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Abstract 

This article deals with the estimation of R = P(Y < X) when X and Y are distributed as two independent 

generalized inverted exponential with common scale parameter and different shape parameters. The 

maximum likelihood and Bayesian estimators of R are obtained on the basis of upper record values and 

upper record ranked set samples. The Bayesian estimator cannot be obtained in explicit form, and therefore 

it has been achieved using Lindley approximation. Simulation study is performed to compare the reliability 

estimators in each record sampling scheme with respect to biases and mean square errors. 

Keywords: Reliability; upper record ranked set sample; maximum likelihood estimator; 

Bayesian estimator; Lindley approximation.  

1. Introduction 

Abouammoh and Alshingiti (2009) introduced the generalized inverted exponential 

distribution (    ) as a generalization of the inverted exponential distribution. They 

declared that the      can be better than the inverted exponential distribution for real 

data set based on the likelihood ratio test and the Kolmogorov-Smirnov statistic. The 

     has been widely used in varied fields such as, accelerated life testing, horse racing, 

queues, sea currents and wind speeds. 

The probability density function (pdf) of the      with the shape parameter   and the 

scale parameter   takes the following form 
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The corresponding cumulative distribution function (cdf) is as follows 
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Record data are very important in the situations that the observations are difficult to 

obtain or are destroyed in experimental tests. Record data arise in many real life 

applications such as industrial stress testing, meteorology, sports, hydrology and 

economics. A record value of some phenomenon is the largest (smallest) observation any 

one has ever made. The mathematical theory and statistical study of record values started 

by Chandler (1952) is now spread in many directions.The prominent theoretical 

contributions and inference issues may refer to Nagaraja (1988), Arnold et al. (1998) and 

Ahsanullah and Nevzorov (2015).  

  

According to Arnold et al. (1998), record values can be classified into lower and upper 

record value (URV). For a sequence of independent and identically distributed (iid) 

random variables, an observation , 1jX j   is called an URV if its value exceed that all 

of previous observations  . .,  ,    j ii e X X for every i j  . While an observation is called a 

lower record if its value is less than all previous observations 

 . .,  ,       .i ji e X X for every i j   

Suppose that the first m URV                     from cdf          and pdf 

       of the sampling population respectively, then the joint distribution of the first m 

URV is defined by Arnold et al. (1998) as 
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where 
1( ,..., )mu u u ,   is the parameter space and     may be a vector. 

Ranked set sampling was first proposed by McIntyre in 1952 as a more efficient 

technique than simple random sample for estimating the population parameters of 

interest. Salehi and Ahmadi (2014) proposed a new sampling scheme for generating 

record data called record ranked set sampling to help scientists in situations where the 

only observations that are going to be used are the last record data such as athletic data, 

weather data and Olympic data. Since the new sampling scheme is based generally on 

ranked set sampling, so it is called record ranked set sampling. 

As  described by Salehi and Ahmadi (2014) for record ranked set sampling, suppose that 

there exist n independent sequential sequences of continuous random variables, the ith  

sequence sampling is terminated when the ith  record value is observed. The only 

observations that are used for analysis are the last record value in each sequence. The last 

record value of the ith sequence in this plane is denoted by       then the available 

observations are 1,1 2,2 ,( , , , )T

n nU U U U   , i.e. 
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where, , ( )i jU  is the ith record in the jth sequence. It is recognized that unlike the record 

values; here 
'

,i iU s are independent random variables but not ordered. Let 

, 1,1 2,2 ,   ( , , , )T

i i n nU U U U   be the upper record ranked set sample (URRSS), then the 

joint density function of ,i iU , which is denoted by 
, ,( , ),

i iU i if u   is obtained using the 

marginal density of URV as follows 
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where,  , 1,1 2,2 n,n,...,,  
T

i i u uu u is the observed values of  , ,i iU    is real valued 

parameter and   is the parameter space.  

In reliability context, the parameter R = P(Y < X) is called stress-strength reliability. 

The stress-strength reliability arises naturally when we consider a random stress Y
applied to a certain device with strength X. If the stress exceeds the strength, i.e. Y > 

X, the component will fail. Thus, the reliability is defined as the probability of not 

failing or P(Y < X). The reliability function R represents the relation between the 

stress and strength of the component, and it can be considered as a measure of a 
component performance. 

The reliability function  R = P(Y < X) has attracted the attention of many authors and 

become popular in many fields besides life testing, psychology, reliability and medical 

sciences. Lately, estimation of reliability function associated with record values have 

been raised in many fields such as industrial tests. 

In recent years there has been a growing interest in the study of inference problems 

associated with stress-strength model and record values. The estimation problem of R = 

P(Y < X) based on record values was firstly considered by Baklizi (2008) who estimated 

the reliability function based on URV for one and two parameters exponential 

distribution. Subsequent papers extended this work assuming various lifetime 

distributions for stress and strength random variables, for instance Baklizi (2012) 

estimated R  based on URV  for the Weibull distribution. Wang and Zhang (2013) 

estimated R for a class of distributions. Latterly, Salehi and Ahmadi (2015) considered 

the estimation of R based on URRSS from one-parameter exponential distribution and 

studied its performance. 

This article aims to estimate the reliability function R = P(Y < X) when the strength and 

the stress are two independent variables of      based on URV and URRSS. Assuming 

that the scale parameter is common and known, maximum likelihood and Bayesian 

estimators of R based on independent gamma priors for the unknown parameters are 

obtained under squared error loss function. The procedures of this study are encapsulated 

by analyzing a simulated data.  

 

The rest of the paper is organized as follows. In the next section, maximum likelihood 

estimator of R based on URV and URRSS are discussed. In Section (3), Bayesian 

estimator of R using squared error loss function is discussed for both record schemes. A 
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simulation study and numerical results are given in Section (4). Finally, conclusions 

appear in Section (5). 

2. Maximum Likelihood Method of Estimation 

This section provides the maximum likelihood (ML) estimator of R = P(Y < X) 

depending on the two record schemes, namely, URV and URRSS. 

2.1 ML Estimator of R  Based on URV 

Let the random variable X represents the strength of the component available to 

overcome the stress Y applied on that component. Let X and Y be two independent 

random variables from the      with common scale parameter   and different shape 

parameters   and   respectively, then the reliability of a system is obtained as follows 
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To obtain the ML estimator of R; suppose 1 m, ,u u  be URV observed from X 
             Let, also           is URV observed from Y              Therefore, the 

likelihood functions of  ,   and   for the observed samples u  and  s  variables based 

on URV denoted by  ( | )L u   and ( | )L s   are given by 
1

2
1

( | ) 1 1 ,m i i

m

i i

u u u
L u e e

u
e


  



   
     
   
   



  


  (6) 

and,  
1

2
1

1 1( | ) .j jn

n
s ss

j j

L e es e
s


 



  
    

   
   



  


  (7) 

The joint likelihood function of the observed record values  u  and  s   is given by 
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The joint log-likelihood function of the observed record values u  and  s , denoted by ,l   

is obtained as 
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Assuming that the scale parameter   is known, the ML estimators of   and   , say ̂  

and ̂  based on the observed URV can be obtained as the solutions of 
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From (8), we have 
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Hence, by using the invariance property of ML estimation, then ML estimator of R, 

denoted by ˆ ,R  becomes 
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2.2 ML Estimator of   Based on URRSS 

Let 1,1 ,, , m mu u  and 1,1 ,, , n ns s  be two independent URRSS from the strength and stress 

random variables with parameters  , 
 

and  , 
 

respectively. Then the joint 

likelihood function of the observed URRSS   ,i iu  and  ,j js  is obtained as follows 
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The joint log-likelihood function of the observed URRSS ,i iu  and  , ,j js  denoted by ,l is 

obtained as 
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The ML estimators of   and  , based on the observed URRSS are obtained, 

respectively, by equating the following equations with zero and solving them numerically 
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Assuming that the scale parameter   is known, the ML estimators of   and ,  denoted 

by ˆ̂  and 
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Hence, the ML estimator of R based on URRSS, denoted by 
ˆ̂

R, is obtained by 

substituting ˆ̂  and 
ˆ̂
  in (5) as follows 
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3. Bayesian Estimation 

In this section, the Bayesian estimator of R is obtained under the assumption of 

independent gamma priors for the shape parameters   and .  Bayes estimator of R is 

derived based on URV and URRSS using Lindley approximation. 

3.1 Bayesian Estimator of R Based on URV 

According to Dey and Dey (2014), the gamma priors for the shape parameters   and ,  

and a squared error loss function (SELF) are used. Therefore, the prior densities of   

and  are 
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where , ,a b c  and d  are the parameters of the prior distributions. Through combining 

the prior density (13) and the likelihood function (6), the posterior density of   can be 

obtained as follows 
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Similarly, through combining the prior density (14) and the likelihood function (7). The 

posterior density of    is given by 
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SELF implies the cost obtained by replacing the actual value of the parameter with the 

parameter estimate. Under SELF, the Bayes risk of R, is the expected value of .Br  This 

expected value contains an integral which is usually not obtained in a simple closed form 
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Lindley’s approximation is a procedure for the evaluation of the ratio of two integrals and 

it can be used to obtain the approximate Bayesian estimator. See, for example, (Ahmad et 

al. (1997); Nadar and Papadopoulos (2011)). Alternatively, Raqab and Kundu (2005) 

used the approximation of Lindley (1980) following the approach of Ahmad et al. (1997) 

to compute the Bayes estimate of R. They obtained the approximate Bayes estimate of 
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,R under SELF through Lindley's approximation form expanding about the posterior 

mode. 

The Bayes estimator of R using SELF under URV cannot be computed analytically, 

therefore the Lindley's approximation is applied in the following subsection. 

3.2 Lindley's Approximation of R Based on URV 

It is known that the Bayes risk under SELF is the mean of the posterior distribution. 

Since the Bayes risk of R using SELF under URV cannot be computed analytically. 

Hence, the numerical calculations are needed by using Lindley's approximation for 

expanding the posterior mode. Consequently, Bayesian estimator of R say; R
* is 

obtained. In the two parameters case ( , )  , Lindley's approximation leads to 

 30 12 21 12 12 21 03 21

1ˆ [ ( , )] ( , )
2

BU E U U B Q B Q C Q C Q B          . (20) 

where, 
2 2
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In our case ( , )U R  . The reliability function (5) is to be evaluated at ( ̃  ̃) which 

are the mode of the posterior density of URV. To show that the posterior density 

function is unimodal, it suffices to show that the function ( , ) ( , )Q L        has the 

unique mode. Note that  ,L     is a logarithm of the likelihood function and   ,      

is a logarithm of the joint prior distribution. Therefore, Q can be rewritten as 
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The joint posterior mode, denoted by ( ̃  ̃) is obtained as 
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Therefore, the Bayes estimator of R  based on URV can be obtained from (20) as follows 

    ̃ *  (
 ̃  ̃ 
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where,  ̃ is the reliability function evaluated at ( ̃  ̃)  

3.3 Bayesian Estimator of R  Based on URRSS 

The conjugate priors of both   and   are assumed to be independent gamma 

distributions as defined in (14) and (15). Hence, the posterior density of   and   is 

obtained, respectively, as follows 
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Then, the joint bivariate posterior density of    and   will be  
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By applying the transformation technique defined in Equation (18), therefore, the joint 

bivariate posterior density function can be written as 
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Consequently, the posterior pdf of Br is as follows 
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Under SELF, the Bayes risk of ,R  is the expected value of .Br  This expected value 

contains an integral which is usually not obtained in a simple closed form 
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so  the Lindley's approximation is employed.   
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3.4 Lindley's Approximation of R Based on URRSS 

Here, ( , )U R    the reliability function (5) is evaluated at ( ̃̃  ̃̃) which is the mode 

of the posterior density; based on URRSS. In this case Q  can be rewritten as 
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Again, the joint posterior mode based on URRSS, denoted by ( ̃̃  ̃̃) is obtained as 
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The Bayesian estimator of R denoted by 
**,R  based on URRSS can be obtained from 

(20) as follows 
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where  ̃̃ is the reliability function evaluated at ( ̃̃  ̃̃). 

4. Simulation Study and Discussion 

In this section, a simulation study is designed to compare the different reliability 

estimators in stress-strength model based on URV and URRSS. The exact values of 

reliability are selected as R =              and      Different reliability estimates are 

compared using the mean square error (MSE) and biases for both ML and Bayesian 

techniques. The efficiency of the estimates is obtained through using the following 

relations 
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eff R ,R .
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The computations are performed based on 5000 replications using several combinations 

of the sample sizes (m,n) = (3,3), (3,6), (3,9), (5,5), (5,10), (6,3), (7,7), (9,3), 

(10,5),(10,10) and (12,12). Generate random samples from the  GIED ,  and 

 GIED , 
 
using the transformation technique. The URV and URRSS are obtained for 

each of the strength and stress random samples. The ML estimate of R  is computed 

based on URV and URRSS. Also, for a given values of the prior distributions parameters 

4 2a c , b d ,    the Bayes estimates of R under SELF are obtained using Lindley 

approximation.  

Tables 1 and 2 report the simulation results and represented for selected values of   

through Figures (1-6). From these tables and figures the following results can be 

observed  

1. The ML estimate of R based on URV is more efficient than the corresponding based 

on URRSS for different sample sizes and different exact values of R (see Table 1). 

Also, the Bayesian estimator of R based on URRSS is more efficient than the 

corresponding based on URV for different sample sizes and different exact values of 

R, expect few cases (see Table 2). 

2. The MSE for the Bayesian estimates of R based on URV is less than the Bayesian 

estimate of R based on URRSS at R = 0. 5 for all m = n, m > n and m < n   (see 

Figures 2, 3 and 6). 

3. The MSE for the Bayesian estimate of R based on URRSS has the smallest values for 

R = 0.75 when m < n   (see Figure 4). Also, it has the smallest values for R = 0.25 

when m > n  (see Figure 5). 

4. As seen from Figure 4, the MSEs for the ML estimate of R based on URV are less 

than the ML estimate of R  based on URRSS at R = 0.75 for m < n.    

5. The MSE for the ML estimate of R based on URRSS has the largest MSE (see 

Figures; 1,3,4,5 and 6). The MSEs for ML estimate of R based on URRSS are less 

than the corresponding Bayesian estimate for most values of (m, n) at R = 0.9.   
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Table 1: MSE and bias for the ML estimates of R for different sample sizes based on 

URV and URRSS 

 

R 
 

URRSS URV ˆ̂ ˆ(R,R)eff  (m, n) 
   

MSE
ˆ̂

(R)   bias MSE ˆ(R)   bias 

0.25 

(3,3) 0.060 -0.180 0.027 0.029 2.250 

(3,6) 0.059 -0.240 0.017 0.013 3.427 

(3,9) 0.060 -0.243 0.016 0.033 3.696 

(5,5) 0.050 -0.214 0.015 0.019 3.425 

(5,10) 0.055 -0.234 0.012 0.047 4.516 

(6,3) 0.068 -0.066 0.020 0.025 3.414 

(7,7) 0.047 -0.215 0.009 0.009 5.565 

(9,3) 0.076 0.000 0.017 0.005 4.584 

(10,5) 0.036 -0.167 0.009 -0.021 4.034 

(10,10) 0.045 -0.212 0.004 0.006 10.786 

(12,12) 0.045 -0.210 0.003 0.003 15.345 

0.5 

(3,3) 0.115 -0.006 0.036 0.000 3.198 

(3,6) 0.106 -0.222 0.027 -0.008 3.980 

(3,9) 0.116 -0.272 0.024 0.019 4.810 

(5,5) 0.050 -0.005 0.021 0.000 2.359 

(5,10) 0.043 -0.129 0.017 0.046 2.587 

(6,3) 0.105 0.219 0.027 0.008 3.933 

(7,7) 0.022 0.000 0.013 0.000 1.697 

(9,3) 0.109 0.257 0.024 -0.023 4.649 

(10,5) 0.043 0.124 0.017 -0.045 2.607 

(10,10) 0.010 0.000 0.007 0.001 1.464 

(12,12) 0.008 -0.040 0.005 -0.001 1.512 

0.75 

(3,3) 0.062 0.171 0.022 -0.027 2.768 

(3,6) 0.067 0.062 0.019 -0.031 3.595 

(3,9) 0.076 -0.005 0.018 -0.046 4.151 

(5,5) 0.063 -0.241 0.014 -0.017 4.455 

(5,10) 0.036 0.165 0.016 -0.030 2.238 

(6,3) 0.058 0.239 0.015 0.003 3.826 

(7,7) 0.063 -0.241 0.008 -0.011 7.494 

(9,3) 0.059 0.243 0.013 -0.001 4.600 

(10,5) 0.055 0.233 0.012 -0.046 4.586 

(10,10) 0.046 0.212 0.004 -0.004 10.484 

(12,12) 0.062 -0.250 0.003 -0.003 19.904 

0.9 

(3,3) 0.018 0.077 0.011 -0.033 1.656 

(3,6) 0.018 0.076 0.009 -0.029 2.016 

(3,9) 0.018 0.075 0.039 -0.142 0.463 

(5,5) 0.010 0.100 0.005 -0.014 2.205 

(5,10) 0.010 0.100 0.003 -0.001 3.948 

(6,3) 0.010 0.100 0.005 -0.013 1.934 

(7,7) 0.010 0.100 0.003 -0.009 3.607 

(9,3) 0.010 0.100 0.005 -0.017 2.178 

(10,5) 0.010 0.100 0.003 -0.019 3.068 

(10,10) 0.010 0.100 0.001 -0.005 7.258 

(12,12) 0.010 0.100 0.002 -0.017 6.010 
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Table 2: MSE and bias for the Bayesian estimates of R  for different sample sizes 

based on URV and URRSS 
 

R  
URRSS URV 

eff (R
*
, R

**
)   

(m, n) 
  

MSE(R
**

)  bias MSE (R
*
) bias 

0.25 

(3,3) 0.047 0.213 0.035 0.179 1.331 

(3,6) 0.086 0.286 0.039 0.189 2.225 

(3,9) 0.088 0.290 0.048 0.215 1.817 

(5,5) 0.020 0.125 0.026 0.151 0.747 

(5,10) 0.021 0.136 0.038 0.190 0.559 

(6,3) 0.001 0.014 0.020 0.129 0.061 

(7,7) 0.004 0.029 0.020 0.132 0.191 

(9,3) 0.008 -0.085 0.011 0.090 0.722 

(10,5) 0.006 -0.068 0.009 0.082 0.670 

(10,10) 0.005 -0.062 0.016 0.118 0.340 

(12,12) 0.010 -0.097 0.014 0.113 0.730 

0.5 

(3,3) 0.003 -0.001 0.005 0.000 0.644 

(3,6) 0.011 0.072 0.005 0.012 2.161 

(3,9) 0.010 0.074 0.006 0.037 1.837 

(5,5) 0.009 -0.003 0.005 0.000 1.603 

(5,10) 0.007 0.010 0.006 0.043 1.215 

(6,3) 0.011 -0.072 0.005 -0.012 2.111 

(7,7) 0.009 -0.001 0.004 0.000 2.074 

(9,3) 0.011 -0.079 0.006 -0.039 1.947 

(10,5) 0.008 -0.014 0.006 -0.043 1.322 

(10,10) 0.007 0.000 0.003 0.001 2.418 

(12,12) 0.006 -0.034 0.002 -0.001 2.799 

0.75 

(3,3) 0.048 -0.215 0.036 -0.184 1.325 

(3,6) 0.001 0.015 0.021 -0.134 0.063 

(3,9) 0.008 0.084 0.015 -0.111 0.519 

(5,5) 0.063 -0.250 0.026 -0.149 2.441 

(5,10) 0.006 0.067 0.012 0.012 0.539 

(6,3) 0.087 -0.288 0.036 -0.182 2.414 

(7,7) 0.063 -0.250 0.020 -0.133 3.103 

(9,3) 0.088 -0.291 0.040 -0.194 2.201 

(10,5) 0.022 -0.137 0.038 -0.189 0.576 

(10,10) 0.005 0.063 0.016 -0.118 0.350 

(12,12) 0.063 -0.250 0.014 -0.113 4.428 

0.9 

(3,3) 0.134 -0.364 0.094 -0.302 1.431 

(3,6) 0.026 -0.158 0.057 -0.234 0.456 

(3,9) 0.003 -0.051 0.057 -0.236 0.052 

(5,5) 0.079 -0.274 0.067 -0.253 1.176 

(5,10) 0.005 -0.062 0.032 -0.174 0.159 

(6,3) 0.194 -0.436 0.095 -0.304 2.052 

(7,7) 0.032 -0.170 0.051 -0.222 0.617 

(9,3) 0.196 -0.438 0.103 -0.318 1.892 

(10,5) 0.082 -0.282 0.078 -0.276 1.058 

(10,10) 0.005 -0.066 0.039 -0.194 0.137 

(12,12) 0.001 -0.018 0.050 -0.222 0.016 
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5. Conclusion 

In this paper, the problem of estimating R = P(Y < X)   for the      is addressed using 

both URV and URRSS. ML and Bayesian estimators of R  are compared via the MSE. 

Also, the efficiency of estimators based on URRSS with respect to the corresponding 

estimators based on URV is computed. When comparing the performance of the 

estimated R , it is observed that the ML estimate based on the URV is, in general, better 

than the corresponding based on URRSS relative to their biases and MSEs. MSE of the 

Bayes estimate based on URRSS approach is less than the MSE of the corresponding ML 

estimate. The simulation study indicates that in order to estimate the reliability function 

in stress-strength model for      using ML method of estimation, URV scheme is 

preferable than URRSS scheme. 
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