Weighted Analogue of Inverse Gamma Distribution: Statistical
Properties, Estimation and Simulation Study

Afag Ahmad

Department of Mathematical Sciences

Islamic University of Science and Technology, Awantipoora, Kashmir
baderaafag@gmail.com

S.P Ahmad

Department of Statistics
University of Kashmir, Srinagar
sprvz@yahoo.com

Abstract

In this article we propose a new weighted version of inverse Gamma distribution known as Weighted Inverse
Gamma distribution (WIGD). We examine the Length biased and Area biased versions of Weighted Inverse
Gamma distribution. Basic structural properties viz moments, mode, moment generating function (mgf),
characteristic function (cf), hazard rate function and measures of uncertainty. The parameters of this model
are estimated from both classical (hamely, maximum likelihood estimator and method of moments, and
compare them by using extensive humerical simulations) and Bayesian point of view. The Bayes estimates
are estimated by using non-informative Jeffrey’s prior and informative Inverse Chi square prior under
different types of loss function (symmetric and asymmetric loss functions). Finally, a simulation study has
been conducted for comparing weighted inverse gamma distribution with other competing distributions.

Keywords: Inverse gamma distribution; Moments; Entropy; Hazard rate; Maximum
likelihood estimator; Moment estimator.

1. Introduction

The inverse gamma distribution IG(«, #) with parameters « and g, is mentioned

infrequently in statistical literature, and usually for a specific purpose. One primary use
of the IG distribution is for Bayesian estimation of the mean of the one parameter
exponential distribution (see for example Johnson et al. (1995), as well as estimating
variance in a normal regression. A number of brief descriptions of the properties of the
distribution are available, mostly in text books on Bayesian methods, often in the
econometrics literature, e.g., Koch (2007) and Poirier (1995). Kleiber and Kotz (2003)
list some basic structural properties of the I1G distribution and also model incomes with
the distribution. Milevsky and Posner (1998) studied the inverse gamma distribution and
point out estimation by method of moments.

The learning of weighted distributions can be used for better comprehension of standard
distributions, and provides techniques of spreading distributions for further flexibility to
fit the data superior. Rao (1965) proposed the concept of weighted distribution, Patil and
Rao (1978) discussed how, for example, truncated distributions and damaged
observations can give rise to weighted distributions. Weighted distributions occur
frequently in research related to bio-medicine, reliability, ecosystem and branching
process can be seen in Patil and Rao (1986), Sharma et al. (2017) studied on Length and
Area biased Maxwell distribution, Ahmad et al. (2016) studied length biased Weighted
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Lomax distribution with its applications, Das and Roy (2011) discussed the length-biased
Weighted Generalized Rayleigh distribution with its properties, also they develop the
length-biased Weighted Weibull distribution.

Suppose X is a non-negative random variable with probability density function (pdf) f(x),
and then the pdf of the weighted random variable Xy is given by
f(x )_W(X) f (x) 1)
E(w(x)
where w(x) be a non-negative weight function. On the support of X, where w(x) > 0 and ®
=w(x) f (x) d x is a normalizing constant that forces f "(x) to integrate to 1.

Subject upon the choice of weight function w(x), we will get dissimilar weighted
distributions. In this paper, we ruminate w(x) = x° and the model is thus achieved is stated
as size biased distribution. Evidently when ¢ = 1, the weight function depends on the length
of units of interest, then the resultant distribution is called length biased distribution.
Correspondingly, for ¢ = 2, the resultant distribution is called area biased distribution.

This paper is divided in to two parts: first is to study the structural properties of the
weighted inverse gamma distribution (WI1G) along with its special cases (for ¢ = 1 and 2),
and second is to estimate the parameters of the model from both classical and Bayesian
view point. Finally, simulation study, summary is provided.

2. Weighted Inverse Gamma distribution

In this section, we build the pdf of weighted Inverse Gamma distribution by taking the
weight function as w(x) = x¢ and study the behavior of its pdf and hazard function. The
probability density function (pdf) and cumulative distribution function (cdf) of the Inverse
Gamma distribution is given by

f(X; aﬂ)—r(;) ;lej Xx>0,>0,8>0 (2)
7[&@

Fy = 3

(x) = () ©)

where y(ﬂ,gj denotes the upper incomplete gamma function.
X

Weighted Inverse Gamma distribution (WIGD) is obtained by applying the weights x°, to
the Classical Inverse Gamma distribution. To define Weighted Inverse Gamma distribution
if X ~WIG(c,«, ), then pdf of X is given by
ol @
£, (X0 ,B)—F(ﬂ 5 xﬂiﬂe © x>0,a>0,8>0c>0  (4)
By substituting ¢ = 1 and ¢ = 2 in (4), we get the pdfs of length biased Inverse Gamma
(LBIG) and area biased Inverse Gamma (ABIG) distributions respectively. Figure (1.1)
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represents shapes of Weighted Inverse gamma distribution for different values of

parameters.
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Figure 1.1 Pdf of WIG Distribution under different values to paramelers

The cdf, reliability function and hazard function corresponding to the pdf (4) are

respectively given by

wa (X) = F(ﬂ—C)
7[ﬂ —C,a]
R(X)=1-— X/
r(g-c)
h(x) = a’ 1

(F(,B—C)—]/(ﬂ—C,iJJ Xﬁfc+1

w b
where l“az.[e’X x*'dx is gamma function and y(a,b):je“ x*dx is the upper
0 0

incomplete gamma function.

Relationship with other distributions

Some well-known theoretical distributions can be derived from the proposed WIG
distribution. For instance;

1. For ¢=0, equation (4) reduces to the inverse gamma distribution.

2. For g =1and c=0, equation (4) reduces to the inverse Exponential distribution.

3. ForpB = g a :% and ¢=0, equation (4) reduces to Inverse Chi-Square distribution.
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4. For B = % a :IE and c=0, equation (4) reduces to Levy distribution.

2.1. Mode of Weighted Inverse Gamma distribution
The pdf of WIG(c, «, ) is unimodal for given ¢, and gand achieve its maximum at

Xmode = .
p-c+1
Proof:
For the pdf (4),
£00=-f,(x) = (C‘ﬂ‘1+%jfw(x)
0X X X

The mode of the weighted inverse gamma can be readily obtained from

£/ (x)=0 :(C_ﬁ_1+%jfw(x):0
X X

Since f,(x) =0,V x>0, we get

)
X x2 )

Thus the pdf (4) achieve its maximum at Xmode =

B—c+1

2.2. Moments of Weighted Inverse Gamma distribution

Moments helps to determine many properties of the distribution such as Averages,
dispersion, skewness and kurtosis. The r'" moment about origin of the Weighted Inverse
Gamma distribution is given by
' p—c
o TB-c=n) g3 . )
r(B-c) a’*"
The mean and variance of Weighted Inverse Gamma distribution is given by
o ) a’

B-c—-1° (f-c-1(f-c-2)

My

ﬂ:

By substituting ¢ =1, 2 in (5) the mean and variance of Length biased Inverse Gamma

and Area biased inverse gamma distribution are (ﬂ: ¢ s2- o’ J and
B-2 (8-2)*(B-9)
(#:al o2 :0‘2]. The coefficient of skewness and kurtosis of
B-3 (B-3)* (B-4)

WIG(c, «, p) are given by
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S, =, _Ap-c-2 ©)
p—-c-3
30 — 30 — 66

= 7
(B-c-3)(p-c-4) )

Kr zﬂz

By putting c=1,2 in (6) and (7), the skewness and kurtosis of LBIG and ABIG distribution

a./p -3 3045 — 96

are L =—"r = B, = and
[ op—4 7T (,6’—4)(,8—5)]
B, = Wh-4 B, = 305126 1 respectively.
B=5 (B—-5)(B-6)
Corollary 2.1.
The Moment generating function of WIG(c, «, ) does not exists.
Corollary 2.2.
The characteristic function of WIG(c, «, £3) is given by
B¢
2(iat) 2 -
t)=———"—K (- diat

Proof:

By definition of moment generating function
dy (1) = E(€") = [e™ £, (x)dx
0

Substituting the pdf of WIG(c, «, 8) in above expression we get the required result.

itxy a’ ix 1 _%
¢y () =E(e )_—F(ﬂ—c)ge WL dx
B
 2iat) ? —
5 O="T0 K, (= 4iat)

-8 pa L k
Kﬂ(ﬁ)zg[%zj Sk 'l‘! 1)![—%22] +(—1)ﬂ+1|n[2ij|ﬂ(z)+

k=0 z

1 .\
(1Y 1,)' < (ZZJ
-1 [EJ[EZ] é[yj(k +1)+W('8+k+1]k!(,8+k)!
is modified Bessel function of second kind and w(.) is digamma function.

2.3 Measures of Uncertainty

The entropy of a random variable X with probability densityWIG(c, «, ) is a measure
of variation of the uncertainty.
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2.3.1 Shannon’s Entropy

The Shannon’s entropy is given by

H(X) = —E(log( f,, (x))

Using pdf (4) in above equation we get
H(X)=log'(B8—c)—(B—c)loga — (B —c+1)E(log(1/ X))+ aE(L/ X)

=(f-c)+log(al'(B-C))-(B-c+Dy(B-C) (8)
where
w(X) = 11:’:(( and Ilog( X) x"te*dx=I"p

2.3.2. Rényi entropy
The Rényi entropy (1960), denoted by 1 (p) is defined as
la(p)=—— log{ [1./00 dx}
1-p

—00

where p>0and p#1.

By substituting pdf (4) in above expression, we obtain

1 R
1 () —nlog{ J (r( ﬁ_c)j WL dX}

0

! Iog{ @ I(p(ﬂ—c+1)—1,pa)} ©)

T1-p C|TP(B-0)
Where
1 P lra
I(a,b) = e Xdx =—
( ) ;!‘Xaw—l ba

3. Methods of Estimation

In this section, parameters of weighted inverse gamma distribution are estimated by
various methods of estimation viz, method of moments, maximum likelihood estimation
and Bayesian method of estimation.

3.1. Method of Moments

In order to estimate the unknown parameters of WIG(c, «, #) model by the method of
moments, we equate the sample moments with the corresponding population moments.

’ 1& .
M, _ng !

Replacing sample moments with population moments, we get
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18 ,
_in =H
n i
—x=—2 (10)
p—-c-1
1 !
and  =>'x" =u,
[ )
jlzxiz_)—(zzﬂz
]
aZ
=5’ = (11)

(B-c-D*(f-c-2)

On solution the equations (10) and (11) we obtain the estimates for & and S say & and [5’
respectively.

3.2. Maximum Likelihood Estimation

Let X;,X,,X;.......X, be a random sample from the Weighted Inverse Gamma distribution,
then the corresponding likelihood function is given as

: (e T e =
I(X,a'ﬂ)_(r(ﬁ—c)j l:l[(xiﬂm]e)(p Zn:X.

i=1

The log-likelihood function is given as:

Iogl(x;a,ﬂ)=n(ﬂ—c)loga—nlogl‘(ﬁ—c)+ilog( ﬁl_MJ— < (12)
i=1 X ZX'

i=1

Now, differentiate above equation with respect to parameters « and £ and equate to zero,
we obtain the normal equations

a'aog':o:»”(ﬂ_c)— nl ~0 (13)
o (04

2%
Olog| :O:>nloga—n(log(ﬂ—c)—z(ﬂl_c)}rzn:log X =0 (14)

The MLE 7A7: (2:, Aﬂ) of n =(«, B)is obtained by solving the above nonlinear system of

equations. It is usually more convenient to use nonlinear optimization algorithms such as
quasi-Newton algorithm to numerically maximize the log likelihood function given in (12).

Applying the usual large sample approximation, the MLE 7; can be treated as being
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approximately bivariate normal with variance-covariance matrix equal to the inverse of the
expected information matrix, i.e.

Jn(7-m— N1 ()

where 17(z) is the limiting variance-covariance matrix of7 .

3.3. Bayesian Method of Estimation

In this section, we construct Bayes estimator of the scale parameter o of WIG
distribution using non informative Jeffrey’s prior and informative Inverse Chi square
prior under different loss functions.

3.3.1 Posterior distribution using Jeffrey’s prior

Assuming that o has Jeffery priori.e g(a) « 1the posterior distribution is given by
(94

tln(,ﬁ_c)

Ir(n(g-c))

which is density function of gamma distribution with shape parameter (t1) and scale

JCIOE @ (15)

parameter n(f —c), where t, = ——.
i=1

The Bayes estimate of « using Jeffrey’s prior under SELF, Entropy and LINEX are given
by

LIV
tl
PRUCECE!

and

3.3.2 Posterior Risk Functions:

The risk functions of the estimatorseg ,a. and o relative to SELF, entropy loss

function and LINEX loss function are denoted by R(aAS), R(aAE) and R(o?L) are given
by

R(o;s) :OA[ZJF (n(ﬂ—c)tlz)(n(ﬁ—c)) B Zn(ﬂt—c)a
A &tl A
R(ae) Zm—mg at+y(n(p-c)) -1
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1

SRRV B R YGIVA)
. t, +a

where w(n(B —c))is a digamma function.

Lemma:
For given posterior distribution (15), we have

E@]0) = Y% ()

e 19 =[x | 0 - n(s-e)
IRl —
3% (0501

1

[ij (n(B-c)-H(n(s-c)-2)

E(a?[x) =

3.3.3 Posterior distribution using inverse Chi-square prior

v

i) e =

Assuming that « has inverse chi-square defined by g(«) = F0/2) X 77

——— the posterior

distribution is given by
1:zn(ﬂ—c)-¢—2 ooyt t
P X) = mpertg e 16
|c(05|_) F(n(,B—c)+2)a (16)

which is density function of gamma distribution with shape parameter (t2) and scale

parameter (n(#—c)+2), where t, =| 0 + nl

The Bayes estimate of « using Inverse Chi-square prior under SELF, Entropy and
LINEX are given by

OA{S n(,Btc)+2
. :(n(ﬂt—zC)+1

Al a+t, )"
a, =—log
a t,
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3.3.4 Posterior Risk Functions:

The risk functions of the estimatorseg ,ar and o relative to SELF, entropy loss

function and LINEX loss function are denoted by R(aAS), R(aAE) and R(aAL) are given
by

2 (n(B-0)+3)((B-0)+2) 2(n(B—-c)+2)a

R(ar) = +
* t, t

A

at,

T (n(B-c)+1)

n(pg—-c)+2
R(aE):eazx t2 —aa+a(n(ﬁ_C)+2)—l
a+t, t,

where w(n(S —c) + 2) is a digamma function.

R(a,) —log a+y(n(B-c)+2)-1

4. Simulation Study

The most common and simplest method for generating random sample is based on the
inverse cumulative distribution function (cdf). For arbitrary cdf, define G *(u) = min {x;
G(x) > u}. The inverse cdf method can’t be directly applied for WIG distribution because
of the closed form expression for its quantile function is not available. Here, we intend to
use Newton’s method for the calculation of the quantile function numerically. The
algorithm used for this determination is as follows:

Algorithm:

Step 1. Set n,c,«, B and initial value x°.

Step 2. Generate U ~ Uniform(0, 1).

Step 3. Update x° by using the Newton’s formula, x =x°—-R(x’°,c,a, ), where

G(x%c,a,pB)-U
9(x°,c,a, )

R(x°,c,a, f) = ,where G(.) and g(.) are cdf and pdf WIG distribution

respectively.
Step 4. If ‘xo - x*‘ <e, (very small, > 0 tolerance limit), store x=x" as a sample from

WIG(c,a, f) .
Step 5. If |x° —x"| >¢, then set X’=x" and go to step 3.
Step 6. Repeat steps 2-5, n times for X, X,, X,,..., X, respectively.

On the basis of generated sample from the above algorithm, we use R code and check the
goodness of fit of the LWIG and AWIG distributions and compare the appropriateness with
some other class of weighted distributions.
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We apply KS test and AIC criterion for goodness of fit. The summary of the fitting is
presented in Table 4.1. From the table, we observe that the family of weighted Inverse
Gamma distribution is suitable for modelling than the other competing distributions.

Table 4.1: Estimation of Parameters and Comparison Criteria

Distributio | Paramete | Standar | -2logl AIC BIC AICC | Shanno
n r d n
estimate Error Entropy
IGD - 0.3823
g 136.47 | 140.47 | 139.27 | 141.02 | 2.729
11643 | 02050 | 9 9 3 4
B
=0.8367
LBIGD ~ 0.5814
a - 0.3351 | 109.48 | 113.48 | 112.28 | 114.03 | 2.1806
1.8826
N 8 8 2 3
B
=2.3149
ABIGD - 0.5841
1.9084 0.3694 | 100.87 | 104.87 | 103.66 | 105.41 | 2.017
N 1 1 5 6
B
=3.4394
Inverse Chi & 0.1705 | 219.61 | 221.61 | 220.98 | 221.78 | 4.392
Square 09387 0 0 9 3
Inverse & 0.2621 | 123.08 | 125.08 | 124.48 | 125.25 | 2.461
£ :
xpolnentla 13106 6 6 3 9
Levy ~ 0.0101 | 354.68 | 356.68 | 356.07 | 356.85 | 7.093
@ 1 1 8 4
=0.0357

From Table 4.1, it has been observed that the family of Weighted Inverse Gamma
distribution have the lesser AIC, AICC and BIC values as compared to other competing
distributions. Hence we can concluded that the Weighted Inverse Gamma distribution leads
to a better fit and is suitable for modeling than the other competing distributions.

5. Application

The data set represents the survival times (in days) of 72 guinea pigs infected with virulent
tubercle bacilli, observed and reported by Bjerkedal (1960). The data are as follows:

0.1, 0.33, 0.44, 0.56, 0.59, 0.59, 0.72, 0.74, 0.92, 0.93, 0.96, 1, 1, 1.02, 1.05, 1.07, 1.07,
1.08, 1.08, 1.08, 1.09, 1.12, 1.13, 1.15, 1.16, 1.2, 1.21, 1.22, 1.22, 1.24, 1.3, 1.34, 1.36,
1.39, 1.44,1.46,1.53,1.59, 1.6,1.63, 1.68, 1.71, 1.72, 1.76, 1.83, 1.95, 1.96, 1.97, 2.02,
2.13, 2.15, 2.16, 2.22, 2.3, 2.31, 2.4, 2.45, 2,51, 2.53, 2.54, 2.78, 2.93, 3.27, 3.42, 3.47,
3.61,4.02,4.32,4.58, 5.55, 2.54, 0.77.
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Distribution | Parameter | Standard -2logl AIC BIC AICC
Estimate Error
IGD A
02‘7;0 0.1868 | 112.7648 | 118.764 | 124.5007 | 119.2865
e 1.71105
S =1.3008
LBIGD o
. 0.0223
003321 00166 830452 | 88.7812 | 835669
3=0.0421 77.04523
ABIGD A
@=0.0151 1 60028
B= 0.0051 41.6281 | 47.6281 53.3641 | 48.1498
0.0343
Inverse Chi 5
Square 114351 6.5347 | 114.6634 | 116.6634 | 118.5760 | 116.7467
Inverse A
Exponential —1301806 18.4316 94.6973 | 98.6973 | 102.5213 | 98.9526
Levy 01772 0.0289 246.1711 | 248.1711 | 250.0837 | 248.2544

From above Table, it has been clearly observed that the family of Weighted Inverse Gamma
distribution have the lesser AIC, AICC and BIC values as compared to other competing
distributions. Hence we can concluded that the Weighted Inverse Gamma distribution leads
to a better fit and is suitable for modeling than the other competing distributions.
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