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Abstract 

In this paper, we propose a new method for generating families of continuous distributions based on the 

star-shaped property which grantees the existences of some well know properties for the generated classes 

and distributions for any non-negative random variables. We refer to the new class as the composed−𝐺 𝑄 

generator or shortly (𝐶 − 𝐺 𝑄) generator. We study some mathematical properties of the new family. Some 

special families and sub-models from the 𝐶 − 𝐺 𝑄 generator are discussed. To examine the performance of 

our new generator and the generated models in fitting several data we use two real sets of data; censored 

and uncensored then comparing the fitting of a new produced model called composed- Lomax Weibull 
(𝐶 − 𝐿 𝑊) with some well-known models, which provides the best fit to all of the data. A simulation has 

been performed to assess the behavior of the maximum likelihood estimates of the parameters under the 

finite samples. 

Keywords: Star Shaped, Survival Function, Moment Generating Function, Inversion 

Method, Order Statistics, Maximum Likelihood Estimation. 

1. Introduction  

In recent years there has been an increased interest in defining new generators for 

univariate continuous distributions by introducing one or more additional parameter(s) to 

the baseline distribution. This induction of parameter(s) has been proved useful in 

exploring tail properties and also for improving the goodness-of-fit of the proposed 

family and provides great flexibility in modeling data in practices.  

Depending on a distribution with 𝑔(𝑥), 𝐺(𝑥) and 𝐺̅(𝑥) as the probability density function 

(pdf), the cumulative distribution function (cdf) and the survival functions (sf), 

respectively, a lot of generators have been introduced in the literature based on the pdf or 

the cdf or also the sf as the base distribution to introduce new classes. 

So, in the following context we try to introduce a new method for generating a wide 

number of classes with known characteristics in the reliability theory. 

 

 

Definition 1. Let 𝐺 and 𝑄 be two arbitrary continuous cdf´s distributions of an absolutely 

continuous random variable, 𝐺  be strictly increasing on its support, and 𝐺(0) =
𝑄(0) = 0.  Now define a cdf, 𝐹, out of 𝐺 and 𝑄 (called the composed−𝐺 𝑄  family 

shortly (𝐶 − 𝐺 𝑄)) as follows: 

 𝐹(𝑥) = 𝐺(𝑥.𝑄(𝑥)), ∀  𝑥 ≥ 0, (1) 
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and its corresponding pdf is given by 

 𝑓(𝑥) = 𝑔(𝑥.𝑄(𝑥)). {𝑥. 𝑞(𝑥) + 𝑄(𝑥)}. (1) 

Natural extensions of (1) is 

𝐹𝑎(𝑥) = 𝐺 (𝑥.∏𝑄𝑖(𝑥)

𝑛

𝑖=1

). 

Or 

𝐹𝑏(𝑥) = 𝐺 (𝑥.∑𝑄𝑖(𝑥)

𝑛

𝑖=1

). 

One can use 𝐹𝑎(𝑥) and 𝐹𝑏 (𝑥) for generating numerous families with a wide number of 

distributions based on two or more cdf's. 

 

Definition 2. Let 𝐺 be a continuous cdf distribution of an absolutely continuous random 

variable and 𝐻(. ) is the cumulative hazard rate function.  Now define a cdf, 𝐹1, out 

of 𝐺 and 𝐻 as follows: 

 𝐹1(𝑥) = 𝐺(𝑥.𝐻(𝑥)), ∀𝑥, (2) 

and its corresponding pdf is given by 

 𝑓1(𝑥) = 𝑔(𝑥. 𝐻(𝑥)). {𝑥. ℎ(𝑥) + 𝐻(𝑥)}. (3) 

Next we show a set of important results in the theoretical reliability hold for our newly 

introduced family. These results make the family much richer in applications. These 

results extracted from Barlow and Proschan (1981) and are listed below for convenience. 

 

Let 𝐹 and 𝐺 be continuous distributions, 𝐺 be strictly increasing on its support, and 

𝐹(0) = 𝐺(0) = 0. Then 𝐹 is star-shaped with respect to 𝐺 (written 𝐹 <
∗

𝐺) if 𝐺−1𝐹(𝑥) is 

star-shaped [that is, 
1

𝑥
𝐺−1𝐹(𝑥) is increasing for 𝑥 ≥ 0]. Then: 

a) 𝐹  <
𝑐

 𝐺 implies 𝐹  <
∗

𝐺 (where <
𝑐

 implies the convex ordering). 

b) The relationship 𝐹  <
𝑐

𝐺 is unaffected by a translation transformation of either 𝐹 

and 𝐺, assuming the random variables remain non-negative. 

c) The relationship 𝐹  <
∗

𝐺 may be destroyed by a translation transformation of either 

𝐹 and 𝐺, assuming the random variables remain non-negative. 

d) Let 𝐺(𝑥) = 1 − 𝑒−𝜆𝑥 , 𝐹 be a continuous distribution function, with 𝐹(0) = 0. 

Then 𝐹  <
𝑐

𝐺 is equivalent to 𝐹 IFR. 

e) Let 𝐺(𝑥) = 1 − 𝑒−𝜆𝑥 , 𝐹 be a continuous distribution function, with 𝐹(0) = 0. 

Then 𝐹  <
∗

𝐺 is equivalent to 𝐹 IFRA. 

The Single Crossing Property. Let 𝐹  <
𝑐

𝐺, then 

i) 𝐹̅(𝑥) crosses 𝐺̅(𝜃𝑥) at most one, and from above, as x increases from 0 to ∞, 

from 𝜃 > 0. 

ii) If, in addition, 𝐹 and 𝐺 have the same mean, then a single crossing does occur, 

and 𝐹 has smaller variance than 𝐺. 

iii) If we take 𝐺 to be the exponential distribution, then 𝐹 must be IFRA by the 

previous results. 
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To this end, we present the following arguments. 

 

Based on Definition 1. we can see that the new generator enjoys the star-shaped property, 

which means any distribution derived based on the new family enjoys the results form a. 

to e.. 

Suppose that 𝐺(𝑥) and 𝑄(𝑥) are the cdf's of the exponential distribution and are 

respectively given by  𝐺(𝑥) = 1 − 𝑒−𝜆𝑥  and 𝑄(𝑥) = 1 − 𝑒−𝛽𝑥 (for 𝑥 > 0 and 𝜆, 𝛽 > 0). 

Then, a new distribution called composed-exponential exponential (C−𝐸 𝐸), can be 

derived based on (1), and its cdf is given by 

𝐹(𝑥) = 𝐺(𝑥. 𝑄(𝑥)) = 1 − 𝑒−𝜆𝑥.[1−𝑒−𝛽𝑥],      𝜆, 𝜃 > 0,   𝑥 > 0, 
while, its corresponding pdf is given by 

𝑓(𝑥) = 𝜆𝑒−𝜆𝑥.[1−𝑒−𝛽𝑥][1 + (𝛽𝑥 − 1)𝑒−𝛽𝑥]. 
Now, we check the existence of the star-shaped property for the new generated model 

C−𝐸 𝐸. 

i For any given values of 𝜆, 𝛽 and 𝜃, then 𝐹̅(𝑥) crosses 𝐺̅(𝜃𝑥) at most one, and 

from above, as 𝑥 increases from 0 to ∞, for 𝜃 > 0.  

   
(a) (b) (c) 

Figure 1. (a), (b) and (c) The 𝐹̅(𝑥) and 𝐺̅(𝜃𝑥) at different parameters values. 

 

Figure 1 (a), (b) and (c) show the single cross property visually for different values of the 

unknown parameters. 

 

ii Let 𝜆 = 1, 𝛽 = 3 and 𝜃 = 0.9385107, then 𝐹 and 𝐺 have the same mean, so a 

single crossing does occur, and 𝐹 has smaller variance than 𝐺. Figure 2 below 

shows this property visually for a given values for the unknown parameters. 

 
Figure 2. The 𝐹̅ and 𝐺̅ at 𝜆 = 1, 𝛽 = 3 and 𝜃 = 0.9385107. 
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At 𝜃 = 0.9385107, 𝛽 = 3 and 𝜆 = 1, the variance of 𝐺 is 1.032239, while the variance 

of 𝐹 at same values  is 0.6280421. It's clearly that 𝐹 have smaller variance than 𝐺. 

 

iii  C−𝐸 𝐸 is an IFRA. 

The cumulative hazard rate functions of the composed− exponential exponential 

(C−𝐸 𝐸) is given by 

𝐻(𝑥) = − ln 𝐹̅(𝑥) = 𝜆 𝑥(1 − 𝑒−𝛽𝑥), 

where 𝐹̅(𝑥) is the survival function of C−𝐸 𝐸 distribution. Then, 

𝐻(𝑥)

𝑥
=

𝜆 𝑥(1 − 𝑒−𝛽𝑥)

𝑥
= 𝜆 (1 − 𝑒−𝛽𝑥), 

for 𝜆, 𝛽 > 0 the quantity 𝑒−𝛽𝑥 controls the behavior of the function 
𝐻(𝑥)

𝑥
, while 𝑒−𝛽𝑥  is a 

decreasing function, so 1 − 𝑒−𝛽𝑥  is an increasing function, then we can conclude that 𝐹 

is IFRA. 

 

The rest of the paper is outlined as follows. In Section 2, special families and 

distributions are derived from the proposed generator. The statistical properties include 

quantile functions, moments and incomplete moments are derived in Section 3. 

Probability weighted moments, the order statistics and their moments are investigated in 

Sections 4 and 5. Section 6 disscusses the entropies of the propesed generators.  The 

reliability properties include survival function, hazard and cumulative hazard functions 

and also mean residual and mean reversed life functions are derived in Section 7. In 

Section 8, We discuss the method of likelihood estimation to derive the equations used 

for estimating the unknown parameters. To examine the performance of the new 

generator section 9 gives a smiulation of one generated model from the generator and 

compare the performance of the produced model against different models. 

2. New Families 

In this section, we introduce new families that can be used to produce a wide range of 

new useful distributions. Such families are listed below. 

 

2.1. The composed exponential-generated family 

Suppose 𝐺(𝑥) = 1 − 𝑒−𝜆𝑥  , (𝜆, 𝑥 > 0) is the cdf of the exponential distribution, a new 

exponential family can be introduced using (1). This family will be named the composed-

exponential 𝑄 family (𝐶 − exponential 𝑄 (𝐶 − 𝐸 𝑄)), and its cdf is given by 

 𝐹(𝑥) = 1 − 𝑒−𝜆𝑥.𝑄(𝑥),  (4) 

with corresponding pdf 

𝑓(𝑥) = 𝜆𝑒−𝜆𝑥.𝑄(𝑥)[𝑥. 𝑞(𝑥) + 𝑄(𝑥)]. 

The following models are derived directly from the family, in (4). 

2.1.1. The composed exponential-exponential distribution. 

Inserting 𝑄(𝑥) = 1 − 𝑒−𝛽𝑥 (for 𝛽, 𝑥 > 0) as the cdf of the exponential distribution in (4). 

The composed-exponential exponential (𝐶 − 𝐸 𝐸) distribution with cdf 

𝐹(𝑥) = 1 − 𝑒−𝜆𝑥.[1−𝑒−𝛽𝑥],  results. 
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2.1.2. The composed exponential-Weibull distribution. 

Inserting 𝑄(𝑥) = 1 − 𝑒−(
𝑥

𝛼
)
𝛽

 (for 𝛽, 𝛼, 𝑥 > 0) as the cdf of the Weibull distribution in 

(4). The composed-exponential Weibull (𝐶 − 𝐸 𝑊) distribution with cdf 

𝐹(𝑥) = 1 − 𝑒
−𝜆𝑥.[1−𝑒

−(
𝑥
𝛼

)
𝛽

]

, results.  
 

2.2. The composed Lomax-generated family 

Suppose 𝐺(𝑥) = 1 − (1 + 𝛾𝑥)−𝜃, (𝛾, 𝜃, 𝑥 > 0) is the cdf of the Lomax distribution, a 

new Lomax family can be introduced using (1). This family will be named the composed-

Lomax 𝑄 family (𝐶 −Lomax 𝑄 (𝐶 − 𝐸 𝑄)), and its cdf is given by 

 𝐹(𝑥) = 1 − [1 + 𝛾𝑥. 𝑄(𝑥)]−𝜃, (5) 

with corresponding pdf 

 𝑓(𝑥) = 𝜃𝛾[1 + 𝛾𝑥. 𝑄(𝑥)]−𝜃−1[𝑥. 𝑞(𝑥) + 𝑄(𝑥)]. (6) 

The following models are derived directly from the family, in (5). 

2.2.1. The composed Lomax-exponential distribution. 

Inserting 𝑄(𝑥) = 1 − 𝑒−𝜆𝑥 (for 𝜆, 𝑥 > 0) in (5). The composed-Lomax exponential 
(𝐶 − 𝐿 𝐸) distribution with cdf 

𝐹(𝑥) = 1 − [1 + 𝛾𝑥. (1 − 𝑒−𝜆𝑥)]
−𝜃

,  results.  
2.2.2. The composed Lomax-Weibull distribution. 

Inserting 𝑄(𝑥) = 1 − 𝑒−(
𝑥

𝛼
)
𝛽

 (for 𝛽, 𝛼, 𝑥 > 0) in (5). The composed-Lomax Weibull 
(𝐶 − 𝐿 𝑊) distribution with cdf 

 𝐹(𝑥) = 1 − [1 + 𝛾𝑥. (1 − 𝑒−(
𝑥

𝛼
)
𝛽

)]

−𝜃

, (7) 

and corresponding pdf 

 𝑓(𝑥) = 𝜃𝛾 [1 + 𝛾𝑥. (1 − 𝑒−(
𝑥

𝛼
)
𝛽

)]

−𝜃−1

[1 + [𝛽 (
𝑥

𝛼
)

𝛽

− 1] 𝑒−(
𝑥

𝛼
)
𝛽

], (8) 

results.   

 
Figure 3. The pdf of the 𝐶 −  𝐿 𝑊 distribution at different parameter values. 
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Figure 3 provide some shapes of the 𝐶 − 𝐿 𝑊 density curves for selected values of the 

unknown parameters. The figure shows different shapes of the pdf.  

 

2.3. Other new families 

Every time one selects a different base distribution, new families arise as a result. The 

following illustrates our ideas: 

Selecting 𝐺(𝑥) as a Weibull, log-logistic, Pareto, Burr or Extreme value distribution, the 

composed Weibull, composed log-logistic, composed Pareto, composed Burr or 

composed Extreme value-generated families arises. 

A lot of families can also be derived and a wide number of distributions could be derived 

based on this families. 

3. Statistical Properties 

This section explains the statistical properties of the new family in general terms. We 

then focus on the composed Lomax-Weibull distribution given by (7). Among the 

statistical properties considered are: the quantiles, the non-central moments and the 

incomplete moments. 

3.1. Quantiles of the distribution 

The 𝑝𝑡ℎ  quantile, 𝑥𝑝, of the new class is the real solution 𝐹(𝑥𝑝) = 𝑝 , which turns out to 

be the solution of  

 𝑥. 𝑄(𝑥) = 𝐺−1(𝑝).  (9) 

Although (9) has no implicit form, it can be solved numerically. 

The 𝑝𝑡ℎ  quantile, 𝑥𝑝, of the 𝐶 − 𝐿 𝑊 distribution is the real solution of the following 

equation: 

 𝑥𝑝. 𝑒
−(

𝑥𝑝

𝛼
)
𝛽

− 𝑥𝑝 +
1

𝛾
[(1 − 𝑝)

−1

𝜃 − 1] = 0. (10) 

3.2. The moments 

The 𝑟𝑡ℎ  non-central moment, 𝜇𝑟 = 𝐸(𝑋𝑟) = ∫ 𝑥𝑟𝑓(𝑥)𝑑𝑥
∞

0
, of the new generator can be 

formulated as 

 𝜇𝑟 = ∫ 𝑥𝑟𝑔(𝑥. 𝑄(𝑥))[𝑥. 𝑞(𝑥) + 𝑄(𝑥)]𝑑𝑥

∞

0

= ∫ 𝑊1
𝑟(𝑢). 𝑔(𝑢)

∞

0

𝑑𝑢,  (11) 

where 𝑊1(𝑢) is the solution for 𝑥 of the function 𝑢 = 𝑥. 𝑄(𝑥). 

While the 𝑟𝑡ℎ  incomplete moment, 𝑚𝑟(𝑧) = 𝐸(𝑋𝑟|𝑥 < 𝑧) = ∫ 𝑥𝑟𝑓(𝑥)𝑑𝑥
𝑧

0
, of the new 

generator is given by 

 𝑚𝑟(𝑧) = 𝐸(𝑋𝑟|𝑥 < 𝑧) = ∫ 𝑊1
𝑟(𝑢). 𝑔(𝑢)

𝑧𝑄(𝑧)

0

𝑑𝑢. (12) 

In particular, the 𝑟𝑡ℎ  non-central moment 𝜇𝑟 and the incomplete moments 𝑚𝑟(𝑧) of the 

𝐶 − 𝐿 𝑊 distribution is given by  

𝜇𝑟 = 𝐸(𝑋𝑟) =
𝜃

𝛽
∑∑

𝐴
𝑖, 𝑗, (𝜃 + 1), 𝛾

  .  
𝐵

𝑖, 𝑗, 𝛽, 𝛼, 𝑟
 

∞

𝑗=0

∞

𝑖=0

,   and (13) 
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𝑚𝑟(𝑧) = 𝜃 ∑∑
𝛤(𝑖 + 𝜃 + 1)

𝛤(𝜃 + 1). 𝑖!
(−1)𝑖+𝑗

∞

𝑗=0

∞

𝑖=0

. 𝛾𝑖+1. (
𝑖
𝑗
) . 𝛼𝑟+𝑖+1, 

× {
𝛽. 𝛤1 (

𝑟+𝑖+1

𝛽
+ 1, (𝑗 + 1) (

𝑧

𝛼
)
𝛽
)

𝛼𝛽 . (𝑗 + 1)
𝑟+𝑖+𝛽+1

𝛽

−
𝛤1 (

𝑟+𝑖+1

𝛽
, (𝑗 + 1) (

𝑧

𝛼
)
𝛽
)

𝛽. (𝑗 + 1)
𝑟+𝑖+1

𝛽

+
𝛤1  (

𝑟+𝑖+1

𝛽
, 𝑗 (

𝑧

𝛼
)
𝛽
)

𝛽. 𝑗
𝑟+𝑖+1

𝛽

} , 

 

 

 

(14) 

where 𝛤1(𝑎, 𝑠) = ∫ 𝑤𝑎−1𝑒−𝑤𝑑𝑤
𝑠

0
, 𝑎 > 0 is the lower incomplete gamma function, and  

𝐴
𝑖, 𝑗, (𝜃 + 1), 𝛾

  and   
𝐵

𝑖, 𝑗, 𝛽, 𝛼, 𝑟
  are constants given by 

 
𝐴

𝑎, 𝑏, 𝑐, 𝑑
=

𝛤(𝑎 + 𝑐)

𝛤(𝑐). 𝑎!
(
𝑎
𝑏
) (−1)𝑎+𝑏. 𝑑𝑎+1, (15) 

and 

 
𝐵

𝑎, 𝑏, 𝑒, 𝑜, 𝑣
= {

1

𝑏
𝑣+𝑎+1

𝑒

+
1

(𝑏 + 1)
𝑣+𝑎+1

𝑒

(
𝑒. (𝑣 + 𝑎 − 𝑏)

𝑜𝑒 . (𝑏 + 1)
− 1)} 𝑜𝑣+𝑎+1. 𝛤 (

𝑣 + 𝑎 + 1

𝑒
). (16) 

4. Probability weighted moments 

The probability weighted moments (PWMs) method can generally be used for estimating 

parameters of a distribution whose inverse form cannot be expressed explicitly. We 

calculate the PWMs of the new class since they can be used to obtain the moments of the 

class. The PWMs of a random variable 𝑋 are formally defined by 

𝜏𝑠,𝑟 = 𝐸[𝑋𝑟𝐹𝑠(𝑥)] = ∫ 𝑥𝑟

∞

0

𝐹𝑠(𝑥)𝑓(𝑥)𝑑𝑥, 

where 𝑟 and 𝑠 are non-negative integers and 𝐹(. ) and 𝑓(. ) are the cdf and pdf of the 

random variable 𝑋. The PWMs of the new class with cdf (1) and pdf (2), are given by 

 𝜏𝑠,𝑟 = 𝐸[𝑋𝑟𝐹𝑠(𝑥)] = ∫𝑊2
𝑟(𝑧)

1

0

. 𝑍𝑠𝑑𝑧, (17) 

where 𝑊2(𝑧) is the solution for 𝑥 of 𝑧 = 𝐺(𝑥. 𝑄(𝑥)). The 𝑟𝑡ℎ non-central moment of the 

new class can be obtained by putting s = 0 in (17). 

In particular, the probability weighted moments for the 𝐶 − 𝐿 𝑊 distribution is given by: 

𝜏𝑠,𝑟 =
𝜃

𝛽
∑ ∑∑(−1)𝑖 (

𝑠
𝑗) .

𝐴
𝑗, 𝑘, (𝑖𝜃 + 𝜃 + 1), 𝛾

∞

𝑘=0

 .  
𝐵

𝑗, 𝑘, 𝛽, 𝛼, 𝑟

∞

𝑗=0

∞

𝑖=0

 , (18) 

where 
𝐴

𝑗, 𝑘, (𝑖𝜃 + 𝜃 + 1), 𝛾
 and 

𝐵
𝑗, 𝑘, 𝛽, 𝛼, 𝑟

 are constants given by (15) and (16), 

respectively. 

5. Moment of order Statistics 

Order statistics make their appearance in many areas of statistical theory and practice. Let 

the random variable 𝑋𝑟:𝑛 be the 𝑟-th order statistic (𝑋1:𝑛 ≤ 𝑋2:𝑛 ≤. . . ≤ 𝑋𝑛:𝑛) in a sample 

of size 𝑛 with pdf denotes by 𝑓𝑟:𝑛(𝑥) and cdf denotes by 𝐹𝑟:𝑛(𝑥).  
The 𝑘-th moment about zero of the 𝑟-th order statistic are obtained by using a result in 

Barakat and Abdelkader (2004) and becomes 
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𝐸(𝑋𝑟:𝑛
𝐾 ) = 𝑘 ∑ (−1)𝑖−𝑛+𝑟−1

∞

𝑖=𝑛−𝑟+1

(
𝑖 − 1
𝑛 − 𝑟

)(
𝑛
𝑖
) × 𝐼𝑘−1(𝑥), (19) 

where 𝐼𝑘−1(𝑥) = ∫ 𝑥𝑘−1[1 − 𝐹(𝑥)]𝑖𝑑𝑥
∞

0
. 

In particular, the 𝑘-th moment about zero of the 𝑟-th order statistic for the 𝐶 − 𝐿 𝑊 

distribution is given by: 

𝐸(𝑋𝑟:𝑛
𝐾 ) =

𝑘

𝛽
∑ ∑ ∑ (

𝑖 − 1
𝑛 − 𝑟

) (
𝑛
𝑖
) (

𝑗 + 𝜃𝑖 − 1
𝜃𝑖 − 1

) (
𝑗
ℎ
)

∞

ℎ=0

∞

𝑗=0

∞

𝑖=𝑛−𝑟+1

(−1)𝑖−𝑛+𝑟+𝑗+ℎ−1

×
𝛾𝑗 . 𝛼𝑘+𝑗

ℎ
𝑘+𝑗

𝛽

. 𝛤 (
𝑘 + 𝑗

𝛽
). 

 

 

 

(20) 

6. Rényi and Shannon entropies 

The entropy measure of a random variable 𝑋 with density function 𝑓(𝑥) is a measure of 

variation of the uncertainty. One of the popular entropy measures is the Rényi entropy 

given by 

 𝐼𝑅(𝜂) = (
1

1 − 𝜂
) log [∫𝑓𝜂(𝑥)

ℜ

𝑑𝑥], (21) 

where 𝜂 > 0, 𝜂 ≠ 1.  

The Shannon entropy which is defined by 𝐸[− log𝑓(𝑥)], is derived from (21) by 

 lim
η→1

𝐼𝑅(𝜂). 

The Rényi entropy for the 𝐶 −  𝐿 𝑊 distribution is given by 

𝐼𝑅(𝜂) = (
1

1 − 𝜂
) log

[
 
 
 
 
 
 

 

(𝜃𝛾)𝜂 ∑∑ ∑ ∑(
𝑖
𝑗
)(

𝜂
𝑘
) (𝑘

𝑙
)(

(−1)𝑖+𝑗+𝑘+𝑙 . 𝛾𝑖 . 𝛽𝑖+1. 𝛼𝑖+1

(𝑗 + 𝑘)
𝑖+𝑙𝛽+1

𝛽

)

∞

𝑙=0

∞

𝑘=0

∞

𝑗=0

∞

𝑖=0

×
𝛤(𝑖 + 𝜂(𝜃 + 1)). 𝛤 (

𝑖+𝑙𝛽+1

𝛽
)

𝛤(𝜂(𝜃 + 1)). 𝑖! ]
 
 
 
 
 
 

. (22) 

7. Reliability Analysis 

This section presents the survival function, the hazard rate function, the cumulative 

hazard rate function, the residual and reversed residual lifetime functions for the new 

generator and especially for the 𝐶 − 𝐿 𝑊 distribution. 

 

8.1. Survival Function 

The new generator is a very flexible generator which can be a useful characterization of 

lifetime data analysis of a given system. The survival function of the new class is defined 

as: 

 𝐹̅(𝑥) = 1 − 𝐺(𝑥. 𝑄(𝑥)), ∀𝑥, (23) 

while , the survival function of the 𝐶 − 𝐿 𝑊 distribution is given by: 

𝐹̅(𝑥) = [1 + 𝛾𝑥 (1 − 𝑒−(
𝑥

𝛼
)
𝛽

)]

−𝜃

, 𝜃, 𝛾, 𝛼, 𝛽 > 0, 𝑥 ≥ 0. 
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8.2. Hazard Rate and Cumulative Hazard Rate Functions 

The other characteristic of interest of a random variable is the hazard rate function ℎ(𝑥) 
which is defined as: 

 ℎ(𝑥) =
𝑔(𝑥𝑄(𝑥)). {𝑥𝑞(𝑥) + 𝑄(𝑥)}

1 − 𝐺(𝑥. 𝑄(𝑥))
, ∀𝑥, (24) 

while, the cumulative hazard rate is given by 

 𝐻(𝑥) = ∫ℎ(𝑢)𝑑𝑢

𝑥

0

= − ln[1 − 𝐺(𝑥. 𝑄(𝑥))]. (25) 

The hazard rate and the cumulative hazard rate functions of the 𝐶 − 𝐿 𝑊 distribution are, 

respectively, given by: 

 ℎ(𝑥) = 𝜃𝛾 [1 + 𝛾𝑥 (1 − 𝑒−(
𝑥

𝛼
)
𝛽

)]

−1

. {1 + 𝛽 (
𝑥

𝛼
)
𝛽

𝑒−(
𝑥

𝛼
)
𝛽

− 𝑒−(
𝑥

𝛼
)
𝛽

}, (26) 

 
𝐻(𝑥) = 𝜃 ln [1 + 𝛾𝑥 (1 − 𝑒−(

𝑥

𝛼
)
𝛽

)]. 
(27) 

Figure 4 below provide some plots of the 𝐶 − 𝐿 𝑊 hazard rate curves for selected values 

of 𝜃, 𝛾, 𝛼 and 𝛽. 

0 2 4 6 8
0

0.2

0.4

=4.5 ,=1, =1    ,=1/x

=3    ,=3, =1    ,=1/x

=4.5 ,=1, =3.5 ,=0.1

=4.5 ,=0, =3    ,=0.5

 
Figure 4. The hazard rate of the composed-Lomax Weibull distribution. 

8.3. Residual life function 

Given that a component survives up to time 𝑦 ≥ 0, the residual life is the period beyond 

y until the time of failure and defined by expectation of the conditional random variable 

𝑋|𝑋 > 𝑦. In reliability, it is well known that the mean residual life function and ratio of 

two consecutive moments of residual life, determine the distribution uniquely (Gupta and 

Gupta (1983)). Therefore, we obtain the 𝑟𝑡ℎ  order moment of the residual life via the 

general formula 

𝑚̈𝑟(𝑦) = 𝐸[(𝑋 − 𝑦)𝑟|𝑋 > 𝑦] =
1

1−𝐹(𝑦)
∫ (𝑋 − 𝑦)𝑟∞

𝑦
𝑓(𝑥)𝑑𝑥.  

Applying the binomial expansion for (𝑋 − 𝑦)𝑟 and substituting 𝑓(𝑥) given by (2) into 

𝑚̈𝑟(𝑦), the 𝑟𝑡ℎ   moment of the residual life of the new family distribution is given by 
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 𝑚̈𝑟(𝑦) =
1

1 − 𝐹(𝑦)
∑(

𝑟
𝑖
) (−𝑦)𝑟−𝑖 × ∫ 𝑋𝑖

∞

𝑦

𝑓(𝑥)𝑑𝑥

∞

𝑖=0

. (28) 

An expression for the mean residual lifetime function follows by taking 𝑟 = 1. 

In particular, the 𝑟𝑡ℎ  residual life for the 𝐶 − 𝐿 𝑊 distribution is given by: 

𝑚̈𝑟(𝑦) =
𝜃

1 − 𝐹(𝑦)
∑∑ ∑ (

𝑟
𝑖
) (

𝑗
𝑘
)
𝛤(𝑗 + 𝜃 + 1)

𝛤(𝜃 + 1). 𝑗!
(−𝑦)𝑟−𝑖(−1)𝑗+𝑘

∞

𝑘=0

∞

𝑗=0

∞

𝑖=0

. 𝛾𝑗+1. 𝛼𝑖+𝑗+1 

× {
𝛽. Γ2 (

𝑖+𝑗+1

𝛽
+ 1, (𝑘 + 1) (

𝑦

𝛼
)
𝛽
)

𝛼𝛽 . (𝑘 + 1)
𝑖+𝑗+𝛽+1

𝛽

−
Γ2 (

𝑖+𝑗+1

𝛽
, (𝑘 + 1) (

𝑦

𝛼
)
𝛽
)

𝛽. (𝑘 + 1)
𝑖+𝑗+𝛽+1

𝛽

+
Γ2  (

𝑖+𝑗+1

𝛽
, 𝑘 (

𝑦

𝛼
)
𝛽
)

𝛽. 𝑘
𝑖+𝑗+1

𝛽

},  

 

 

 

(29) 

where 𝛤2(𝑎, 𝑠) = ∫ 𝑤𝑎−1𝑒−𝑤𝑑𝑤
𝑠

0
, 𝑎 > 0 is the upper incomplete gamma function. 

8.4. Reversed residual life function 

The waiting time since failure is the waiting time elapsed since the failure of an item on 

condition that this failure had occurred in [0, 𝑦]. Therefore, we obtain the 𝑟th order 

moment of the reversed residual life via the general formula 

𝑀̈𝑟(𝑦) = 𝐸[(𝑦 − 𝑋)𝑟|𝑋 < 𝑦] =
1

𝐹(𝑦)
∫ (𝑦 − 𝑋)𝑟𝑦

0
𝑓(𝑥)𝑑𝑥.  

As doing before, then the 𝑟𝑡ℎ   moment of the reversed residual life of the new family 

distribution is given by 

 𝑀̈𝑟(𝑦) =
1

𝐹(𝑦)
∑(

𝑟
𝑖
) (𝑦)𝑟−𝑖(−1)𝑖 × ∫𝑋𝑖

𝑦

0

𝑓(𝑥)𝑑𝑥

∞

𝑖=0

.  (30) 

An expression for the mean reversed residual lifetime function (or, the mean inactivity 

time) follows by taking 𝑟 = 1. 

In particular, the 𝑟th reversed residual life for the 𝐶 − 𝐿 𝑊 distribution is given by: 

𝑀̈𝑟(𝑦) =
𝜃

𝐹(𝑦)
∑ ∑∑ (

𝑟
𝑖
) (

𝑗
𝑘
)
𝛤(𝑗 + 𝜃 + 1)

𝛤(𝜃 + 1). 𝑗!
(𝑦)𝑟−𝑖(−1)𝑖+𝑗+𝑘

∞

𝑘=0

∞

𝑗=0

∞

𝑖=0

. 𝛾𝑗+1. 𝛼𝑖+𝑗+1 

× {
𝛽. 𝛤1 (

𝑖+𝑗+1

𝛽
+ 1, (𝑘 + 1) (

𝑦

𝛼
)
𝛽
)

𝛼𝛽 . (𝑘 + 1)
𝑖+𝑗+𝛽+1

𝛽

−
𝛤1 (

𝑖+𝑗+1

𝛽
, (𝑘 + 1) (

𝑦

𝛼
)
𝛽
)

𝛽. (𝑘 + 1)
𝑖+𝑗+𝛽+1

𝛽

+
𝛤1  (

𝑖+𝑗+1

𝛽
, 𝑘 (

𝑦

𝛼
)
𝛽
)

𝛽. 𝑘
𝑖+𝑗+1

𝛽

}. 

 

 

 

(31) 

8. Estimation 

In this section we introduce the method of likelihood estimation to derive the equations 

used for estimating the unknown parameters. 

Here, we consider estimation of the unknown parameters of the new class by the 

maximum likelihood method. Let 𝑥1, … , 𝑥𝑛 be a random sample from (2). Let 𝜣 be a 

𝑞 × 1 vector of the unknown parameter(s) in the proposed class. The log-likelihood 

function ℒ = log ℓ(Θ) is 

 ℒ = ∑log[𝑔(𝑥𝑖. 𝑄(𝑥𝑖))]

𝑛

𝑖=1

+ ∑log[𝑥𝑖. 𝑞(𝑥𝑖) + 𝑄(𝑥𝑖)]

𝑛

𝑖=1

. (32) 

Then, the first derivative(s) of ℒ with respect to the vector of the parameter(s) is (are) 
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𝑑ℒ

𝑑𝛩
= ∑

𝜕𝑔(𝑥𝑖.𝑄(𝑥𝑖))

𝜕𝛩

𝑔(𝑥𝑖. 𝑄(𝑥𝑖))

𝑛

𝑖=1

+ ∑
𝑥𝑖.

𝜕𝑞(𝑥𝑖)

𝜕𝛩
+

𝜕𝑄(𝑥𝑖)

𝜕𝛩

𝑥𝑖. 𝑞(𝑥𝑖) + 𝑄(𝑥𝑖)

𝑛

𝑖=1

. 

The maximum likelihood estimate(s) (MLE(s)) of 𝜣, say 𝜣̂, is (are) the simultaneous 

solution(s) of the equation(s) 
𝐝𝓛

𝐝𝚯
. 

Maximization of (32) can be performed by using well established routines in the R 

statistical package. 

9. Application 

In this section, we use simulated data and real data (censored and uncensored) sets to 

compare the fits of the new model (composed-Lomax Weibull) and illustrate the 

usefulness of the new model. 

 

9.1. Simulation study 

To assess the behavior of the maximum likelihood estimators of the parameters 𝛼, 𝛽, θ 

and 𝛾 under the finite samples, we construct a Monte Carlo simulation for the composed 

Lomax Weibull (𝐶 − 𝐿 𝑊) distribution. All results were obtained from 3000 Monte 

Carlo replications and the simulations were carried out using the statistical software 

package R. In each replication a random sample of size n is drawn from the 𝐶 −  𝐿 𝑊 

distribution. The true parameter values used in the data generating processes are 𝛼 = 3.5, 
𝛽 = 6.5, 𝜃 = 2.8 and 𝛾 = 5.2. Table 1 presents the mean maximum likelihood estimates 

of the parameters, the bias and the root mean squared errors (RMSE) for different 

samples of sizes 𝑛 = 50, 𝑛 = 80 and 𝑛 = 100. 

 

Table 1: Mean estimates, bias and root mean squared errors of 𝜶,𝜷, 𝜽 and 𝜸. 

𝒏 Parameter Mean estimate Bias RMSE 

𝒏 = 𝟓𝟎 

𝜶 3.490231 0.00976 2.27465 

𝜷 5.437403 1.062597 2.67904 

𝜽 7.481331 -4.681331 11.92947 

𝜸 39.65847 -34.45847 598.92578 

𝒏 = 𝟖𝟎 

𝜶 3.176739 0.323261 1.60868 

𝜷 6.035708 0.464292 2.07335 

𝜽 5.315368 -2.515368 8.36179 

𝜸 11.02973 -5.82973 103.62223 

𝒏 = 𝟏𝟎𝟎 

𝜶 2.940491 0.559509 1.45777 

𝜷 5.97697 0.52303 1.58323 

𝜽 4.37964 -1.57964 6.50735 

𝜸 6.909033 -1.709033 35.97446 

  

Based on table 1 results, we notice that the biases and root mean squared errors of the 

maximum likelihood estimators of 𝛼, 𝛽, 𝛾 and 𝜃 decay toward zero as the sample size 

increases. Also, the bias of the parameter 𝛼 is increasing; the root mean square error is 

goes down. 
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9.2. Prices of children’s wooden toys – uncensored 

The data is obtained from the Open University (1993). The data represents the prices of 

31 different children’s wooden toys on sale in a Suffolk craft shop in April 1991. 

 In order to determine the shape of the most appropriate hazard function for 

modeling, graphical analysis data may be used. In this context, the total time in 

test (TTT) plot is very useful (for more details see Aarset (1987)). 

 
Figure 5. The TTT plot of the children’s wooden toys Prices. 

 

The TTT plot for prices of children’s wooden toys data is displayed in Figure 5, which 

provides evidence that a constant hazard rate is adequate. 

 

Table 2. MLEs (standard errors in parentheses) to the children’s wooden toys Prices 

data. 

Model Estimates 

C- L W 
𝜶 =1.3554 

(0.30207) 

𝜷 =2.2289 

(0.8299) 

𝜸 =26.2167   

(33.6470) 

𝜽 =0.00976 

(0.0128) 
 

LW 
𝜶 =3.1912 

(NaN) 

𝜷 =1.5798 

(1.2938) 

𝜸 =1.9875 

(NaN) 

𝜽 =1.7974 

(6.3077) 
 

Kw-LL 
𝒂 =16.9977 

(25.1455) 

𝒃 =16.4653   

(NaN ) 

𝜶 =0.08098 

(0.2174) 

𝜷 =0.4371   

(NaN) 
 

N-MW 
𝜶 =0.00152 

(NaN) 

𝜷 =0.1538 

(NaN) 

𝜸 =1.2278 

(0.2959) 

𝜽 =1.2459 

(1.0263) 

𝝀 =1.0e-10 

(0.0526) 

AW 
𝜶 =0.1553 

(0.057079) 

𝜷 =1.0e-10 

(3.2797e-11) 

𝜸 =1.6174e-10 

(6.2685e-11) 

𝜽 =1.22797 

(0.16996) 
 

Kw-P 
𝒂 =3.5761 

(2.6832) 

𝒃 =140.0009 

(468.6390) 

𝜶 =0.1034 

(0.1695) 

𝜷 =0.2365 

(0.2763) 
 

Kw-MIW 
𝒂 =1.5495 

(202.1122) 

𝒃 =1.5744 

(0.4095) 

𝜶 =2.8733 

(0.7477) 

𝜽 =1.7185 

(0.000) 

𝝀 =1.7185 

(224.1511) 

B-NBW 𝜶 =7.9274 𝜷 =0.9267 𝜸 =3.7408 𝜽 =0.0147 𝝀 =1.8061 
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(11.8457) (0.2480) (6.6691) (0.0271) (1.0044) 

W-L 
𝒂 =186.9995 

(2684.6007) 

𝒃 =3.48495 

(2.9544) 

𝜶 =0.0644 

(0.5496) 

𝜷 =0.0644 

(0.2125) 
 

EGF 
𝜶 =17.7492 

(18.1465) 

𝜷 =11.3067 

(NaN) 

𝜽 =0.2146 

(NaN) 

𝝀 =56.6383 

(198.3517) 
 

ETW 
𝜶 =0.4537 

(1.5502) 

𝜷 =0.4727 

(0.3562) 

𝜽 =16.4376 

(48.6984) 

𝝀 =0.6095 

(0.4843) 
 

 

We compare the fitting of the 𝐶 −  𝐿 𝑊 distribution with 10 non-nested models as the 

Lomax Weibull (LW), the Kumaraswamy Log-Logistic (Kw-LL), the new modified 

Weibull (NMW), the additive Weibull (AW), the Kumaraswamy Pareto (Kw-P), the 

Kumaraswamy modified inverse Weibull (Kw-MIW), the Burr XII Negative Binomial 

Weibull (B-NBW), the Weibull-Lomax (W-L), the exponentiated generalized Frechet (E-

GF), the exponentiated transmuted Weibull (ETW) and the Complementary Burr III 

Poisson (C-BIII-P) introduced by Cordeiro (2014), de Santana et al. (2012), Almalki and 

Yuan (2013), Xie and Lai (1996), Bourguignon et al. (2013), Aryal and Elbatal (2015), 

Ramos (2015), Tahir et al. (2015), Cordeiro et al. (2013) and Hassan  et al. (2015) 

respectively. 

 

In each case, the parameters are estimated by maximum likelihood and also model 

selection is carried out using Akaike information criterion (AIC), consistent Akaike 

information criterion (CAIC), Hannan-Quinn information criterion (HQIC), Bayesian 

information criterion (BIC), Anderson-Darling (A∗) and Cram'er–von Mises (W∗) to 

compare the fitted models.  

The calculation carried out using the R code (AdequacyModel). In general, the smaller 

the values of these statistics, the better the fit to the data.  

The estimates of the parameters and the standard error values of this estimates are listed 

in Table 2 while Table 3, gives the rest of the statistics as AIC, CAIC, BIC, HQIC, W∗, 

A∗ and K-S values. 
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Table 3. The measures AIC, CAIC, BIC, HQIC , 𝐖∗, 𝐀∗ and K-S (p-value in 

parentheses) to the children’s wooden toys Prices data. 

Model AIC CAIC BIC HQIC 𝑾∗ 𝑨∗ K-S 

C- L 

W 
152.3619 153.9003 158.0978 154.2316 0.029089 0.22907 

0.083313,  

(𝟎. 𝟗𝟖𝟐𝟓) 

LW 157.4773 159.0157 163.2132 159.347 0.094721 0.57924 
0.13499,  
(0.6244) 

Kw-

LL 
155.4864 157.0248 161.2223 157.3562 0.07156 0.44536 

0.12823,  
(0.6879) 

N-

MW 
159.5774 161.9774 166.7474 161.9147 0.12739 0.76718 

0.15584,  
(0.4389) 

AW 157.5774 159.1159 163.3134 159.4472 0.12739 0.76717 
0.15583,  
(0.4389) 

Kw-P 154.5486 156.0871 160.2845 156.4184 0.048893 0.33305 
0.10497,  
(0.8842) 

Kw-

MIW 
158.6616 161.0616 165.8316 160.9989 0.047277 0.36561 

0.097263,  

(0.9311) 

B-

NBW 
160.1915 162.5915 167.3614 162.5287 0.083676 0.52366 

0.12255,  
(0.7404) 

W-L 155.3531 156.8916 161.0891 157.2229 0.080659 0.49293 
0.13592,  
(0.6158) 

EGF 155.695 155.695 161.4309 157.5647 0.049869 0.34970 
0.092103,  
(0.9552) 

ETW 154.8948 156.4333 160.6307 156.7646 0.055789 0.36446 
0.10849,  
(0.8589) 

 

Table 3 shows that C −  𝐿 𝑊 distribution fitted the data better than the other models. 

In order to assess if the model is appropriate, we plot in Figure 6 (a) and (b) the 

histogram of the data and the C- L W, LW, Kw-LL, N-MW, AW and Kw-P distributions 

and the empirical and their estimated cdf functions, respectively. These plots indicate that 

the C −  𝐿 𝑊 distribution provides a better fit to these data than all other competitive 

lifetime models. 
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Figure 6. (a) Estimated densities of the C- L W, LW, Kw-LL, N-MW, AW and Kw-P 

distributions for the data.  (b) Estimated cdf function from the fitted C- L W, LW, Kw-

LL, N-MW, AW and Kw-P distributions and the empirical cdf for the data. 

 

9.3. Waiting times before service - uncensored 

The data were reported in Merovci and Elbatal (2013). The data set represents the waiting 

times (in minutes) before service of 100 bank customers.  

Figure 7 below shows the TTT plot of the waiting times before service data 

 

Figure 7. The TTT plot of the waiting times before service data. 

 

The TTT plot for the current data is displayed in Figure 7, which is concave and 

according to Aarset (1987) provides evidence that the monotonic hazard rate is adequate. 

 

We compare the fitting of the 𝐶 −  𝐿 𝑊 model with 7 non-nested models. In each case, 

the parameters are estimated by maximum likelihood and also model selection is carried 

out using AIC, CAIC, HQIC, BIC, A∗ and W∗ to compare the fitted models. In general, 

the smaller the values of these statistics, the better the fit to the data. The estimates of the 

parameters and the numerical values of the statistics are listed in Table 4 while Table 5 

gives the rest of the statistics as AIC, CAIC, BIC, HQIC, W∗, A∗ and K-S values. 

 

Table 4. MLEs (standard errors in parentheses) to the waiting times before service 

data. 

Model 
Estimates 

C- L W 
𝜶 =8.5745 

(3.9067 ) 

𝜷 =0.9795 

(0.2871) 

𝜸 =0.0077 

(0.0043) 

𝜽 =18.7022 

(10.0448)   
 

LW 
𝜶 =6.7942  

(108.827) 

𝜷 =1.7699 

(0.2599) 

𝜸 =5.3959 

(152.9615) 

𝜽 =3.0217 

(2.3701) 

 

N-MW 
𝜶 =1.0e-10 

 (1.025e-10)     

𝜷 =0.0306 

(0.01185) 

𝜸 =1.4573 

(0.2177) 

𝜽 =0.1535 

(NaN) 

𝝀 =1.0e-10 

(0.0158) 

AW 
𝜶 =0.0305 

(.00945) 

𝜷 =1.0e-10 

 (2.33e-06) 

𝜸 =0.0083 

(NaN) 

𝜽 =1.4579 

(0.10859) 

 

Kw-P 
𝒂 =40.4976 

(23.9182) 

𝒃 =30.0942   

(26.3545) 

𝜶 =0.3768  

(0.09999) 

0.0126 

(0.0081) 

 

Kw-MIW 
𝒂 =2.1361 

(139.9105) 

𝒃 =1.8659 

(0.2923) 

𝜶 =6.1746 

(227.055) 

𝜽 =1.0e-10 

(1.22e-06) 

𝝀 =3.6762 

(240.7804) 
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B-NBW 
𝜶 =1.0e-10 

(NaN) 

𝜷 =0.6781 

(NaN) 

𝜸 =24.5335 

(17.4662) 

𝜽 =3.7031 

(3.6619) 

𝝀 =1.8958 

(0.2868) 

C-BIII P 
𝜸 =1.5892 

(0.1070) 

𝜽 =4.3694 

(1.5062) 

𝝀 =4.1032 

(1.2527) 

  

 

Table 5. The measures AIC, CAIC, BIC, HQIC , 𝐖∗, 𝐀∗ and K-S (p-value in 

parentheses) to the waiting times before service data. 

Model AIC CAIC BIC HQIC 𝑾∗ 𝑨∗ K-S 

C- L W 642.5777 642.9987 652.9984 646.7951 0.02041 0.1402 
0.039178,  

(𝟎. 𝟗𝟗𝟕𝟗) 

L W 643.0161 643.4372 653.4368 647.2336 0.02584 0.1686 
0.044112,  

(0.99) 

N-MW 647.4615 648.0998 660.4873 652.7333 0.06283 0.3956 
0.057455,  
(0.8961) 

AW 645.4614 645.8825 655.8821 649.6788 0.06286 0.3958 
0.05779,  
(0.8921) 

Kw-P 644.6283 645.0493 655.049 648.8457 0.03698 0.2901 
0.048295,  
(0.9738) 

Kw-

MIW 

668.03 668.6683 681.0559 681.0559 0.27143 1.8249 
0.10749,  
(0.1982) 

B-NBW 644.5723 645.2106 657.5981 649.8441 0.02126 0.1439 
0.050409,  
(0.9613) 

C-BIII P 654.7802 655.0302 662.5957 657.9432 0.3726 2.4415 
0.46779,  

(< 2.2e-16) 

 

Table 5 shows that 𝐶 −  𝐿 𝑊 distribution fitted the data better than the other models. 

In order to assess if the model is appropriate, we plot in Figure 8 (a) and (b) the 

histogram of the data and the 𝐶 − 𝐿𝑊, LW, N-MW, AW, Kw-P and Kw-MIW 

distributions and the empirical and their estimated cdf functions, respectively. These plots 

indicate that the Kw-Ps distribution provides a better fit to these data than all other 

competitive lifetime models. 
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Figure 8. (a) Estimated densities of the C- L W, LW, N-MW, AW, Kw-P and Kw-MIW 

distributions for the data. (b) Estimated cdf function from the fitted C- L W, LW, N-MW, 

AW, Kw-P and Kw-MIW distributions and the empirical cdf for the data. 

 

9.4. Leukemia data- censored 

Remission times for patients receiving a particular leukemia therapy. Lawless (1982, 

page 136) gives the results of a study to investigate the effect of a certain kind of therapy 

for 20 leukemia patients. After the therapy, patients go into remission for some period of 

time, the length of which is random. The observed times were 1, 1, 2, 2, 2, 6, 6, 6, 7, 8, 9, 

9, 10, 12, 13, 14, 18, 19 24, 26, 29, 31+, 42, 45+, 50+, 57, 60, 71+, 85+, 91 weeks. 

The times marked with a + indicate patients who were still in remission at the time that 

the data were analyzed. These are known as right-censored observations because all that 

is known about them is that they did not come out of remission up to the given time and, 

presumably, would have come out at some point in time (to the right) of the observed 

survival times. 

Table 6 gives the MLE estimates of the parameters for different models. 
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Table 6. MLEs of Leukemia data. 

Model 
Estimates LL 

𝒂 𝒃 𝜶 𝜷 𝜸 𝜽 𝝀 

C- L 

W 

  1.4569 2.7551 0.0426 1.3645  -107.2524 

LW   4.6589 1.2557 2.8888 0.7597  -108.4546 

Kw-LL 14.7002 14.7002 0.0972 0.3632    -108.0923 

AW   0.0668 0.0000 0.5683 0.8062  -109.2581 

Kw-P 15.3899 6.5549 0.2917 0.0168    -108.0328 

W-L 2.1532 2.4110 0.1267 2.4110    -108.0715 

E-GF   6.1637 16.3121  8.3539 0.1893 -108.2878 

 

Figure 9 below shows the estimated distribution function various the empirical cdf with 

lower and upper confidence interval for the values which shows a great fitting to the data. 

 

Figure 9. The estimated cdf function from the fitted of new distribution and the 

empirical cdf for the data with confidence interval of it. 

 

Figure 9, shows that the 𝐶 −  𝐿 𝑊 line is closely to the data line which indicates a fine 

fitting to the Leukemia data. 

10. Conclusions 

In this paper, we propose a new method for generating families of continuous 

distributions, called the composed−G Q family or shortly (C − G Q) family, based on the 

star-shaped property. Special families and sub-models of the new generator are presented 

to provides the flexibality of the new generator. The statistical properties shuch as 

quantiles and moments are disscused in section 3. While, the probability weighted 

moments, moments of order statistics, and  Rényi and Shannon entropies are disscused in 

sections 4, 5 and 6, respectively. Section 7, presents the reliability properties of the new 

generator shuch as the survival fuction, the hazard and cumulative hazard functions, 

moments of residual and reversed life functions. To examine the performance of our new 

generator and the generated models in fitting several data we use two real sets of data; 
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censored and uncensored then comparing the fitting of a new produced model called 

composed- Lomax Weibull (C − L W) with some well-known models, which provides 

the best fit to all of the data. A simulation has been performed to assess the behavior of 

the maximum likelihood estimates of the parameters under the finite samples.  
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