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Abstract 

In this article we propose a new weighted version of inverse Gamma distribution known as Weighted Inverse 

Gamma distribution (WIGD). We examine the Length biased and Area biased versions of Weighted Inverse 

Gamma distribution. Basic structural properties viz moments, mode, moment generating function (mgf), 

characteristic function (cf), hazard rate function and measures of uncertainty. The parameters of this model 

are estimated from both classical (namely, maximum likelihood estimator and method of moments, and 

compare them by using extensive numerical simulations) and Bayesian point of view. The Bayes estimates 

are estimated by using non-informative Jeffrey’s prior and informative Inverse Chi square prior under 

different types of loss function (symmetric and asymmetric loss functions). Finally, a simulation study has 

been conducted for comparing weighted inverse gamma distribution with other competing distributions. 

Keywords: Inverse gamma distribution; Moments; Entropy; Hazard rate; Maximum 

likelihood estimator; Moment estimator. 

1. Introduction 

The inverse gamma distribution ),( IG  with parameters α and β, is mentioned 

infrequently in statistical literature, and usually for a specific purpose. One primary use 

of the IG distribution is for Bayesian estimation of the mean of the one parameter 

exponential distribution (see for example Johnson et al. (1995), as well as estimating 

variance in a normal regression. A number of brief descriptions of the properties of the 

distribution are available, mostly in text books on Bayesian methods, often in the 

econometrics literature, e.g., Koch (2007) and Poirier (1995). Kleiber and Kotz (2003) 

list some basic structural properties of the IG distribution and also model incomes with 

the distribution. Milevsky and Posner (1998) studied the inverse gamma distribution and 

point out estimation by method of moments. 

 

The learning of weighted distributions can be used for better comprehension of standard 

distributions, and provides techniques of spreading distributions for further flexibility to 

fit the data superior. Rao (1965) proposed the concept of weighted distribution, Patil and 

Rao (1978) discussed how, for example, truncated distributions and damaged 

observations can give rise to weighted distributions. Weighted distributions occur 

frequently in research related to bio-medicine, reliability, ecosystem and branching 

process can be seen in Patil and Rao (1986), Sharma et al. (2017) studied on Length and 

Area biased Maxwell distribution, Ahmad et al. (2016) studied length biased Weighted 
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Lomax distribution with its applications, Das and Roy (2011) discussed the length-biased 

Weighted Generalized Rayleigh distribution with its properties, also they develop the 

length-biased Weighted Weibull distribution.  

 

Suppose X is a non-negative random variable with probability density function (pdf) f(x), 

and then the pdf of the weighted random variable Xw is given by 

0,
))((

)()(
)( = x

xwE

xfxw
xfw                                    (1) 

where w(x) be a non-negative weight function. On the support of X, where w(x) > 0 and ω 

= w(x) f (x) d x is a normalizing constant that forces f w(x) to integrate to 1. 

 

Subject upon the choice of weight function w(x), we will get dissimilar weighted 

distributions. In this paper, we ruminate w(x) = xc and the model is thus achieved is stated 

as size biased distribution. Evidently when c = 1, the weight function depends on the length 

of units of interest, then the resultant distribution is called length biased distribution. 

Correspondingly, for c = 2, the resultant distribution is called area biased distribution.  

 

This paper is divided in to two parts: first is to study the structural properties of the 

weighted inverse gamma distribution (WIG) along with its special cases (for c = 1 and 2), 

and second is to estimate the parameters of the model from both classical and Bayesian 

view point. Finally, simulation study, summary is provided. 

2. Weighted Inverse Gamma distribution 

In this section, we build the pdf of weighted Inverse Gamma distribution by taking the 

weight function as w(x) = xc and study the behavior of its pdf and hazard function. The 

probability density function (pdf) and cumulative distribution function (cdf) of the Inverse 

Gamma distribution is given by 
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
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x


 , denotes the upper incomplete gamma function. 

 

Weighted Inverse Gamma distribution (WIGD) is obtained by applying the weights cx , to 

the Classical Inverse Gamma distribution. To define Weighted Inverse Gamma distribution 

if ),,(~ cWIGX , then pdf of X is given by 
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By substituting c = 1 and c = 2 in (4), we get the pdfs of length biased Inverse Gamma 

(LBIG) and area biased Inverse Gamma (ABIG) distributions respectively. Figure (1.1) 
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represents shapes of Weighted Inverse gamma distribution for different values of 

parameters. 

 
 

The cdf, reliability function and hazard function corresponding to the pdf (4) are 

respectively given by 
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1dxxea ax
 is gamma function and ( ) dxxeba a
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x 1
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, −−

=  is the upper 

incomplete gamma function. 

 

Relationship with other distributions  

Some well-known theoretical distributions can be derived from the proposed WIG 

distribution. For instance; 

1. For c=0, equation (4) reduces to the inverse gamma distribution. 

2. For 1= and c=0, equation (4) reduces to the inverse Exponential distribution.  

3. For
2


 = , 

2

1
=  and c=0, equation (4) reduces to Inverse Chi-Square distribution. 
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4. For
2

1
= , 

2

l
=  and c=0, equation (4) reduces to Levy distribution. 

2.1. Mode of Weighted Inverse Gamma distribution 

The pdf of ),,( cWIG is unimodal for given  andc, and achieve its maximum at 

Xmode =
1+− c


. 

 

Proof: 

For the pdf (4), 
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The mode of the weighted inverse gamma can be readily obtained from 
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Since ,0,0)(  xxfw we get 
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Thus the pdf (4) achieve its maximum at Xmode =
1+− c


. 

2.2. Moments of Weighted Inverse Gamma distribution 

Moments helps to determine many properties of the distribution such as Averages, 

dispersion, skewness and kurtosis. The rth moment about origin of the Weighted Inverse 

Gamma distribution is given by 
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The mean and variance of Weighted Inverse Gamma distribution is given by 
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By substituting c =1, 2 in (5) the mean and variance of Length biased Inverse Gamma 

and Area biased inverse gamma distribution are 
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),,( cWIG  are given by 
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By putting c=1,2 in (6) and (7), the skewness and kurtosis of LBIG and ABIG distribution 

are 
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Corollary 2.1. 

The Moment generating function of ),,( cWIG does not exists. 

 

Corollary 2.2. 

The characteristic function of ),,( cWIG is given by  
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Proof: 

By definition of moment generating function  
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Substituting the pdf of ),,( cWIG  in above expression we get the required result. 
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is modified Bessel function of second kind and (.) is digamma function. 

2.3 Measures of Uncertainty  

The entropy of a random variable X with probability density ),,( cWIG  is a measure 

of variation of the uncertainty.  
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2.3.1 Shannon’s Entropy 

The Shannon’s entropy is given by 

( ))(log()( xfEXH w−=  

 

Using pdf (4) in above equation we get 
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2.3.2. Rényi entropy 

The Rényi entropy (1960), denoted by
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By substituting pdf (4) in above expression, we obtain 
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3. Methods of Estimation 

In this section, parameters of weighted inverse gamma distribution are estimated by 

various methods of estimation viz, method of moments, maximum likelihood estimation 

and Bayesian method of estimation. 

3.1. Method of Moments 

In order to estimate the unknown parameters of ),,( cWIG model by the method of 

moments, we equate the sample moments with the corresponding population moments. 


=

=


n

i

i
r

r x
n 0

1
  

 

Replacing sample moments with population moments, we get 
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On solution the equations (10) and (11) we obtain the estimates for  and  say ̂ and ̂  

respectively.  

3.2. Maximum Likelihood Estimation 

Let nxxxx .......,, 321 be a random sample from the Weighted Inverse Gamma distribution, 

then the corresponding likelihood function is given as 
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The log-likelihood function is given as: 
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Now, differentiate above equation with respect to parameters and  and equate to zero, 

we obtain the normal equations 
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The MLE ),(


=  of ),(  = is obtained by solving the above nonlinear system of 

equations. It is usually more convenient to use nonlinear optimization algorithms such as 

quasi-Newton algorithm to numerically maximize the log likelihood function given in (12). 

Applying the usual large sample approximation, the MLE 


  can be treated as being 
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approximately bivariate normal with variance-covariance matrix equal to the inverse of the 

expected information matrix, i.e. 
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where ( )1−I is the limiting variance-covariance matrix of

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3.3. Bayesian Method of Estimation 

In this section, we construct Bayes estimator of the scale parameter    of WIG 

distribution using non informative Jeffrey’s prior and informative Inverse Chi square 

prior under different loss functions. 

3.3.1 Posterior distribution using Jeffrey’s prior 
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which is density function of gamma distribution with shape parameter (t1) and scale 
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The Bayes estimate of  using Jeffrey’s prior under SELF, Entropy and LINEX are given 

by 
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3.3.2 Posterior Risk Functions: 

The risk functions of the estimators
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where ))(( cn − is a digamma function. 

 

Lemma: 

For given posterior distribution (15), we have 
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3.3.3 Posterior distribution using inverse Chi-square prior 

Assuming that  has inverse chi-square defined by 
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The Bayes estimate of  using Inverse Chi-square prior under SELF, Entropy and 

LINEX are given by 
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3.3.4 Posterior Risk Functions: 

The risk functions of the estimators


S ,


E  and 


L relative to SELF, entropy loss 

function and LINEX loss function are denoted by )(


SR  , )(


ER  and )(


LR    are given 

by 
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where )2)(( +− cn  is a digamma function. 

4. Simulation Study 

The most common and simplest method for generating random sample is based on the 

inverse cumulative distribution function (cdf). For arbitrary cdf, define G−1(u) = min {x; 

G(x) ≥ u}. The inverse cdf method can’t be directly applied for WIG distribution because 

of the closed form expression for its quantile function is not available. Here, we intend to 

use Newton’s method for the calculation of the quantile function numerically. The 

algorithm used for this determination is as follows: 

 

Algorithm: 

 

Step 1. Set  ,,,cn and initial value x0. 

Step 2. Generate U ∼ Uniform(0, 1). 

Step 3. Update x0 by using the Newton’s formula, ),,,( 00* cxRxx −= , where 

,
),,,(

),,,(
),,,(

0

0
0






cxg

UcxG
cxR

−
= where G(.) and g(.) are cdf and pdf WIG distribution 

respectively. 

Step 4. If − *0 xx , (very small, > 0 tolerance limit), store x=x*  as a sample from 

),,( cWIG . 

Step 5. If − *0 xx , then set x0=x*   and go to step 3. 

Step 6. Repeat steps 2-5, n times for nxxxx ,...,,, 321  respectively.  

 

On the basis of generated sample from the above algorithm, we use R code and check the 

goodness of fit of the LWIG and AWIG distributions and compare the appropriateness with 

some other class of weighted distributions. 
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We apply KS test and AIC criterion for goodness of fit. The summary of the fitting is 

presented in Table 4.1.  From the table, we observe that the family of weighted Inverse 

Gamma distribution is suitable for modelling than the other competing distributions. 

Table 4.1: Estimation of Parameters and Comparison Criteria 

Distributio

n 

Paramete

r 

estimate 

Standar

d 

Error 

-2logl AIC BIC AICC Shanno

n 

Entropy 

IGD 

 = 

1.1643 




=0.8367 

0.3823 

 

0.2050 

 

136.47

9 

 

140.47

9 

 

139.27

3 

 

141.02

4 

 

2.729 

LBIGD 

 = 

1.8826 




=2.3149 

0.5814 

0.3351 

 

109.48

8 

 

113.48

8 

 

112.28

2 

 

114.03

3 

 

2.1806 

ABIGD 

 = 

1.9084 




=3.4394 

0.5841 

0.3694 

 

100.87

1 

 

104.87

1 

 

103.66

5 

 

105.41

6 

 

2.017 

Inverse Chi 

Square 




=0.9387 

0.1705 219.61

0 

221.61

0 

220.98

9 

221.78

3 

4.392 

Inverse 

Exponentia

l 




=1.3106 

0.2621 123.08

6 

125.08

6 

124.48

3 

125.25

9 

2.461 

Levy 



=0.0357 

0.0101 354.68

1 

356.68

1 

356.07

8 

356.85

4 

7.093 

 

From Table 4.1, it has been observed that the family of Weighted Inverse Gamma 

distribution have the lesser AIC, AICC and BIC values as compared to other competing 

distributions. Hence we can concluded that the Weighted Inverse Gamma distribution leads 

to a better fit and is suitable for modeling than the other competing distributions. 

5. Application 

The data set represents the survival times (in days) of 72 guinea pigs infected with virulent 

tubercle bacilli, observed and reported by Bjerkedal (1960). The data are as follows:  

0.1, 0.33, 0.44, 0.56, 0.59, 0.59, 0.72, 0.74, 0.92, 0.93, 0.96, 1, 1, 1.02, 1.05, 1.07, 1.07, 

1.08, 1.08, 1.08, 1.09, 1.12, 1.13, 1.15, 1.16, 1.2, 1.21, 1.22, 1.22, 1.24, 1.3, 1.34, 1.36, 

1.39, 1.44, 1.46, 1.53, 1.59, 1.6, 1.63, 1.68, 1.71, 1.72, 1.76, 1.83, 1.95, 1.96, 1.97, 2.02, 

2.13, 2.15, 2.16, 2.22, 2.3, 2.31, 2.4, 2.45, 2.51, 2.53, 2.54, 2.78, 2.93, 3.27, 3.42, 3.47, 

3.61, 4.02, 4.32, 4.58, 5.55, 2.54, 0.77. 
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Distribution Parameter 

Estimate 

Standard 

Error 

-2logl AIC BIC AICC 

IGD 

 = 

0.2730 


 =1.3008 

 

0.1868 

1.71105 

 

 

112.7648 

 

118.764 

 

124.5007 

 

119.2865 

LBIGD 

 = 

0.0332 


 =0.0421 

 

0.0223 

0.0166 

 

 

 

 

77.04523 

 

 

 

83.0452 

 

 

88.7812 

 

 

83.5669 

ABIGD 

 =0.0151 


 = 

0.0343 

 

0.0028 

0.0051 

 

 

 

41.6281 

 

 

47.6281 

 

 

53.3641 

 

 

48.1498 

Inverse Chi 

Square 




=11.4351 

 

6.5347 

 

 

114.6634 

 

116.6634 

 

118.5760 

 

116.7467 

Inverse 

Exponential 




=13.1806 

 

18.4316 

 

94.6973 

 

98.6973 

 

102.5213 

 

98.9526 

Levy 

 =0.1772 
0.0289 246.1711 248.1711 250.0837 248.2544 

 

From above Table, it has been clearly observed that the family of Weighted Inverse Gamma 

distribution have the lesser AIC, AICC and BIC values as compared to other competing 

distributions. Hence we can concluded that the Weighted Inverse Gamma distribution leads 

to a better fit and is suitable for modeling than the other competing distributions. 
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