𝑓(𝑥; 𝛼, 𝛽, 𝛾, 𝑐, 𝑠) = 𝛾 [1 − (1 + (
𝑥

𝑠
)
𝑐

)
−1

𝑒−𝛼𝑥𝛽
]

𝛾−1

× 

𝑒−𝛼𝑥𝛽
(1 + (

𝑥

𝑠
)
𝑐

)
−1

{𝛼𝛽𝑥𝛽−1 +
𝑐𝑥𝑐−1

𝑠𝑐+𝑥𝑐},      (1.4) 

𝑥 > 0, where 𝛼, 𝛽, 𝛾, 𝑐, 𝑠 are positive parameters. 

 

Krishnarani (2016) introduced the PTHL distribution with 𝑐𝑑𝑓 and 𝑝𝑑𝑓 given, 

respectively, by 

𝐹(𝑥; 𝛼, 𝛽) = 1 − 2(1 + 𝑒𝛽𝑥𝛼
)
−1

, 𝑥 ≥ 0,     (1.5) 

and  

𝑓(𝑥; 𝛼, 𝛽) = 2𝛼𝛽𝑥𝛼−1𝑒𝛽𝑥𝛼
(1 + 𝑒𝛽𝑥𝛼

)
−2

, 𝑥 > 0,    (1.6) 

where 𝛼, 𝛽 are positive parameters. 

 

Rather and Rather [8] proposed four almost similar GE distributions. We mention here 

the most general one and call it k-GE distribution with 𝑐𝑑𝑓 and 𝑝𝑑𝑓 given, respectively, 

by 

𝐹(𝑥; 𝛼, 𝛽, 𝑘) = (1 − 𝑒−𝛽𝑥𝑘
)
𝛼

, 𝑥 ≥ 0,     (1.7) 

and  

𝑓(𝑥; 𝛼, 𝛽) = 𝑘𝛼𝛽𝑥𝑘−1𝑒−𝛽𝑥𝑘
(1 − 𝑒−𝛽𝑥𝑘

)
𝛼−1

, 𝑥 > 0,   (1.8) 

where 𝛼, 𝛽, 𝑘 are positive parameters. 

 

Remark 1.1.  The 𝑐𝑑𝑓 (1.7) is a special case of the distribution proposed by Al-babtain 

et al. (2017). We believe that Rather and Rather were not aware of the work by Al-

babtain et al. (2017). The present author has characterized the 𝑐𝑑𝑓 of Al-babtain et al. 

(2017) earlier and therefore there is no need to characterize its special case here. 

2.   Characterizations of McLLoG, ELLoGW and PTHL distributions 

We present our characterizations  (𝑖) − (𝑖𝑣)  in four subsections. 

2.1   Characterizations based on two truncated moments 

In this subsection we present characterizations of McLLoG, ElloGW and PTHL 

distributions in terms of a simple relationship between two truncated moments. The first 

characterization result employs a theorem due to Glänzel (1987), see Theorem 2.1.1 

below. Note that the result holds also when the interval 𝐻  is not closed. Moreover, as 

mentioned above, it could be also applied when the 𝑐𝑑𝑓 𝐹 does not have a closed form.  

As shown in Glänzel (1990), this characterization is stable in the sense of weak 

convergence. 
 

Theorem 2.1.1.  Let (Ω, ℱ, 𝐏) be a given probability space and let  𝐻 = [𝑑, 𝑒] be an 

interval for some  𝑑 < 𝑒  (𝑑 = −∞, 𝑒 = ∞  mightaswellbeallowed). Let 𝑋:Ω → 𝐻  be a 

continuous random variable with the distribution function 𝐹 and let 𝑔 and ℎ be two real 

functions defined on 𝐻 such that 

𝐄[𝑔(𝑋)|𝑋 ≥ 𝑥] = 𝐄[ℎ(𝑋)|𝑋 ≥ 𝑥]𝜉(𝑥),    𝑥 ∈ 𝐻, 
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is defined with some real function 𝜂. Assume that 𝑔, ℎ ∈ 𝐶1(𝐻), 𝜉 ∈ 𝐶2(𝐻) and 𝐹 is 

twice continuously differentiable and strictly monotone function on the set 𝐻. Finally, 

assume that the equation 𝜉ℎ = 𝑔 has no real solution in the interior of 𝐻. Then 𝐹 is 

uniquely determined by the functions 𝑔, ℎ and 𝜉 , particularly 

𝐹(𝑥) = ∫
𝑥

𝑎

𝐶 |
𝜉′(𝑢)

𝜉(𝑢)ℎ(𝑢) − 𝑔(𝑢)
| exp(−𝑠(𝑢))𝑑𝑢, 

where the function  𝑠  is  a solution of the differential equation 𝑠′ =
𝜉′ℎ

𝜉ℎ−𝑔
 and 𝐶 is the 

normalization constant, such that ∫
𝐻

𝑑𝐹 = 1. 

 

Proposition 2.1.1.  Let 𝑋:Ω → (0,∞) be a continuous random variable and let ,  ℎ(𝑥) =
[1 − (1 + 𝜆𝑥−𝛾)−𝑐]1−𝑏 and 𝑔(𝑥) = ℎ(𝑥)(1 + 𝜆𝑥−𝛾)𝑎  for 𝑥 > 0. The random variable 𝑋  

has 𝑝𝑑𝑓 (1.2) if and only if the function 𝜉 defined in Theorem 2.1.1 has the form 

𝜉(𝑥) =
1

2
{(1 + 𝜆𝑥−𝛾)𝑎 + 1},    𝑥 > 0. 

 

Proof.  Let  𝑋  be a random variable with 𝑝𝑑𝑓   (1.2), then 

(1 − 𝐹(𝑥))𝐸[ℎ(𝑋)|𝑋 ≥ 𝑥] =
𝑐

𝑎𝐵(𝑎𝑐−1, 𝑏)
{(1 + 𝜆𝑥−𝛾)𝑎 − 1},    𝑥 > 0, 

and  

(1 − 𝐹(𝑥))𝐸[𝑔(𝑋)|𝑋 ≥ 𝑥] =
𝑐

2𝑎𝐵(𝑎𝑐−1, 𝑏)
{(1 + 𝜆𝑥−𝛾)2𝑎 − 1},    𝑥 > 0, 

and finally  

𝜉(𝑥)ℎ(𝑥) − 𝑔(𝑥) = −
1

2
ℎ(𝑥){1 − (1 + 𝜆𝑥−𝛾)𝑎} < 0    𝑓𝑜𝑟  𝑥 > 0. 

 

Conversely, if 𝜉 is given as above, then  

𝑠′(𝑥) =
𝜉′(𝑥)ℎ(𝑥)

𝜉(𝑥)ℎ(𝑥) − 𝑔(𝑥)
=

𝑎𝜆𝛾𝑥−𝛾−1(1 + 𝜆𝑥−𝛾)𝑎−1

1 − (1 + 𝜆𝑥−𝛾)𝑎
    𝑥 > 0, 

and hence  

𝑠(𝑥) = log{1 − (1 + 𝜆𝑥−𝛾)𝑎},    𝑥 > 0. 
 

Now, in view of Theorem 2.1.1, 𝑋  has density (1.2). 
 

Corollary 2.1.1.  Let 𝑋:Ω → (0,∞)  be a continuous random variable and let ℎ(𝑥) be as 

in Proposition 2.1.1. The pdf of 𝑋 is (1.2) if and only if there exist functions 𝑔 and 𝜉 

defined in Theorem 2.1.1 satisfying the differential equation 

𝜉′(𝑥)ℎ(𝑥)

𝜉(𝑥)ℎ(𝑥) − 𝑔(𝑥)
=

𝑎𝜆𝛾𝑥−𝛾−1(1 + 𝜆𝑥−𝛾)𝑎−1

1 − (1 + 𝜆𝑥−𝛾)𝑎
,    𝑥 > 0. 

 

The general solution of the differential equation in Corollary 2.1.1 is 

𝜉(𝑥) = {1 − (1 + 𝜆𝑥−𝛾)𝑎}−1 [−∫ 𝑎𝜆𝛾𝑥−𝛾−1(1 + 𝜆𝑥−𝛾)𝑎−1(ℎ(𝑥))
−1

𝑔(𝑥) + 𝐷], 

where 𝐷 is a constant. Note that a set of functions satisfying the above differential 

equation is given in Proposition 2.1.1 with 𝐷 =
1

2
. However, it should be also noted that 

there are other triplets (ℎ, 𝑔, 𝜉) satisfying the conditions of Theorem 2.1.1. 
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Proposition 2.1.2.  Let 𝑋:Ω → (0,∞) be a continuous random variable and let ,  ℎ(𝑥) =

[1 − (1 + (
𝑥

𝑠
)
𝑐

)
−1

𝑒−𝛼𝑥𝛽
]
1−𝛾

 and 𝑔(𝑥) = ℎ(𝑥) (1 + (
𝑥

𝑠
)
𝑐

)
−1

𝑒−𝛼𝑥𝛽
  for 𝑥 > 0. The 

random variable 𝑋  has 𝑝𝑑𝑓 (1.4) if and only if the function 𝜉 defined in Theorem 2.1.1 

has the form 

𝜉(𝑥) =
1

2
(1 + (

𝑥

𝑠
)
𝑐

)
−1

𝑒−𝛼𝑥𝛽
,    𝑥 > 0. 

 

Proof.  Let  𝑋  be a random variable with 𝑝𝑑𝑓   (1.4), then 

(1 − 𝐹(𝑥))𝐸[ℎ(𝑋)|𝑋 ≥ 𝑥] = 𝛾 (1 + (
𝑥

𝑠
)
𝑐

)
−1

𝑒−𝛼𝑥𝛽
,    𝑥 > 0, 

and  

(1 − 𝐹(𝑥))𝐸[𝑔(𝑋)|𝑋 ≥ 𝑥] =
𝛾

2
(1 + (

𝑥

𝑠
)
𝑐

)
−2

𝑒−2𝛼𝑥𝛽
,    𝑥 > 0, 

and finally  

𝜉(𝑥)ℎ(𝑥) − 𝑔(𝑥) = −
1

2
ℎ(𝑥) (1 + (

𝑥

𝑠
)
𝑐

)
−1

𝑒−𝛼𝑥𝛽
< 0    𝑓𝑜𝑟  𝑥 > 0. 

 

Conversely, if 𝜉 is given as above, then 

𝑠′(𝑥) =
𝜉′(𝑥)ℎ(𝑥)

𝜉(𝑥)ℎ(𝑥) − 𝑔(𝑥)
= 𝛼𝛽𝑥𝛽−1 +

𝑐𝑥𝑐−1

𝑠𝑐 + 𝑥𝑐
    𝑥 > 0. 

 

Now, in view of Theorem 2.1.1, 𝑋  has density (1.4). 
 

Corollary 2.1.2.  Let 𝑋:Ω → (0,∞)  be a continuous random variable and let ℎ(𝑥) be as 

in Proposition 2.1.2. The pdf of 𝑋 is (1.4) if and only if there exist functions 𝑔 and 𝜉 

defined in Theorem 2.1.1 satisfying the differential equation 

𝜉′(𝑥)ℎ(𝑥)

𝜉(𝑥)ℎ(𝑥) − 𝑔(𝑥)
= 𝛼𝛽𝑥𝛽−1 +

𝑐𝑥𝑐−1

𝑠𝑐 + 𝑥𝑐
,    𝑥 > 0. 

 

The general solution of the differential equation in Corollary 2.1.2 is 

𝜉(𝑥) = (1 + (
𝑥

𝑠
)
𝑐

) 𝑒𝛼𝑥𝛽

[
 
 
 
 −∫ {𝛼𝛽𝑥𝛽−1 +

𝑐𝑥𝑐−1

𝑠𝑐 + 𝑥𝑐
} ×

(1 + (
𝑥

𝑠
)
𝑐

)
−1

𝑒−𝛼𝑥𝛽
(ℎ(𝑥))

−1
𝑔(𝑥) + 𝐷]

 
 
 
 

, 

where 𝐷 is a constant. Note that a set of functions satisfying the above differential 

equation is given in Proposition 2.1.2 with 𝐷 =
1

2
. However, it should be also noted that 

there are other triplets (ℎ, 𝑔, 𝜉) satisfying the conditions of Theorem 2.1.1. 

 

Proposition 2.1.3.  Let 𝑋:Ω → (0,∞) be a continuous random variable and let ,  ℎ(𝑥) ≡

1 and 𝑔(𝑥) = (1 + 𝑒𝛽𝑥𝛼
)
−1

 for 𝑥 > 0. The random variable 𝑋  has 𝑝𝑑𝑓 (1.6) if and only 

if the function 𝜉 defined in Theorem 2.1.1 has the form 

𝜉(𝑥) =
1

2
(1 + 𝑒𝛽𝑥𝛼

)
−1

,    𝑥 > 0. 
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Proof.  Let  𝑋  be a random variable with 𝑝𝑑𝑓   (1.6), then 

(1 − 𝐹(𝑥))𝐸[ℎ(𝑋)|𝑋 ≥ 𝑥] = 2(1 + 𝑒𝛽𝑥𝛼
)
−1

,    𝑥 > 0, 
and  

(1 − 𝐹(𝑥))𝐸[𝑔(𝑋)|𝑋 ≥ 𝑥] = (1 + 𝑒𝛽𝑥𝛼
)
−2

,    𝑥 > 0, 

and finally  

𝜉(𝑥)ℎ(𝑥) − 𝑔(𝑥) = −
1

2
(1 + 𝑒𝛽𝑥𝛼

)
−1

< 0    𝑓𝑜𝑟  𝑥 > 0. 

 

Conversely, if 𝜉 is given as above, then 

𝑠′(𝑥) =
𝜉′(𝑥)ℎ(𝑥)

𝜉(𝑥)ℎ(𝑥) − 𝑔(𝑥)
=

𝛼𝛽𝑥𝛼−1𝑒𝛽𝑥𝛼

(1 + 𝑒𝛽𝑥𝛼)
,    𝑥 > 0. 

 

Now, in view of Theorem 2.1.1, 𝑋  has density (1.6). 
 

Corollary 2.1.3.  Let 𝑋:Ω → (0,∞)  be a continuous random variable and let ℎ(𝑥) be as 

in Proposition 2.1.3. The pdf of 𝑋 is (1.6) if and only if there exist functions 𝑔 and 𝜉 

defined in Theorem 2.1.1 satisfying the differential equation 

𝜉′(𝑥)ℎ(𝑥)

𝜉(𝑥)ℎ(𝑥) − 𝑔(𝑥)
=

𝛼𝛽𝑥𝛼−1𝑒𝛽𝑥𝛼

(1 + 𝑒𝛽𝑥𝛼)
,    𝑥 > 0. 

 

The general solution of the differential equation in Corollary 2.1.3 is 

𝜉(𝑥) = (1 + 𝑒𝛽𝑥𝛼
) [−∫ 𝛼𝛽𝑥𝛼−1𝑒𝛽𝑥𝛼

(1 + 𝑒𝛽𝑥𝛼
)
−2

(ℎ(𝑥))
−1

𝑔(𝑥) + 𝐷], 

where 𝐷 is a constant. Note that a set of functions satisfying the above differential 

equation is given in Proposition 2.1.3 with 𝐷 = 0. However, it should be also noted that 

there are other triplets (ℎ, 𝑔, 𝜉) satisfying the conditions of Theorem 2.1.1. 

2.2   Characterization based on hazard function 

It is known that the hazard function, ℎ𝐹, of a twice differentiable distribution function, 𝐹, 

satisfies the first order differential equation 
𝑓′(𝑥)

𝑓(𝑥)
=

ℎ𝐹
′ (𝑥)

ℎ𝐹(𝑥)
− ℎ𝐹(𝑥). 

 

For many univariate continuous distributions, this is the only characterization available in 

terms of the hazard function. The following characterizations establish non-trivial 

characterizations of McLLoG distribution, for 𝑎 = 𝑐 , ELLoGW distribution, for 𝛼 =
0, 𝛾 = 1 and PTHL in terms of the hazard function, which are not of the above trivial 

form. 

 

Proposition 2.2.1.  Let 𝑋:Ω → (0,∞) be a continuous random variable.  The 𝑝𝑑𝑓  of   𝑋  

is (1.2), for 𝑎 = 𝑐 , if and only if its hazard function ℎ𝐹(𝑥) satisfies the differential 

equation 

ℎ𝐹
′ (𝑥) +

𝛾 + 1

𝑥
ℎ𝐹(𝑥) = 𝑎𝑏𝜆𝛾𝑥−𝛾−1

𝑑

𝑑𝑥
{

(1 + 𝜆𝑥−𝛾)−𝑎−1

1 − (1 + 𝜆𝑥−𝛾)−𝑎
} , 𝑥 > 0. 
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Proof.  If  𝑋  has 𝑝𝑑𝑓   (1.2), then clearly the above differential equation holds.  Now, if 

the differential equation holds, then 

𝑑

𝑑𝑥
{(𝑥𝛾+1ℎ𝐹(𝑥)} = 𝑎𝑏𝜆𝛾

𝑑

𝑑𝑥
{

(1 + 𝜆𝑥−𝛾)−𝑎−1

1 − (1 + 𝜆𝑥−𝛾)−𝑎
}, 

or  

ℎ𝐹(𝑥) =
𝑎𝑏𝜆𝛾𝑥−𝛾−1(1 + 𝜆𝑥−𝛾)−𝑎−1

1 − (1 + 𝜆𝑥−𝛾)−𝑎
, 𝑥 > 0, 

which is the hazard function of the McLLoG distribution, for 𝑎 = 𝑐. 

 

Proposition 2.2.2.  Let 𝑋:Ω → (0,∞) be a continuous random variable.  The 𝑝𝑑𝑓  of   𝑋  

is (1.4), for 𝛼 = 0, 𝛾 = 1 , if and only if its hazard function ℎ𝐹(𝑥) satisfies the 

differential equation 

ℎ𝐹
′ (𝑥) −

𝑐 − 1

𝑥
ℎ𝐹(𝑥) = −𝑐2𝑠−2 (

𝑥

𝑠
)
2(𝑐−1)

(1 + (
𝑥

𝑠
)
𝑐

)
−2

, 𝑥 > 0. 

 

Proof. Is similar to the proof of Proposition 2.2.1 and hence omitted. 

 

Proposition 2.2.3.  Let 𝑋:Ω → (0,∞) be a continuous random variable.  The 𝑝𝑑𝑓  of   𝑋  

is (1.6) if and only if its hazard function ℎ𝐹(𝑥) satisfies the differential equation 

ℎ𝐹
′ (𝑥) − 𝛼𝛽𝑥𝛼−1ℎ𝐹(𝑥) = 𝛼𝛽𝑥𝛼−1𝑒𝛽𝑥𝛼

{
𝛼 − 1

1 + 𝑒𝛽𝑥𝛼 −
𝛼𝛽𝑥𝛼−1

(1 + 𝑒𝛽𝑥𝛼)2
} , 𝑥 > 0. 

Proof. Is similar to the proof of Proposition 2.2.1 and hence omitted. 

2.3  Characterization in terms of the reverse hazard function 

The reverse hazard function, 𝑟𝐹, of a twice differentiable distribution function, 𝐹 , is 

defined as 

𝑟𝐹(𝑥) =
𝑓(𝑥)

𝐹(𝑥)
,    𝑥 ∈ 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑜𝑓𝐹. 

 

Proposition 2.3.1.  Let 𝑋:Ω → (0,∞) be a continuous random variable. The pdf of 𝑋  is 
(1.2), for 𝑏 = 1, if and only if its reverse hazard function 𝑟𝐹(𝑥) satisfies the differential 

equation 

𝑟𝐹
′(𝑥) +

𝛾 + 1

𝑥
𝑟𝐹(𝑥) =

𝑎𝜆2𝛾2𝑥−2(𝛾+1)

(1 + 𝜆𝑥−𝛾)2
, 𝑥 > 0. 

 

Proof.  Is similar to the proof of Proposition 2.2.1 and hence omitted. 

 

Proposition 2.3.1.  Let 𝑋:Ω → (0,∞) be a continuous random variable. The pdf of 𝑋  is 
(1.4) if and only if its reverse hazard function 𝑟𝐹(𝑥) satisfies the differential equation 

𝑟𝐹
′(𝑥) + 𝛼𝛽𝑥𝛽−1𝑟𝐹(𝑥) = 𝛾𝑒−𝛼𝑥𝛽 𝑑

𝑑𝑥
{
(1 + (

𝑥

𝑠
)
𝑐

)
−1

{𝛼𝛽𝑥𝛽−1 +
𝑐𝑥𝑐−1

𝑠𝑐+𝑥𝑐}

1 − (1 + (
𝑥

𝑠
)
𝑐

)
−1

𝑒−𝛼𝑥𝛽

} , 𝑥 > 0. 

 

Proof.  Is similar to the proof of Proposition 2.2.1 and hence omitted. 
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2.4  Characterizations Based on Conditional Expectation 

The following propositions have already appeared in Hamedani (2013), so we will just 

state them here which can be used to characterize the McLLoG and ElloGW 

distributions. 

 

Proposition 2.4.1.   Let  𝑋:Ω → (𝑒, 𝑓)  be a continuous random variable with  𝑐𝑑𝑓  𝐹 .  

Let  𝜓(𝑥)  be a differentiable function on  (𝑒, 𝑓)  with  lim𝑥→𝑒+𝜓(𝑥) = 1.  Then for  𝛿 ≠
1 , 

𝐸[𝜓(𝑋)|𝑋 ≥ 𝑥] = 𝛿𝜓(𝑥),    𝑥 ∈ (𝑒, 𝑓),  

if and only if 

𝜓(𝑥) = (1 − 𝐹(𝑥))
1

𝛿
−1

,    𝑥 ∈ (𝑒, 𝑓). 
 

Proposition 2.4.2.   Let  𝑋:Ω → (𝑒, 𝑓)  be a continuous random variable with  𝑐𝑑𝑓  𝐹 .  

Let  𝜓1(𝑥)  be a differentiable function on  (𝑒, 𝑓)  with  lim𝑥→𝑓−𝜓1(𝑥) = 1.  Then for  

𝛿1 ≠ 1, 

𝐸[𝜓1(𝑋)|𝑋 ≤ 𝑥] = 𝛿𝜓1(𝑥),    𝑥 ∈ (𝑒, 𝑓),  

implies 

𝜓1(𝑥) = (𝐹(𝑥))
1

𝛿
−1

,    𝑥 ∈ (𝑒, 𝑓).  
 

Remarks 2.4.1.  (𝐴) For (𝑒, 𝑓) = (0,∞) , 𝑎 = 𝑐, 𝜓(𝑥) = 1 − (1 + 𝜆𝑥−𝛾)−𝑐 and 𝛿 =
𝑏

𝑏+1
, Proposition 2.4.1 provides a characterization of MclloG distribution. (𝐵) For 

(𝑒, 𝑓) = (0,∞) , 𝛾 = 1, 𝜓(𝑥) = (1 + (
𝑥

𝑠
)
𝑐

)
−1/𝛼

𝑒−𝑥𝛽
 and 𝛿 =

𝛼

𝛼+1
 , Proposition 2.4.1 

provides a characterization of ELLoGW distribution. (𝐶) For (𝑒, 𝑓) = (0,∞) , 𝑏 = 1, 

𝜓1(𝑥) = (1 + 𝜆𝑥−𝛾)−1 and 𝛿1 =
𝑎

𝑎+1
 , Proposition 2.4.2 provides a characterization of 

McLLoG distribution.  (𝐷) For (𝑒, 𝑓) = (0,∞) , 𝜓1(𝑥) = 1 − (1 + (
𝑥

𝑠
)
𝑐

)
−1

𝑒−𝛼𝑥𝛽
 and 

𝛿1 =
𝛾

𝛾+1
 , Proposition 2.4.2 provides a characterization of ELLoGW distribution.  (𝐸) 

For (𝑒, 𝑓) = (0,∞) , 𝜓(𝑥) = √2(1 + 𝑒𝛽𝑥𝛼
)
−1/2

 and 𝛿 =
1

2
 , Proposition 2.4.1 provides a 

PTHL distribution.  Of course there are other suitable functions than the ones we 

mentioned above, which are chosen for simplicity. 
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