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Abstract  

 

In accelerated life testing researcher generally use a life stress relationship between life characteristic and stress to 

estimate the parameters of failure time distributions at use condition which is just a re-parameterization of original 

parameters but from statistical point of view it is easy and reasonable to deal with original parameters of the 

distribution directly instead of developing inference for the parameters of the life stress relationship. So, an attempt 

is made here to estimate the parameters of Burr Type X life distribution directly in accelerated life testing by 

assuming that the lifetimes at increasing stress levels forms a geometric process. A mathematical model for the 

analysis of constant stress accelerated life testing for type-I censored data is developed and the estimates of 

parameters are obtained by using the maximum likelihood method. Also a Fisher information matrix is constructed 

in order to get the asymptotic variance and interval estimates of the parameters. Lastly, a simulation study is 

performed to illustrate the statistical properties of the parameters and the confidence intervals. 
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1. Introduction 

In reliability analysis, researchers used to analyze time-to-failure data obtained under normal operating conditions in 

order to quantify the product’s failure-time distribution and its associated parameters. Nowadays products has their 

own guarantee or warrantee schemes so the need to be tested in advance before their launch. Due to the today’s highly 

matured technology, products are highly reliable and hence the life data is very difficult and costly to obtain at normal 

use conditions. This problem has motivated researchers to develop new life testing method and obtain timely 

information on the reliability of product components and materials. Accelerated life testing (ALT) is then adopted and 

widely used in manufacturing industries. Under such test settings, products are tested at higher-than-usual levels of 

stress to induce early failure. The objective of accelerated life inquiry is to utilize the test data to extrapolate a product’s 

life distribution and its associated parameters at a normal stress level. The life data collected from such accelerated 

tests is then analyzed and extrapolated to estimate the life characteristics under normal operating conditions. Three 

types of stress loadings are usually applied in accelerated life tests: constant stress, step stress and linearly increasing 

stress. The constant stress loading, which is a time-independent test setting, has several advantages over the time-
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dependent stress loadings. For example, most products are assumed to operate at a constant stress under normal use. 

Therefore, a constant stress test mimics actual use. Besides, it is easier to run and to quantify a constant stress test. In 

the current study, we only discuss the application of constant stress in accelerated life testing. 

Lam (1988) introduced the concept of geometric process in accelerated life testing to study the repair replacement 

problem. Lam (2007) studied the geometric process model for the multistate system and concluded a replacement 

policy to minimize the long run average cost per unit time. 

Many authors has been studied constant stress with different types of data, For example, Yang (1994) suggested an 

optimal design of 4-level constant-stress ALT plans under different censoring times. Pan et al. (2011) studied a 

bivariate constant stress accelerated degradation test model by assuming that the copula parameter is a function of the 

stress level that can be described by a logistic function. Chen et al. (2012) developed the optimal design of multiple 

stress constant accelerated life test plan on non-rectangle test region. Watkins and John (2008) considers constant 

stress accelerated life tests based on Weibull distributions with constant shape and a log-linear link between scale and 

the stress factor which is terminated by a Type-II censoring regime at one of the stress levels. Ahmad et al. (1994) 

Islam and Ahmad (1994), Ahmad and Islam (1996), Ahmad et al. (2006). Ahmad (2010) discussed the optimal 

constant stress accelerated life test designs under periodic inspection and Type-I censoring. Huang (2011) did the 

analysis for exponential distribution with complete and censored data by using GP model. Zhou et al. (2012) extended 

the GP model for the progressive type I hybrid censored Rayleigh failure data in ALT. Kamal et al. (2013) analysed 

constant stress accelerated life testing for Pareto distribution with complete samples by using geometric process model. 

Sindhu et al. (2016) studied cumulative quantity control chart for a mixture of Rayleigh model under a Bayesian 

framework. Recently, Rahman, et al. (2016) studied the application of geometric process for generalized exponential 

distribution in accelerated life testing with complete data. Lone et al. (2016) extended this and presented a study of 

accelerated life testing design using geometric process for generalized exponential distribution using time constraint. 

Sindhu et al. (2017) explored Bayesian Analysis of two Censored Shifted Gompertz Mixture Distributions using 

Informative and Noninformative Priors. Sindhu et al. (2018) studied mixture of two generalized inverted exponential 

distributions with censored sample. Sindhu et al. (2019) investigated parameter and reliability estimation of inverted 

Maxwell mixture model. 

This article focused on the maximum likelihood method for estimating the parameters of Burr Type X 

distribution. This work was conducted for constant stress ALT for Burr Type X using geometric process with type-I 

censored data. The confidence intervals for parameters are also obtained by using the asymptotic properties of normal 

distribution. In the last, the statistical properties of estimates and confidence intervals are examined through a 

simulation study. 

 

2. Model Description and Test Procedure 

2.1 Geometric Process 

A GP describes a stochastic process {𝑋𝑛, 𝑛 = 1,2, . . . }such that {𝜔𝑛−1𝑋𝑛, 𝑛 = 1,2, . . . }formulates a renewal process 

where 𝜔 > 0, is real valued and is called the ratio of the GP. It is obvious that a GP is stochastically increasing if 0 <
𝜔 < 1 and stochastically decreasing if 𝜔 > 1. Hence, the GP is a natural way to scrutinize data from a series of events 

with trend. For more details about GP and its properties see Braun et al. [10]. The probability density function of𝑋1in 

GP such that {𝑋𝑛, 𝑛 = 1,2, . . . }is 𝑓(𝑥) with mean 𝜇 and variance𝜎2, subsequently the probability density function of 

𝑋𝑛 will be  𝜔𝑛−1𝑓(𝜔𝑛−1𝑥) with mean 𝜇/𝜔𝑛−1 and variance 𝜎2/𝜔2(𝑛−1). 
2.2 Burr Type X Distribution 

Burr (1942) introduced twelve different forms of cumulative distribution functions for modeling data. Among those 

twelve distribution functions, Burr-Type X and Burr-Type XII received the maximum attention. There is a thorough 

analysis of Burr-Type XII distribution in Rodriguez (1977), see also Wingo (1993) for a nice account of it. In this 

paper, we consider the two-parameter Burr-Type X distribution. Two-parameter Burr-Type X distribution has the 

following cumulative distribution function (CDF); 

𝐹(𝑥, 𝛼, 𝜆) = (1 − 𝑒𝑥𝑝 {− (
𝑥

𝜆
)
2

})
𝛼

, 𝑥, 𝛼 and 𝜆 > 0.                                                                             (1) 

The probability density function of Burr -Type X Distribution is given by 

𝑓(𝑥, 𝛼, 𝜆) =
2𝛼𝑥

𝜆2
𝑒𝑥𝑝 {− (

𝑥

𝜆
)
2

} (1 − 𝑒𝑥𝑝 {− (
𝑥

𝜆
)
2

})
𝛼−1

, 𝑥, 𝛼 and 𝜆 > 0.                                     (2)         

The survival function of Burr- Type X Distribution has the following form 

𝑆(𝑥, 𝛼, 𝜆) = 1 − (1 − 𝑒𝑥𝑝 {− (
𝑥

𝜆
)
2

})
𝛼

, 𝑥, 𝛼 and 𝜆 > 0.     (3)      

The failure rate or hazard rate is given by 
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ℎ(𝑥, 𝛼, 𝜆) =

2𝛼𝑥

𝜆2
𝑒𝑥𝑝{−(

𝑥

𝜆
)
2
}(1−𝑒𝑥𝑝{−(

𝑥

𝜆
)
2
})
𝛼−1

1−(1−𝑒𝑥𝑝{−(
𝑥

𝜆
)
2
})
𝛼 , 𝑥, 𝛼 and 𝜆 > 0.               (4)

 
Where𝛼 and 𝜆 are shape and scale parameters, respectively.  Burr-Type X distribution were studied by Sartawi and 

Abu-Salih (1991), Jaheen (1996), Ahmad et al. (1997), Raqab (1998). Surles and Padgett (2001) studies and 

observed that the Burr-Type X distribution can be used quite effectively in modeling strength data and also 

modeling general lifetime data.

 
 

2.3 Assumptions  

(i)  Suppose that an accelerated life test with s increasing stress levels in which a random sample of n identical items 

is placed under each stress level and start to operate at the same time. Let 𝑥𝑘𝑖 , 𝑖 = 1,2, . . . , 𝑛, 𝑘 = 1,2, . . . , 𝑠denote 

observed failure time of ith test item under kth stress level. Whenever an item fails, it will be removed from the test 

and the test is terminated at a pre-specified censoring time t at each stress level and the exact failure times 𝑥𝑘𝑖 ≤ 𝑡of 

items are observed. 

(ii) The product life under each stress level follows Burr-Type X distribution denoted byBurr-type X(𝑥, 𝛼, 𝜆). 
(iii) The scale parameter is a log-linear function of stress. That is, 𝑙𝑜𝑔 𝜆𝑘 = 𝑎 + 𝑏𝑆𝑘where a and b are unknown 

parameters depending on the nature of the product and the test method. 

(iv) Let random variables 𝑋0, 𝑋1, 𝑋2, . . . , 𝑋𝑆denote the lifetimes under each stress level, where 𝑋0denotes item’s 

lifetime under the design stress at which items will operate ordinarily and sequence (𝑋𝑘 , 𝑘 = 1,2, . . . , 𝑠)forms a 

geometric process with ratio𝜔 > 0. 
The assumption (iv) can be shown by the following theorem assuming that there is a log linear relationship between 

a life and stress (assumption (iii)). 

 

Theorem: In ALT, if the stress level is increasing with a constant difference then the life times of items forms a GP 

under each stress level. That is, If 𝑆𝑘+1 − 𝑆𝑘is constant for 𝑘 = 1,2, . . . , 𝑠 − 1then (𝑋𝑘, 𝑘 = 1,2, . . . , 𝑠)forms a GP. 

Proof: From assumption (iv), we get 

𝑙𝑜𝑔 (
𝜆𝑘+1

𝜆𝑘
) = 𝑏(𝑆𝑘+1 − 𝑆𝑘) = 𝑏Δ𝑆

                                                                                 

                                     (5) 

This shows that the increased stress levels form an arithmetic sequence with a constant difference Δ𝑆. Now the above 

equation can be written as 

(
𝜆𝑘+1

𝜆𝑘
) = 𝑒𝑏Δ𝑆 = 𝜔(say)                                                        6(a)  

It is clear from (6(a)) that 

𝜆𝑘 =
1

𝜔
𝜆𝑘−1 =

1

𝜔2
𝜆𝑘−2 =. . . . =

1

𝜔𝑘
𝜆 

The lifetime pdf of an item at the kth stress level is 

𝑓𝑋𝑘(𝑥) =
2𝛼𝑥

𝜆𝑘
2 𝑒𝑥𝑝 {− (

𝑥

𝜆𝑘
)
2

} (1 − 𝑒𝑥𝑝 {−(
𝑥

𝜆𝑘
)
2

})

𝛼−1

,  

𝑓𝑋𝑘(𝑥) = (
𝜔𝑘

𝜆
)
2

2𝛼𝑥 𝑒𝑥𝑝 {− (
𝜔𝑘𝑥

𝜆
)
2

} (1 − 𝑒𝑥𝑝 {− (
𝜔𝑘𝑥

𝜆
)
2

})

𝛼−1

.

                                                         6(b) 

And the cdf is given as 

𝐹𝑥𝑘(𝑥) = (1 − 𝑒𝑥𝑝 {− (
𝜔𝑘𝑥

𝜆
)
2

})

𝛼

                                                                                                                     6(c) 

This implies that 

𝑓𝑋𝑘(𝑥) = 𝜔𝑘𝑓𝑋0(𝜔
𝑘𝑥). 

 

From the definition of GP and from expression (6(b)) it is clear that, if density functions of𝑋0is 𝑓𝑋0(𝑥), then the pdf 

of 𝑋𝑘will be given by 𝜔𝑘𝑓𝑋0(𝜔
𝑘𝑥), 𝑘 = 1,2, . . . , 𝑠. Therefore, it is clear that lifetimes under a sequence of 

arithmetically increasing stress levels form a GP with ratio𝜔. 
 

3. Maximum Likelihood Estimation 

The maximum likelihood method of estimation is used because ML method is very robust and gives the estimates of 

parameter with good statistical properties. In this method, the estimates of parameters are those values which maximize 
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the sampling distribution of data. However, ML estimation method is very simple for one parameter distributions but 

its implementation in ALT is mathematically more intense and, generally, estimates of parameters do not exist in 

closed form, therefore, numerical techniques such as Newton Method, Some computer programs are used to compute 

them. Let the test at each stress level is terminated at time t and only 𝑥𝑘𝑖 ≤ 𝑡failure times are observed. Assume that 

𝑟𝑘(≤ 𝑛)failures at the k th  stress level are observed before the test is suspended and (𝑛 − 𝑟𝑘)units are still survived the 

entire test without failing. Now the likelihood function for constant stress ALT with Type I censored data using GP at 

one of the stress level is given by 

𝐿(𝜆, 𝜔, 𝛼) =
𝑛!

(𝑛 − 𝑟)!
{(
𝜔𝑘

𝜆
)

2𝑟𝑘

(2𝛼)𝑟𝑘∏𝑥𝑘(𝑖) 𝑒𝑥𝑝 {−(
𝜔𝑘𝑥𝑘(𝑖)

𝜆
)

2

} (1 − 𝑒𝑥𝑝 {−(
𝜔𝑘𝑥𝑘(𝑖)

𝜆
)

2

})

𝛼−1𝑟𝑘

𝑖=1

} 

                    × {1 − (1 − 𝑒𝑥𝑝 {−(
𝜔𝑘𝑡

𝜆
)

2

})

𝛼

}

𝑛−𝑟𝑘

.

 
𝐿(𝜆, 𝜔, 𝛼) = ∏

[
 
 
 
 𝑛!

(𝑛−𝑟)!
{(
𝜔𝑘

𝜆
)
2𝑟𝑘

(2𝛼)𝑟𝑘∏ 𝑥𝑘(𝑖) 𝑒𝑥𝑝 {−(
𝜔𝑘𝑥𝑘(𝑖)

𝜆
)
2

} (1 − 𝑒𝑥𝑝 {−(
𝜔𝑘𝑥𝑘(𝑖)

𝜆
)
2

})

𝛼−1
𝑟𝑘
𝑖=1 }

× {1 − (1 − 𝑒𝑥𝑝 {− (
𝜔𝑘𝑡

𝜆
)
2

})

𝛼

}

𝑛−𝑟𝑘

]
 
 
 
 

.𝑠
𝑘=1 The log-

likelihood function corresponding above expression takes the form

 

𝑙 = 𝑙𝑛 𝐿𝑘 (𝜆, 𝜔, 𝛼) 

= ∑

[
 
 
 
 𝑙𝑛

𝑛!

(𝑛−𝑟)!
+ 2𝑘𝑟𝑘 𝑙𝑛 𝜔 − 2𝑟𝑘 𝑙𝑛 𝜆 + 𝑟𝑘 𝑙𝑛 𝛼 + 𝑟𝑘 𝑙𝑛 𝛼 + 𝑟𝑘 𝑙𝑛 2 + ∑ 𝑙𝑛 𝑥𝑘(𝑖) − (

𝜔𝑘

𝜆
)
2

∑ 𝑥𝑘(𝑖)
𝑟𝑘
𝑖=1

𝑟𝑘
𝑖=1

+(𝛼 − 1)∑ 𝑙𝑛 (1 − 𝑒𝑥𝑝 {−(
𝜔𝑘𝑥𝑘(𝑖)

𝜆
)
2

}) + (𝑛 − 𝑟𝑘) 𝑙𝑛 {1 − (1 − 𝑒𝑥𝑝 {− (
𝜔𝑘𝑡

𝜆
)
2

})

𝛼

}
𝑟𝑘
𝑖=1 ]

 
 
 
 

𝑠
𝑘=1 .   

(7)

    

MLE’s of 𝜆, 𝜔 and  𝛼 are obtained by solving the following normal equations 

 
∂𝑙

∂𝜆
= ∑ {

2𝐸𝛼−1𝐷(𝑛−𝑟𝑘)𝑡
2𝜔2𝑘𝛼

𝐵𝜆3
−

2𝑟𝑘

𝜆
+ (

2𝜔2𝑘

𝜆3
)∑ (𝑥𝑘(𝑖) − (𝛼 − 1)

𝐶

𝐴
𝑥2𝑘(𝑖))

𝑟𝑘
𝑖=1 }𝑠

𝑖=1 = 0.                       

(8)

    

 
∂𝑙

∂𝜔
= ∑ {

2𝑘𝑟𝑘

𝜔
−

2𝑘𝜔2𝑘−1

𝜆2
(
𝐸𝛼−1𝐷(𝑛−𝑟𝑘)𝑡

2𝛼

𝐵
− ∑ 𝑥𝑘(𝑖)

𝑟𝑘
𝑖=1 + (𝛼 − 1)

𝐶

𝐴
∑ 𝑥2𝑘(𝑖)
𝑟𝑘
𝑖=1 )}𝑠

𝑖=1 = 0.                      

(9)

     

 

 
∂𝑙

∂𝛼
= ∑ {

𝑟𝑘

𝛼
−

(𝑛−𝑟𝑘)𝐸
𝛼 𝑙𝑛 𝐸

𝐵
+ ∑ 𝑙𝑛 𝐴

𝑟𝑘
𝑖=1 }𝑠

𝑖=1 = 0.

                                                  (10) 

Where  

𝐴 = {1 − 𝑒𝑥𝑝 (−(
𝜔𝑘𝑥𝑘(𝑖)

𝜆
)

2

)} , 𝐵 = 1 − {1 − 𝑒𝑥𝑝 (−(
𝜔𝑘𝑡

𝜆
)

2

)}

𝛼

, 𝐶 = 𝑒𝑥𝑝 (−(
𝜔𝑘𝑥𝑘(𝑖)

𝜆
)

2

) , 

𝐷 = 𝑒𝑥𝑝 (−(
𝜔𝑘𝑡

𝜆
)

2

) , 𝐸 = 1 − 𝐷, 𝐵 = 1 − 𝐸𝛼 . 

Equations (8), (9) and (10) are nonlinear; therefore, it is very difficult to obtain a solution in closed form. So, Newton-

Raphson method is used to solve these equations simultaneously to obtain �̂�, �̂� and �̂�.
 

 

4. Asymptotic Confidence Interval Estimates 

The large sample theory states that the ML estimators are consistent and normally distributed under some appropriate 

regularity conditions. It is impossible to obtain the exact confidence intervals (CIs) because the above estimates of 

parameters are not in closed form. So instead of exact CIs, asymptotic CIs based on the asymptotic normal distribution 

of ML estimators are obtained. The Fisher-information matrix composed of the negative second partial derivatives of 

log likelihood function. The elements of the Fisher Information matrix are given below 
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∂2𝑙

∂𝜔2

=∑

{
 
 

 
 −

2𝑘𝑟𝑘
𝜔2

+ (𝑛 − 𝑟𝑘) (
4𝐸𝛼−1𝐷𝑘2𝑡4𝜔4𝑘−2𝛼

𝐵𝜆4
)(1 − 𝐸−1𝐷(𝛼 − 1) −

𝐸𝛼−1𝐷𝛼

𝐵
−
(2𝑘 − 1)

2𝑘𝑡2𝜔2𝑘
)

−
2𝑘(2𝑘 − 1)𝜔2𝑘−2∑ 𝑥𝑘(𝑖)

𝑟𝑘
𝑖=1

𝜆2
+ (𝛼 − 1)∑(

2𝐶𝑘𝜔2𝑘−2𝑥2𝑘(𝑖)

𝐴𝜆2
) {(2𝑘 − 1) −

2𝑘𝜔2𝑘𝑥2𝑘(𝑖)

𝜆2
−
2𝐶𝑘𝜔2𝑘𝑥2𝑘(𝑖)

𝐴𝜆2
}

𝑟𝑘

𝑖=1 }
 
 

 
 

𝑠

𝑖=1

 

∂2𝑙

∂𝛼2
=∑{−

𝑟𝑘
𝛼2
−
(𝑛 − 𝑟𝑘)𝐸

𝛼 𝑙𝑛 𝐸

𝐵
(
2𝐸𝛼

𝐵
+ 1)}

𝑠

𝑖=1

 

∂2𝑙

∂𝜆2
=∑

{
 
 

 
 2𝐸

𝛼−1𝐷(𝑛 − 𝑟𝑘)𝑡
4𝜔4𝑘𝛼

𝐵𝜆6
(2 − 2𝐸−1𝐷(𝛼 − 1) −

2𝐸𝛼−1𝐷𝛼

𝐵
−

3𝜆2

𝑡2𝜔2𝑘
) +

2𝑟𝑘
𝜆2

− 6(
𝜔2𝑘

𝜆4
)∑𝑥𝑘(𝑖)

𝑟𝑘

𝑖=1

+(𝛼 − 1)∑(
2𝐶𝜔2𝑘𝑥2𝑘(𝑖)

𝐴𝜆4
) {3 −

2𝜔2𝑘𝑥2𝑘(𝑖)

𝜆2
−
2𝐶𝜔2𝑘𝑥2𝑘(𝑖)

𝐴𝜆2
}

𝑟𝑘

𝑖=1 }
 
 

 
 

𝑠

𝑖=1

 

∂2𝑙

∂𝛼 ∂𝜔
=∑{

2𝐸𝛼−1(𝑛 − 𝑟𝑘)𝐷𝑘𝑡
2𝜔2𝑘−1

𝐵𝜆2
(−1 − 𝛼 𝑙𝑛 𝐸 −

𝐸𝛼𝛼 𝑙𝑛 𝐸

𝐵
) +∑𝑥2𝑘(𝑖)

𝑟𝑘

𝑖=1

(
2𝐶𝑘𝜔2𝑘−1

𝐴𝜆2
)}

𝑠

𝑖=1  

∂2𝑙

∂𝜆 ∂𝜔
=∑

{
 
 

 
 
4𝐸𝛼−1(𝑛 − 𝑟𝑘)𝐷𝑘𝑡

4𝜔4𝑘−1𝛼

𝐵𝜆5
(𝐷(𝛼 − 1)𝐸−1 − 1 +

𝐸𝛼−1𝐷𝛼

𝐵
) + (𝑛 − 𝑟𝑘) (

4𝐸𝛼−1𝐷𝑘𝑡2𝜔2𝑘−1𝛼

𝐵𝜆3
)

+∑𝑥𝑘(𝑖)

𝑟𝑘

𝑖=1

(
4𝑘𝜔2𝑘−1

𝜆3
) + (𝛼 − 1)∑(

4𝐶𝑘𝜔2𝑘−1𝑥2𝑘(𝑖)

𝐴𝜆3
) {−1 +

𝜔2𝑘𝑥2𝑘(𝑖)

𝜆2
+
𝐶𝜔2𝑘𝑥2𝑘(𝑖)

𝐴𝜆2
}

𝑟𝑘

𝑖=1 }
 
 

 
 

𝑠

𝑖=1

 

∂2𝑙

∂𝜆 ∂𝛼
=∑{

2𝐸𝛼−1(𝑛 − 𝑟𝑘)𝐷𝑡
2𝜔2𝑘

𝐵𝜆3
(1 + 𝛼 𝑙𝑛 𝐸 +

𝐸𝛼𝛼 𝑙𝑛 𝐸

𝐵
) −∑(

2𝐶𝜔2𝑘𝑥2𝑘(𝑖)

𝐴𝜆3
)

𝑟𝑘

𝑖=1

}

𝑠

𝑖=1
 

The Fisher Information matrix is  

𝐼(Θ) = −𝐸

[
 
 
 
 
 
 
∂2𝑙

∂𝜆2
∂2𝑙

∂𝜆 ∂𝜔

∂2𝑙

∂𝜆 ∂𝛼
∂2𝑙

∂𝜔 ∂𝜆

∂2𝑙

∂𝜔2

∂2𝑙

∂𝜔 ∂𝛼
∂2𝑙

∂𝛼 ∂𝜆

∂2𝑙

∂𝛼 ∂𝜔

∂2𝑙

∂𝛼2 ]
 
 
 
 
 
 

, 

where Θ = (𝜆, 𝜔, 𝛼). 
The variance covariance matrix can be written as 

Σ =

{
  
 

  
 

−𝐸

[
 
 
 
 
 
 
∂2𝑙

∂𝜆2
∂2𝑙

∂𝜆 ∂𝜔

∂2𝑙

∂𝜆 ∂𝛼
∂2𝑙

∂𝜔 ∂𝜆

∂2𝑙

∂𝜔2

∂2𝑙

∂𝜔 ∂𝛼
∂2𝑙

∂𝛼 ∂𝜆

∂2𝑙

∂𝛼 ∂𝜔

∂2𝑙

∂𝛼2 ]
 
 
 
 
 
 

}
  
 

  
 
−1

= [

𝐴 𝑣𝑎𝑟(�̂�) 𝐴 𝑐𝑜𝑣(�̂��̂�) 𝐴 𝑐𝑜𝑣(�̂��̂�)

𝐴 𝑐𝑜𝑣(�̂��̂�) 𝐴 𝑣𝑎𝑟(�̂�) 𝐴 𝑐𝑜𝑣(�̂��̂�)

𝐴 𝑐𝑜𝑣(�̂��̂�) 𝐴 𝑐𝑜𝑣(�̂��̂�) 𝐴 𝑣𝑎𝑟(�̂�)

]. 

The 100(1-γ) % asymptotic confidence interval for 𝜆, 𝜔, and 𝛼are then given respectively as 

�̂� ± 𝑍
1−
𝛾
2
√𝑣𝑎𝑟(�̂�) ,  �̂� ± 𝑍

1−
𝛾
2
√𝑣𝑎𝑟(�̂�)  ,  �̂� ± 𝑍

1−
𝛾
2
√𝑣𝑎𝑟(�̂�). 

 

5. Simulation Study 

Simulation study is a numerical technique which conducts experiments on the computer. We simulate pseudo random 

data to study the properties of the parameters. It models the condition which is assumed in the study and elaborate the 

behavior of the model and function. The simulation process of the current study is as follows: 

 

1. Generate a pseudo sample u from uniform distribution over interval [0, 1]. 
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2. Now we use inverse cdf method to transform eq (6(c)) in terms of u as follows  

𝑥𝑘𝑖 = 𝜆 ∗ √(−log (1 − 𝑢
1
𝛼)/𝜔𝑘 

 

3. Different samples of sizes 25, 50, 75, 100, 125 and 150 have been obtained from the Burr Type X distribution. 

4. The values of the parameters and numbers of the stress levels are chosen to be α=2, λ=2.9, ω=1.5 and s=4, 6 

and 8. 

5. By using the optim() function of R software, we obtain ML estimates, mean squared error (MSE), relative 

error (RE), relative absolute bias (RAB) and lower and upper bound of 95% and 99% confidence intervals 

for the said sample sizes. 

 

Table 1: Simulation results of Burr type X distribution using GP for α=2, λ=2.9, ω=1.5 and s=4 

Sample Estimate Mean SE √MSE RAB RE Lower 

Bound 

Upper 

Bound 

 

 

25 

α 2.1093 0.1158 0.1129 0.0546 0.0564 1.8821 

1.8103 

2.3364 

2.4083 

λ 2.6289 0.4157 0.4052 0.0934 0.1397 1.8141 

1.5563 

3.4437 

3.7015 

ω 2.0760 0.5943 0.5792 0.3840 0.3861 0.9111 

0.5426 

3.2409 

3.6094 

 

 

50 

α 2.1409 0.1694 0.1651 0.0704 0.0825 1.8087 

1.7037 

2.4731 

2.5781 

λ 2.6946 0.2509 0.2446 0.0708 0.0843 2.2027 

2.0471 

3.1865 

3.3421 

ω 2.1024 0.6187 0.6031 0.4016 0.4020 0.8895 

0.5059 

3.3152 

3.6989 

 

 

75 

α 2.1502 0.1758 0.1716 0.0751 0.0858 1.8054 

1.6964 

2.4950 

2.6040 

λ 2.6715 0.3055 0.2981 0.0787 0.1028 2.0727 

1.8832 

3.2704 

3.4599 

ω 2.0840 0.6001 0.5856 0.3893 0.3904 0.9077 

0.5356 

3.2603 

3.6324 

 

 

100 

α 2.1638 0.1752 0.1707 0.0819 0.0853 1.8204 

1.7118 

2.5072 

2.6158 

λ 2.6620 0.3694 0.3601 0.0820 0.1241 1.9378 

1.7087 

3.3862 

3.6152 

ω 2.0972 0.6158 0.6002 0.3981 0.4001 0.8902 

0.5084 

3.3042 

3.6860 

 

 

125 

α 2.1247 0.1322 0.1288 0.0623 0.0644 1.8655 

1.7835 

2.3838 

2.4658 

λ 2.7362 0.2157 0.2103 0.0564 0.0725 2.3133 

2.1795 

3.1591 

3.2929 

ω 2.0965 0.6125 0.5970 0.3977 0.3980 0.8959 

0.5161 

3.2972 

3.6769 

 

 

150 

α 2.1387 0.1467 0.1429 0.0693 0.0714 1.8511 

1.7602 

2.4263 

2.5172 

λ 2.6267 0.3877 0.3778 0.0942 0.1303 1.8668 

1.6264 

3.3867 

3.6270 

ω 2.0757 0.5938 0.5788 0.3838 0.3858 0.9118 

0.5436 

3.2396 

3.6078 
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Table 2: Simulation results of Burr type X distribution using GP for α=2, λ=2.9, ω=1.5 and s=6 

Sample Estimate Mean SE √MSE RAB RE Lower 

Bound 

Upper 

Bound 

 

 

25 

α 2.0359 0.0385 0.0375 0.0179 0.0187 1.9604 

1.9365 

2.1115 

2.1354 

λ 2.8400 0.0838 0.0817 0.0206 0.0281 2.6757 

2.6237 

3.0044 

3.0564 

ω 1.9534 0.4841 0.4718 0.3022 0.3145 1.0045 

0.7044 

2.9023 

3.2024 

 

 

50 

α 2.0300 0.0313 0.0305 0.0150 0.0152 1.9685 

1.9490 

2.0915 

2.1110 

λ 2.8594 0.0424 0.0413 0.0139 0.0142 2.7762 

2.7498 

2.9427 

2.9690 

ω 1.8786 0.3945 0.3845 0.2524 0.2563 1.1053 

0.8607 

2.6520 

2.8966 

 

 

75 

α 2.0309 0.0320 0.0312 0.0154 0.0156 1.9680 

1.9482 

2.0937 

2.1136 

λ 2.8602 0.0409 0.0398 0.0136 0.0137 2.7800 

2.7547 

2.9405 

2.9658 

ω 1.8937 0.4093 0.3990 0.2625 0.2660 1.0913 

0.8375 

2.6961 

2.9499 

 

 

100 

α 2.0306 0.0314 0.0306 0.0153 0.0153 1.9690 

1.9495 

2.0921 

2.1116 

λ 2.8588 0.0422 0.0411 0.0141 0.0142 2.7760 

2.7498 

2.9416 

2.9678 

ω 1.8871 0.3976 0.3876 0.2580 0.2584 1.1076 

0.8611 

2.6665 

2.9131 

 

 

125 

α 2.0312 0.0321 0.0313 0.0156 0.0156 1.9682 

1.9483 

2.0942 

2.1141 

λ 2.8579 0.0432 0.0421 0.0145 0.0145 2.7731 

2.7463 

2.9426 

2.9694 

ω 1.8959 0.4069 0.3966 0.2639 0.2644 1.0983 

0.8460 

2.6936 

2.9459 

 

 

150 

α 2.0319 0.0327 0.0319 0.0159 0.0159 1.9676 

1.9473 

2.0961 

2.1164 

λ 2.8569 0.0441 0.0430 0.0148 0.0148 2.7704 

2.7430 

2.9435 

2.9709 

ω 1.9046 0.4157 0.4051 0.2697 0.2701 1.0898 

0.8321 

2.7194 

2.9772 
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Table 3: Simulation results of Burr type X distribution using GP for α=2, λ=2.9, ω=1.5 and s=8 

Sample Estimate Mean SE √MSE RAB RE Lower 

Bound 

Upper 

Bound 

 

 

25 

α 2.0128 0.0325 0.0307 0.0125 0.0143 1.9678 

1.9473 

2.0987 

2.1014 

λ 2.8703 0.0653 0.0632 0.0195 0.0209 2.6964 

2.6187 

2.9918 

3.0285 

ω 1.8437 0.3761 0.3748 0.2352 0.2410 1.0131 

0.7254 

2.8376 

3.0958 

 

 

50 

α 2.0275 0.0285 0.0269 0.0118 0.0127 1.9845 

1.9689 

2.0903 

2.1102 

λ 2.8628 0.0552 0.0534 0.0137 0.0142 2.8013 

2.7814 

2.9547 

2.9958 

ω 1.8267 0.3651 0.3628 0.2252 0.2285 1.1443 

0.9725 

2.6548 

2.6087 

 

 

75 

α 2.0173 0.0273 0.0254 0.0104 0.0131 1.9832 

1.9632 

2.0738 

2.0986 

λ 2.8813 0.0409 0.0398 0.0128 0.0136 2.8123 

2.7769 

2.9384 

2.9518 

ω 1.7331 0.3261 0.3252 0.2345 0.2387 1.0982 

0.9567 

2.4684 

2.4859 

 

 

100 

α 2.0183 0.0295 0.0284 0.0123 0.0138 1.9813 

1.9536 

2.0765 

2.0894 

λ 2.8672 0.0440 0.0427 0.0135 0.0149 2.7927 

2.7815 

2.9329 

2.9516 

ω 1.7471 0.3432 0.3418 0.2256 0.2287 1.1384 

0.9818 

2.5186 

2.5637 

 

 

125 

α 2.0139 0.0317 0.0313 0.0116 0.0128 1.9751 

1.9493 

2.0789 

2.0915 

λ 2.8954 0.0382 0.0365 0.0133 0.0148 2.7891 

2.7628 

2.9299 

2.9573 

ω 1.7350 0.3289 0.3268 0.2371 0.2403 1.1289 

0.9736 

2.4762 

2.5934 

 

 

150 

α 2.0102 0.0269 0.0248 0.0120 0.0132 1.9847 

1.9658 

2.0764 

2.0885 

λ 2.8813 0.0375 0.0361 0.0126 0.0142 2.8016 

2.7786 

2.9320 

2.9587 

ω 1.6990 0.3486 0.3470 0.2341 0.2452 1.0785 

0.9698 

2.3982 

2.5298 

 

Conducting the above algorithm, the average values of SE, MSE, RAB and RE are obtained using 1000 replications 

to avoid randomness. The results presented in Table 1-3 are based on different sample sized with parameter values 

α=2, λ=2.9, ω=1.5 and s=4, 6 and 8 to investigate the performance of the MLEs of the model parameters. 

It is observed from Table 1-3 that in almost all cases the estimates of parameters in Table 3 give smaller 

MSEs, RABs and REs compared to those in Table 1 and 2. In all cases the MSEs of the MLEs of the parameters in all 

three Table (1-3) decreases as the sample size increases. 

6. Conclusion and Future Work: 

In this article, we have considered the likelihood estimation of Burr-Type X distribution parameters using 

geometric process in accelerated life testing for the two different stress levels. The MLEs of the parameters are 

obtained numerically using the Newton-Raphson method and their performances are evaluated and discussed in terms 

of SE, MSE, RAB and RE.  From the simulation results it is easy to find that maximum likelihood estimates have 

good statistical properties. As a future work, Bayesian inference using geometric process in accelerated life testing 

assuming in this article will be considered. 
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