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Abstract 

We introduce a new family of continuous distributions and study the mathematical properties of the new 

family. Some useful characterizations based on the ratio of two truncated moments and hazard function are 

also presented. We estimate the model parameters by the maximum likelihood method and assess its 

performance based on biases and mean squared errors in a simulation study framework.  

Keywords:  Maximum likelihood; Moment; Order Statistic; Quantile function; Hazard 

function; Characterization.  

1.   Introduction 

Several continuous univariate models have been widely used for modeling real data sets 

in many areas such as life sciences, engineering, economics, biological studies and 

environmental sciences to name a few. Various families of distributions have been 

constructed by extending common families of continuous distributions. These generalized 

distributions give more flexibility by adding one "or more" parameters to the baseline 

model. For example, Gupta et al. (1998) proposed the exponentiated-G class, which 

consists of raising the cumulative distribution function (cdf) to a positive power 

parameter. Many other classes can be cited such as the Marshall-Olkin-G family by 

Marshall and Olkin (1997), beta generalized-G family by Eugene et al. (2002), a new 

method for generating families of continuous distributions by Alzaatreh et al. (2013), 

exponentiated T-X family of distributions by Alzaghal et al. (2013), transmuted 

exponentiated generalized-G family by Yousof et al. (2015), Kumaraswamy transmuted-

G by Afify et al. (2016b), transmuted geometric-G by Afify et al. (2016a), Burr X-G by 

Yousof et al. (2016), exponentiated transmuted-G family by Merovci et al. (2016), odd-

Burr generalized family by Alizadeh et al. (2016a) the complementary generalized 
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transmuted poisson family by Alizadeh et al. (2016b), transmuted Weibull G family by 

Alizadeh et al. (2016c), the Type I half-logistic family by Cordeiro et al. (2016a), the 

Zografos-Balakrishnan odd log-logistic family of distributions by Cordeiro et al. (2016b), 

generalized transmuted-G by Nofal et al. (2017), the exponentiated generalized-G 

Poisson family by Aryal and Yousof (2017) and beta transmuted-H by Afify et al. (2017), 

the beta Weibull-G family by Yousof et al. (2017), among others. 

 

This paper is organized as follows. In Section 2, we define the Type I General 

Exponential (TIGE) class of distributions. Some of its special cases are presented in 

Section 3. In Section 4, we derive some of its mathematical properties such as the 

asymptotic, shapes of the density and hazard rate functions, mixture representation for the 

density, quantile function, moments, moment generating function (mgf) and mean 

deviations. Section 5 deals with some characterizations of the new family and estimation 

of the model parameters using maximum likelihood. In Section 6, a simulation study is 

performed to see the efficiency of Maximum Likelihood method. In Section 7, we 

illustrate the importance of the new family by means of two applications to real data sets. 

The paper is concluded in Section 8. 

2.   Type I General Exponential Class of distributions 

The cdf  of TIGE distributions is given by  

𝐹(𝑥) = 𝐹(𝑥; 𝜆, 𝛼, 𝜉) = exp{𝜆[1 − 𝐺(𝑥; 𝜉)−𝛼]},      𝑥 ∈ ℝ,   (1) 

where 𝜉 = (𝜉𝑘) = (𝜉1, 𝜉2, . . . ) is a parameter vector, and 𝜆 and 𝛼 are positive parameters. 

The corresponding probability density function (pdf) is  

𝑓(𝑥) = 𝑓(𝑥; 𝜆, 𝛼, 𝜉) = 𝜆𝛼𝑔(𝑥; 𝜉)𝐺(𝑥; 𝜉)−(𝛼+1)exp{𝜆[1 − 𝐺(𝑥; 𝜉)−𝛼]}. (2) 

 

The reliability function (RF) [𝑅(𝑋)], hazard rate function (HRF) [ℎ(𝑋)], reversed-hazard 

rate function (RHR) [𝑟(𝑥)] and cumulative hazard rate function (CHR) [𝐻(𝑋)] of the 

TIGE family are given, respectively, by 

𝑅(𝑥) = 1 − exp{𝜆[1 − 𝐺(𝑥; 𝜉)−𝛼]}, 

ℎ(𝑥) =
𝜆𝛼𝑔(𝑥; 𝜉)𝐺(𝑥; 𝜉)−(𝛼+1)exp{𝜆[1 − 𝐺(𝑥; 𝜉)−𝛼]}

1 − exp{𝜆[1 − 𝐺(𝑥; 𝜉)−𝛼]}
, 

𝑟(𝑥) = 𝜆𝛼𝐺(𝑥; 𝜉)−(𝛼+1) 

and 

𝐻(𝑥) = −log(1 − exp{𝜆[1 − 𝐺(𝑥; 𝜉)−𝛼]}). 
If 𝑈~𝑈(0,1) and 𝑄𝐺(. ) denote the quantile function of 𝐺, then 

𝑋𝑈 = 𝑄𝐺 {[1 −
1

𝜆
log(𝑈)]

−
1

𝛼

} 

has cdf (1). Henceforth 𝐺(𝑥; 𝜉) = 𝐺(𝑥) and 𝑔(𝑥; 𝜉) = 𝑔(𝑥) and so on. Several structural 

properties of the extended distributions may be easily explored using mixture forms of 

Exp-G models. Therefore, we obtain mixture forms of exponentiated-G (“Exp-G”) for 

𝐹(𝑥) and 𝑓(𝑥). The cdf of the TIGE family in (1) can be expressed as 

𝐹(𝑥) = 𝑒𝜆 𝑒−𝜆 𝐺(𝑥)−𝛼
= 𝑒𝜆 ∑∞

𝑖=0
(−𝜆)𝑖

𝑖!
𝐺(𝑥)−𝛼 𝑖.    (3) 
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After expanding  𝐺(𝑥)−𝛼 𝑖 and performing some algebra, we obtain 

𝐹(𝑥) = 𝑒𝜆 ∑

∞

𝑖,𝑘=0

∑

∞

𝑗=𝑘

(−1)𝑖+𝑗+𝑘𝜆𝑖 

𝑖!
(

−𝛼 𝑖
𝑗

) (
𝑗
𝑘

)  𝐺(𝑥)𝑘, 

or 

𝐹(𝑥) = ∑∞
𝑘=0 𝑏𝑘𝚷𝑘(𝑥),       (4) 

where 

𝑏𝑘 = 𝑒𝜆 ∑

∞

𝑖=0

∑

∞

𝑗=𝑘

(−1)𝑖+𝑗+𝑘𝜆𝑖 

𝑖!
(

−𝛼 𝑖
𝑗

) (
𝑗
𝑘

) 

and 𝚷𝛿(𝑥) = 𝐺(𝑥)𝛿 is the cdf of the Exp-G distribution with power parameter 𝛿. 

Furthermore, the corresponding TIGE density function is obtained by differentiating (4) 

𝑓(𝑥) = ∑∞
𝑘=0 𝑏𝑘𝜋𝑘(𝑥),       (5) 

where 𝜋𝛿(𝑥) = 𝛿𝑔(𝑥)𝐺(𝑥)𝛿−1 is the pdf of the Exp-G distribution with power parameter 

𝛿. The properties of Exp-G distributions have been studied by many authors in recent 

years, e.g. see Nadarajah (2005) for exponentiated Gumbel (EGu), Shirke and Kakade 

(2006) for exponentiated log-normal (ELN) and Nadarajah and Gupta (2007) for 

exponentiated gamma distributions (EGa), among others. 

3.   Properties 

In this section, we investigate mathematical properties of the TIGE family of 

distributions including asymptotes, ordinary and incomplete moments, generating 

function, probability weighted moments and entropies. Established algebraic expansions 

to determine some structural properties of the TIGE family of distributions can be more 

efficient than computing them directly by numerical integration of its density function. 

The derivations derived throughout the article can be straightforwardly handled in most 

symbolic computation software platforms such as Mathematica, Maple and Matlab 

because of their ability to deal with such analytic expressions of enormous size and 

complexity. 

 

Figure 1 shows different shapes of density and Hazard function for Type I General 

Exponential Weibull distribution(TIGEW). 

 
Figure  1: Different shapes of TIGEW pdf (left) and Hazard function (right) 
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3.1  Moments and generating function 

The 𝑟th ordinary moment of 𝑋 is given by 

𝜇𝑟
′ = 𝐸(𝑋𝑟) =  ∫

∞

−∞
 𝑥𝑟 𝑓(𝑥)𝑑𝑥 = ∑∞

𝑘=0 𝑏𝑘𝐸(𝑌𝑘
𝑟),    (6) 

where 𝐸(𝑌𝑘
𝑟) = 𝑘  ∫

∞

−∞
𝑥𝑟   𝑔(𝑥; 𝜉)  𝐺(𝑥; 𝜉)𝑘−1  𝑑𝑥,which can be computed numerically 

in terms of the baseline quantile function (qf) 𝑄𝐺(𝑢; 𝜉) = 𝐺−1(𝑢; 𝜉) such that 𝐸(𝑌𝑘
𝑟) =

𝑘  ∫
1

0
  𝑄𝐺(𝑢; 𝜉)𝑟  𝑢𝑘−1𝑑𝑢. For 𝑟 = 1 in (6), we obtain the mean of 𝑋. The last 

integration can be computed numerically for most parent distributions. The skewness and 

kurtosis measures can be calculated from the ordinary moments using well-known 

relationships. The 𝑟th central moment of 𝑋, say 𝜇𝑟, is given by  

𝜇𝑟 = 𝐸(𝑋 − 𝜇)𝑟 = ∑

𝑟

ℎ=0

(−1)ℎ  (
𝑟
ℎ

) (𝜇1
′ )𝑟 𝜇𝑟−ℎ

′ . 

 

The 𝑟th descending factorial moment of 𝑋 (for 𝑟 = 1,2, …) is given by  

𝜇(𝑟)
′ = 𝐸[𝑋(𝑟)] = 𝐸[𝑋(𝑋 − 1) × … × (𝑋 − 𝑟 + 1)] = ∑

𝑛

𝑘=0

𝑠(𝑟, 𝑘)𝜇𝑘
′ , 

where 𝑠(𝑟, 𝑘) = (𝑘!)−1[𝑑𝑘𝑘(𝑟)/𝑑𝑥𝑘]
𝑥=0

 is the Stirling number of the first kind. The 

cumulants (𝜅𝑛) of 𝑋 follow recursively from 𝜅𝑛 = 𝜇𝑛
′ − ∑𝑛−1

𝑟=0 (
𝑛 − 1
𝑟 − 1

) 𝜅𝑟 𝜇𝑛−𝑟
′ , where 

𝜅1 = 𝜇1
′ , 𝜅2 = 𝜇2

′ − 𝜇1
′2, 𝜅3 = 𝜇3

′ − 3𝜇2
′ 𝜇1

′ + 𝜇1
′3, and so on. The skewness and kurtosis 

measures can also be calculated from the ordinary moments using well-known 

relationships. The main applications of the first incomplete moment refer to the mean 

deviations and the Bonferroni and Lorenz curves. These curves are very useful in 

economics, reliability, demography, insurance and medicine. The 𝑟th incomplete 

moment, say 𝜑𝑟(𝑡), of 𝑋 can be expressed from (5), as  

𝜑𝑟(𝑡) = ∫
𝑡

−∞
𝑥𝑟𝑓(𝑥)𝑑𝑥 = ∑∞

𝑘=0 𝑏𝑘  ∫
𝑡

−∞
𝑥𝑟  𝜋𝑘(𝑥)𝑑𝑥.   (7) 

 

The mean deviations about the mean [𝛿1 = 𝐸(|𝑋 − 𝜇1
′ |)] and about the median [𝛿2 =

𝐸(|𝑋 − 𝑀𝑒(𝑋)|)] of 𝑋 are given by 𝛿1 = 2𝜇1
 ′𝐹(𝜇1

′ ) − 2𝜑1(𝜇1
′ ) and 𝛿2 = 𝜇1

′ − 2𝜑1(𝑀), 

respectively, where 𝜇1
′ = 𝐸(𝑋), 𝑀𝑒(𝑋) = 𝑄(0.5) is the median, 𝐹(𝜇1

′ ) is easily 

calculated from (1) and 𝜑1(𝑡) is the first incomplete moment given by (7) with 𝑟 = 1. A 

general equation for 𝜑1(𝑡) can be derived from (7) as 𝜑1(𝑡) = ∑∞
𝑘=0 𝑏𝑘 𝐼𝑘(𝑥), where 

𝐼𝑘(𝑥) = ∫
𝑡

−∞
 𝑥 𝜋𝑘(𝑥)𝑑𝑥 is the first incomplete moment of the Exp-G model. The 

moment generating function (mgf) 𝑀𝑋(𝑡) = 𝐸(𝑒𝑡 𝑋) of 𝑋 can be derived from equation 

(5) as 𝑀𝑋(𝑡) = ∑∞
𝑘=0 𝑏𝑘 𝑀𝑘(𝑡), where 𝑀𝛿(𝑡) is the mgf of 𝑌𝛿. Hence, 𝑀𝑋(𝑡) can be 

determined from the Exp-G generating function. 

3.2  Probability weighted moments 

The Probability weighted moments (PWMs) are expectations of certain functions of a 

random variable and they can be defined for any random variable whose ordinary 

moments exist. The PWMs method can generally be used for estimating parameters of a 
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distribution whose inverse form cannot be expressed explicitly. The (𝑠, 𝑟)th PWMs of 𝑋 

following the TIGE family, say 𝜌𝑠,𝑟, is given by 

𝜌𝑠,𝑟 = 𝐸{𝑋𝑠 𝐹(𝑋)𝑟} = ∫
∞

−∞

𝑥𝑠  𝐹(𝑥)𝑟 𝑓(𝑥) 𝑑𝑥. 

 

Using equations (1) and (2), we can write 

𝑓(𝑥)𝐹(𝑥)𝑟 = ∑

∞

𝑘=0

𝑎𝑘𝜋𝑘(𝑥), 

where 

𝑎𝑘 = 𝑒𝜆 ∑

∞

𝑖=0

∑

∞

𝑗=𝑘

(−1)𝑖+𝑗+𝑘[𝜆(𝑟 + 1)]𝑖  

𝑖!
(

−𝛼 𝑖
𝑗

) (
𝑗
𝑘

). 

 

Then, the (𝑠, 𝑟)th PWMs of 𝑋 can be expressed as  

𝜌𝑠,𝑟 = ∑

∞

𝑘=0

𝑎𝑘𝐸(𝑌𝑘
𝑠) . 

3.3  Order statistics and their moments 

The order statistics plays an important role in real-life applications involving data relating 

to life testing studies. These statistics are required in many fields, such as climatology, 

engineering and industry to name a few. Suppose that 𝑋1, … , 𝑋𝑛 constitute a random 

sample from a TIGE distribution, 𝑋𝑖:𝑛 denotes the 𝑖th order statistic of this sample and 

𝑓𝑖:𝑛(𝑥) denotes its pdf. We wish to find a linear expansion for 𝑓𝑖:𝑛(𝑥). First, we note that  

𝑓𝑖:𝑛(𝑥) =  𝐾 𝑓(𝑥) 𝐹𝑖−1(𝑥) {1 − 𝐹(𝑥)}𝑛−𝑖 = 𝐾 ∑

𝑛−𝑖

𝑗=0

(−1)𝑗  (
𝑛 − 𝑖
𝑗

)  𝑓(𝑥) 𝐹(𝑥)𝑗+𝑖−1, 

where 𝐾 =
1

𝐵(𝑖,𝑛−𝑖+1)
. Now, consider the following equation:  

(∑

∞

𝑖=0

𝑎𝑖 𝑢
𝑖)

𝑛

= ∑

∞

𝑖=0

𝑑𝑛,𝑖 𝑢
𝑖, 

where 𝑛 is a positive integer and the coefficients 𝑑𝑛,𝑖 (for 𝑖 = 1,2, …) are determined 

from the recurrence equation (with 𝑑𝑛,0 = 𝑎0
𝑛)  

𝑑𝑛,𝑖 = (𝑖 𝑎0)−1  ∑

𝑖

𝑚=1

 [𝑚(𝑛 + 1) − 𝑖] 𝑎𝑚 𝑑𝑛,𝑖−𝑚. 

Then, the density function of the 𝑋𝑖:𝑛 can be expressed as 

𝑓𝑖:𝑛(𝑥) = ∑∞
𝑟,𝑘=0  𝑚𝑟,𝑘   𝜋𝑟+𝑘+1(𝑥),      (8) 

where 𝜋𝑟+𝑘+1(𝑥) stands for the pdf of the Exp-G distribution with power parameter 𝑟 +
𝑘 + 1.  

𝑚𝑟,𝑘 =
𝑛! (𝑟 + 1) 𝑏𝑟+1

(𝑟 + 𝑘 + 1) (𝑖 − 1)!
∑

𝑛−𝑖

𝑗=0

 
(−1)𝑗 𝑓𝑗+𝑖−1,𝑘

∗

(𝑛 − 𝑖 − 𝑗)!  𝑗!
, 



G.G. Hamedani, Haitham M. Yousof, Mahdi Rasekhi, Morad Alizadeh, Seyed Morteza Najibi 

Pak.j.stat.oper.res.  Vol.XIV  No.1 2018  pp39-55 44 

in which, 𝑏𝑟 is defined in Section 2 and the coefficients 𝑓𝑗+𝑖−1,𝑘
∗ ’s can be determined such 

that 𝑓𝑗+𝑖−1,0
∗ = 𝑏0

𝑗+𝑖−1
 and for 𝑘 ≥ 1  

𝑓𝑗+𝑖−1,𝑘
∗ = (𝑘 𝑏0)−1 ∑

𝑘

𝑤=1

[𝑤 (𝑗 + 𝑖) − 𝑘] 𝑏𝑤 𝑓𝑗+𝑖−1,𝑘−𝑤
∗ . 

 

Equation (8) reveals that the pdf of the TIGE order statistic can be expressed as a linear 

combination of the Exp-G densities. Therefore, some statistical and mathematical 

properties of these order statistics can be obtained by using this result. Analogous to the 

ordinary moments, we can derive the L-moments but it can be estimated bythe linear 

combinations of order statistics in (8). They exist as long as the mean of the distribution 

exists, even if some higher moments may not exist, and are relatively robust to the effects 

of outliers. Based upon the moments in equation (8), we can derive explicit expressions 

for the L-moments of 𝑋 as infinite weighted linear combinations of the means of suitable 

TIGE order statistics. They are linear functions of expected order statistics defined by  

𝜆𝑟 =
1

𝑟
∑

𝑟−1

𝑑=0

(−1)𝑑  (
𝑟 − 1
𝑑

)  𝐸(𝑋𝑟−𝑑:𝑟), 𝑟 ≥ 1. 

3.4  Moments of the Residual and Reversed Residual Lifes 

The 𝑛th moment of the residual life, say 𝑧𝑛(𝑡) = 𝐸[(𝑋 − 𝑡)𝑛|𝑋 > 𝑡],𝑛 = 1,2, …, 

uniquely determines 𝐹(𝑥). The 𝑛th moment of the residual life of 𝑋 using equation (5) is 

given by  

𝑧𝑛(𝑡) =
1

1 − 𝐹(𝑡)
 ∫

∞

𝑡

(𝑥 − 𝑡)𝑛𝑑𝐹(𝑥) =
1

1 − 𝐹(𝑡)
∑

∞

𝑘=0

𝑏𝑘
∗ ∫

∞

𝑡

𝑥𝑟𝜋𝑘(𝑥)𝑑𝑥, 

where 𝑏𝑘
∗ = 𝑏𝑘 ∑

𝑟=0

𝑛

(
𝑛
𝑟

) (−𝑡)𝑛−𝑟. Another interesting function is the mean residual life 

(MRL) function or the life expectation at age 𝑡 defined by 𝑧1(𝑡) = 𝐸[(𝑋 − 𝑡)|𝑋 > 𝑡], 
which represents the expected additional life length for a unit which is alive at age 𝑡. The 

MRL has many applications in survival analysis in biomedical sciences, life insurance, 

maintenance and product quality control, economics and social studies, demography and 

product technology. The MRL of 𝑋 can be obtained by setting 𝑛 = 1 in the last equation. 

The 𝑛th moment of the reversed residual life, say 𝑍𝑛(𝑡) = 𝐸[(𝑡 − 𝑋)𝑛|𝑋 ≤ 𝑡] for 𝑡 > 0 

and 𝑛 = 1,2,... uniquely determines 𝐹(𝑥). Therefore, The 𝑛th moment of the reversed 

residual life of 𝑋 is given by  

𝑍𝑛(𝑡) =
1

𝐹(𝑡)
∫

𝑡

0

(𝑡 − 𝑥)𝑛𝑑𝐹(𝑥) =
1

𝐹(𝑡)
∑

∞

𝑘=0

𝑏𝑘
∗∗ ∫

𝑡

0

𝑥𝑟𝜋𝑘(𝑥)𝑑𝑥, 

where 𝑏𝑘
∗∗ = 𝑏𝑘 ∑

𝑟=0

𝑛

(−1)𝑟 (
𝑛
𝑟

) 𝑡𝑛−𝑟. The mean inactivity time (MIT) or mean waiting 

time (MWT) also called the mean reversed residual life function is given by 𝑍1(𝑡) =
𝐸[(𝑡 − 𝑋)|𝑋 ≤ 𝑡], and it represents the waiting time elapsed since the failure of an item 

on condition that this failure had occurred in (0, 𝑡).The MIT of the TIGE family of 

distributions can be obtained easily by setting 𝑛 = 1 in the above equation. 
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3.5  Stress-strength model 

The measure of dependability (reliability) of industrial components has many 

applications especially in the area of lifetime testing and engineering, to name a few. 

Stress-strength model is the most widely approach used for dependability estimation. 

This model is used in many applications in physics and engineering such as strength 

failure and system collapse. In stress-strength modeling, 𝐑 = Pr(𝑋2 < 𝑋1) is a measure 

of dependability of the system when it is subjected to random stress 𝑋2 and has strength 

𝑋1 (e.g. see Kotz et al, 2003). The system fails if and only if the applied stress is greater 

than its strength and the component will function satisfactorily whenever 𝑋1 > 𝑋2. 𝐑 can 

be considered as a measure of system performance and naturally arise in electrical and 

electronic  systems. Other interpretation is that, the reliability of the system is the  

probability of being the system strongly enough to overcome the stress imposed on it. Let 

𝑋1 and 𝑋2 be two independent random variables with TIGE(𝜆1, 𝛼1, 𝜉) and 

TIGE(𝜆2, 𝛼2, 𝜉) distributions with the same parameter vector 𝜉 for the baseline G. The 

reliability is defined by 𝐑 = ∫
∞

0
𝑓1(𝑥; 𝜆1, 𝛼1, 𝜉)𝐹2(𝑥; 𝜆2, 𝛼2, 𝜉)𝑑𝑥. Then, We can write 

 𝐑 = ∑∞
𝑘,ℎ=0 𝑏𝑘,ℎ ∫

∞

0
𝜋𝑘+ℎ(𝑥)𝑑𝑥, 

where 

𝑏𝑘,ℎ = 𝑒𝜆1+𝜆2 ∑

∞

𝑖,𝑤=0

∑

∞

𝑗=𝑘

∑

∞

𝑚=ℎ

(−1)𝑖+𝑗+𝑘+𝑤+𝑚+ℎ𝜆1
𝑖 𝜆2

𝑤  

𝑖! 𝑤!
(

𝑘

𝑘 + ℎ + 1
) (

−𝛼1 𝑖
𝑗

) (
−𝛼2 𝑤
𝑚

) (
𝑗
𝑘

) (
𝑚
ℎ

). 

 

Thus, the reliability can be reduced to  

𝐑 = ∑

∞

𝑘,ℎ=0

𝑏𝑘,ℎ. 

4.   Characterizations 

In this section, we present characterizations of TIGE family based on a simple 

relationship between two truncated moments. Our characterization result employs a 

theorem due to Glänzel (1987), see Theorem 1 below. Note that the result holds also 

when the interval 𝐻  is not closed. Moreover, it could be also applied when the 𝑐𝑑𝑓 𝐹 

does not have a closed form.  As shown in Glänzel (1990), this characterization is stable 

in the sense of weak convergence. 

Theorem 1.  Let (Ω, ℱ, 𝐏) be a given probability space and let  𝐻 = [𝑑, 𝑒] be an interval 

for some  𝑑 < 𝑒  (𝑑 = −∞, 𝑒 = ∞  mightaswellbeallowed). Let 𝑋: Ω → 𝐻  be a 

continuous random variable with the distribution function 𝐹 and let 𝑞1 and 𝑞2 be two real 

functions defined on 𝐻 such that 

𝐄[𝑞2(𝑋)|𝑋 ≥ 𝑥] = 𝐄[𝑞1(𝑋)|𝑋 ≥ 𝑥]𝜂(𝑥),    𝑥 ∈ 𝐻, 
is defined with some real function 𝜂. Assume that 𝑞1, 𝑞2 ∈ 𝐶1(𝐻), 𝜂 ∈ 𝐶2(𝐻) and 𝐹 is 

twice continuously differentiable and strictly monotone function on the set 𝐻. Finally, 

assume that the Equation 𝜂𝑞1 = 𝑞2 has no real solution in the interior of 𝐻. Then 𝐹 is 

uniquely determined by the functions 𝑞1, 𝑞2 and 𝜂, particularly 

𝐹(𝑥) = ∫
𝑥

𝑎

𝐶 |
𝜂′(𝑢)

𝜂(𝑢)𝑞1(𝑢) − 𝑞2(𝑢)
| exp(−𝑠(𝑢))𝑑𝑢, 
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where the function  𝑠  is  a solution of the differential Equation 𝑠′ =
𝜂′𝑞1

𝜂𝑞1−𝑞2
 and 𝐶 is the 

normalization constant, such that ∫
𝐻

𝑑𝐹 = 1. Here is our first characterization. 

 

Proposition 1.  Let 𝑋: Ω → ℝ be a continuous random variable and let  𝑞1(𝑥) =

exp{−𝜆(1 − (𝐺(𝑥))
−𝛼

)} and 𝑞2(𝑥) = 𝑞1(𝑥)(𝐺(𝑥))
−𝛼

 for 𝑥 ∈ ℝ. The random variable 

𝑋 belongs to the TIGE family if and only if the function 𝜂 defined in Theorem 1 has the 

form 

𝜂(𝑥) =
1

2
{1 + (𝐺(𝑥))

−𝛼
},    𝑥 ∈ ℝ. 

 

Proof.  Let  𝑋  be a random variable with 𝑝𝑑𝑓 of TIGE family, then 

(1 − 𝐹(𝑥))𝐸[𝑞1(𝑥)|𝑋 ≥ 𝑥] = 𝜆{(𝐺(𝑥))
−𝛼

− 1},    𝑥 ∈ ℝ, 
and 

(1 − 𝐹(𝑥))𝐸[𝑞2(𝑥)|𝑋 ≥ 𝑥] =
𝜆

2
{(𝐺(𝑥))

−2𝛼
− 1}     𝑥 ∈ ℝ, 

and finally 

𝜂(𝑥)𝑞1(𝑥) − 𝑞2(𝑥) =
𝑞1(𝑥)

2
{1 − (𝐺(𝑥))

−𝛼
} > 0    𝑓𝑜𝑟  𝑥 ∈ ℝ. 

 

Conversely, if 𝜂 is given as above, then 

𝑠′(𝑥) =
𝜂′(𝑥)𝑞1(𝑥)

𝜂(𝑥)𝑞1(𝑥) − 𝑞2(𝑥)
= −

𝛼𝑔(𝑥)(𝐺(𝑥))
−(𝛼+1)

1 − (𝐺(𝑥))
−𝛼 ,    𝑥 ∈ ℝ, 

and hence 

𝑠(𝑥) = −log{1 − (𝐺(𝑥))
−𝛼

},    𝑥 ∈ ℝ. 
 

Now, in view of Theorem 1, 𝑋  has density of the TIGE family in (2). 

 

Corollary 1.  Let 𝑋: Ω → ℝ  be a continuous random variable and let 𝑞1(𝑥) be as in 

Proposition 1. Then 𝑋 has 𝑝𝑑𝑓  (2) if and only if there exist functions 𝑞2 and 𝜂 defined in 

Theorem 1 satisfying the differential equation 

𝜂′(𝑥)𝑞1(𝑥)

𝜂(𝑥)𝑞1(𝑥)−𝑞2(𝑥)
= −

𝛼𝑔(𝑥)

(𝐺(𝑥)){(𝐺(𝑥))
𝛼

−1}
,    𝑥 ∈ ℝ.    (9) 

 

The general solution of the differential equation in Corollary 1 is 

𝜂(𝑥) = {1 − (𝐺(𝑥))
−𝛼

}
−1

[∫ 𝛼𝑔(𝑥)(𝐺(𝑥))
−(𝛼+1)

(𝑞1(𝑥))
−1

𝑞2(𝑥)𝑑𝑥 + 𝐷], (10) 

where 𝐷 is a constant. Note that a set of functions satisfying the differential equation (9) 

is given in Proposition 1 with 𝐷 =
1

2
. However, it should be also noted that there are other 

triplets (𝑞1, 𝑞2, 𝜂) satisfying the conditions of Theorem 1. 
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5.   Maximum likelihood estimation 

Several approaches for parameter estimation were proposed in the literature but the 

maximum likelihood method is the most commonly employed. The maximum likelihood 

estimators (MLEs) enjoy desirable properties and can be used for constructing confidence 

intervals and regions, and the test statistics. The normal approximation for these 

estimators in large samples can be easily handled either analytically or numerically. 

Therefore, we consider the estimation of the unknown parameters of this family from 

complete samples only by maximum likelihood. Let 𝑥1, … , 𝑥𝑛 be a random sample from 

the TIGE distribution with parameters 𝜆, 𝛼  and 𝜉. Let Θ =(𝜆, 𝛼, 𝜉) ú be the 𝑝 × 1 

parameter vector. For determining the MLE of Θ, we have the log-likelihood function 

ℓ = ℓ(Θ) = 𝑛log𝜆 + 𝑛log𝛼 + ∑

𝑛

𝑖=1

log𝑔(𝑥𝑖; 𝜉) − (𝛼 + 1) ∑

𝑛

𝑖=1

 log𝐺(𝑥𝑖; 𝜉)

+ 𝜆 ∑

𝑛

𝑖=1

[1 − 𝐺(𝑥𝑖; 𝜉)−𝛼]. 

 

The components of the score vector, 𝐔(Θ) =
∂ℓ

∂Θ
= (

∂ℓ

∂𝜆
 ,

∂ℓ

∂𝛼
 ,

∂ℓ

∂𝜉
 )T, are given as 

𝑈𝜆 =
𝑛

𝜆
+ ∑

𝑛

𝑖=1

[1 − 𝐺(𝑥𝑖; 𝜉)−𝛼], 

𝑈𝛼 =
𝑛

𝛼
− ∑

𝑛

𝑖=1

 log𝐺(𝑥𝑖; 𝜉) + 𝜆 ∑

𝑛

𝑖=1

𝐺(𝑥𝑖; 𝜉)−𝛼log𝐺(𝑥𝑖; 𝜉) 

and (for 𝑟 = 1, . . . , 𝑞) 

𝑈𝜉𝑟
= ∑

𝑛

𝑖=1

𝑔𝑟
′ (𝑥𝑖; 𝜉)

𝑔(𝑥𝑖; 𝜉)
− (𝛼 + 1) ∑

𝑛

𝑖=1

 
𝐺𝑟

′(𝑥𝑖; 𝜉)

𝐺(𝑥𝑖; 𝜉)
+ 𝜆𝛼 ∑

𝑛

𝑖=1

𝐺𝑟
′(𝑥𝑖; 𝜉)𝐺(𝑥𝑖; 𝜉)−𝛼−1, 

where  

𝑔𝑟
′ (𝑥𝑖; 𝜉) =

∂

∂𝜉𝑟

[𝑔(𝑥𝑖; 𝜉)], 𝐺𝑟
′(𝑥𝑖; 𝜉) =

∂

∂𝜉𝑟

[𝐺(𝑥𝑖; 𝜉)]. 

 

Setting the nonlinear system of equations 𝑈𝜆 = 𝑈𝛼 = 0 and 𝑈𝜉 = 𝟎 and solving them 

simultaneously yields the MLE Θ̂ = (𝜆̂, 𝛼̂, 𝜉ú)ú. To solve these equations, it is usually 

more convenient to use nonlinear optimization methods such as the quasi-Newton 

algorithm to numerically maximize ℓ. For interval estimation of the parameters, we 

obtain the 𝑝 × 𝑝 observed information matrix 𝐽(Θ) = {
∂2ℓ

∂𝑟 ∂𝑠
} (for 𝑟, 𝑠 = 𝜆, 𝛼, 𝜉), whose 

elements can be computed numerically. Under the standard regularity conditions when 

𝑛 → ∞, the distribution of Θ̂ can be approximated by a multivariate normal 

𝑁𝑝(0, 𝐽(Θ̂)−1) distribution to construct approximate confidence intervals for the 

parameters. Here, 𝐽(Θ̂) is the total observed information matrix evaluated at Θ̂. 
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6.   Simulation study 

In this section, we survey the performance of the MLEs of the Type I General 

Exponential Weibull (TIGEW) distribution with respect to sample size n. This 

performance is done based on the following simulation study:  

 

1.  Generate 5000 samples of size n from TIGEW distribution. The inversion method 

was used to generate samples.  

2.  Compute the MLEs for 5000 thousand samples, say (𝛼̂, 𝜆̂, 𝛽̂, 𝑐̂) for 𝑖 =

1,2, . . . ,5000.  

3.  Compute the standard errors of the MLEs for the ten thousand samples, say 

(𝑠𝛼̂, 𝑠𝜆̂, 𝑠𝛽̂ , 𝑠𝑐̂) for 𝑖 = 1,2, . . . ,5000. The standard errors were computed by 

inverting the observed information matrices.  

4.  Compute the biases, mean squared errors and coverage lengths given by  

𝐵𝑖𝑎𝑠(𝑛) =
1

5000
∑

5000

𝑖=1

(𝜀𝑖̂ − 𝜀),

𝑀𝑆𝐸(𝑛) =
1

5000
∑

5000

𝑖=1

(𝜀𝑖̂ − 𝜀)2

 

and  

𝐶𝐿(𝑛) =
3.9199

5000
∑

5000

𝑖=1

𝑠𝜀̂𝑖
 

respectively, when 𝜀 = (𝛼, 𝜆, 𝛽, 𝑐). Then these steps are repeated for 𝑛 =
100,105,110, . . . ,300 with 𝛼 = 1, 𝜆 = 1, 𝛽 = 1 and 𝑐 = 1, so computing 

𝐵𝑖𝑎𝑠(𝑛), 𝑀𝑆𝐸(𝑛), 𝐶𝐿(𝑛) for 𝜀 = (𝛼, 𝜆, 𝛽, 𝑐). Figure 2 shows the variation of four biases 

with respect to n. The biases for each parameter either decrease or increase to zero as n 

goes to infinity. Figure 3 shows how the four mean squared errors vary with respect to n. 

The mean squared errors for each parameter decrease to zero as 𝑛 → ∞. In Figure 4, we 

show coverage lengths for each parameters with respect n. The coverage lengths for each 

parameter decrease to zero as 𝑛 → ∞. 

 

The observations of this study are for only one choice for (𝛼, 𝜆, 𝛽, 𝑐), namely that 

(𝛼, 𝜆, 𝛽, 𝑐) = (1,1,1,1). But the results were similar for other choices for (𝛼, 𝜆, 𝛽, 𝑐). In 

particular, 1) the biases for each parameter either decreased or increased to zero and 

appeared reasonably small at 𝑛 = 300; 2) the mean squared errors for each parameter 

decreased to zero and appeared reasonably small at 𝑛 = 300; 3) the coverage lengths for 

each parameter decreased to zero and appeared reasonably small at 𝑛 = 300. 
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Figure 2: 𝐵𝑖𝑎𝑠𝛼(𝑛) (top left), 𝐵𝑖𝑎𝑠𝜆(𝑛) (top right), 𝐵𝑖𝑎𝑠𝛽(𝑛) (bottom left)  

and 𝐵𝑖𝑎𝑠𝑐(𝑛) (bottom right) versus 𝑛 = 100,105,110, . . . . ,300. 
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Figure 3: 𝑀𝑆𝐸𝛼(𝑛) (top left), 𝑀𝑆𝐸𝜆(𝑛) (top right), 𝑀𝑆𝐸𝛽(𝑛) (bottom left)  

and 𝑀𝑆𝐸𝑐(𝑛) (bottom right) versus 𝑛 = 100,105,110, . . . . ,300. 

 

 

 
Figure 4: 𝐶𝐿𝛼(𝑛) (top left), 𝐶𝐿𝜆(𝑛) (top right), 𝐶𝐿𝛽(𝑛) (bottom left) and 𝐶𝐿𝑐(𝑛)  

(bottom right) versus 𝑛 = 100,105,110, . . . . ,300. 
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7.   Applications 

We domonstrate the flexibility of the TIGEW distribution in the application by help of 

two data sets. We compare TIGEW with Kw-Weibull (Cordiero et al., 2010), Beta-

Weibull (Lee et al., 2007) and Beta- Exponentiated Weibull (Cordeiro et al., 2013) 

distributions.  The first data set is given by Ghitany et al. (2008) on the waiting times (in 

minutes) before service of 100 Bank customers. The data set consists of 202 observations 

and was also analyzed by Gupta and Singh (2013), Al-Zahrani and Gindwan (2014) and 

Shanker (2015). The second data set is the body mass index from 202 elite Australian 

athletes who trained at the Australian Institute of Sport from Cook and Weisberg (1994). 

These data are existed in "DPpackage" of R statistical program. 

 

The MLE of parameters, −maximized log-likelihood function, Akaike information 

criterion (AIC), Bayesian information criterion (BIC), Hannan-Quinn information 

criterion (HQIC), Consistent Akaike information criterion (CAIC) (Burnham and 

Anderson, 2002) statistics are determined by fitting mentioned distributions using the two 

data sets. In general, the smaller values of these statistics show the better fit to the data 

sets. The MLEs are computed using the Limited-Memory Quasi-Newton Code for 

Bound-Constrained Optimization (L-BFGS-B). The estimated parameters based on MLE 

procedure are ginen in Tables 1 and 2, whereas the values of goodness-of-fit statistics are 

given in Tables 3 and 4. In the applications, the information about the hazard shape can 

help in selecting a particular model. To do so, a device called the total time on test (TTT) 

plot (Aarset, 1987) is useful. The TTT plot is obtained by plotting  

𝐺(𝑟/𝑛) = [(∑

𝑟

𝑖=1

𝑦𝑖,𝑛) + (𝑛 − 𝑟)𝑦(𝑟)] / ∑

𝑛

𝑖=1

𝑦𝑖,𝑛, 

where 𝑟 = 1, . . . , 𝑛 and 𝑦𝑖,𝑛 (𝑖 = 1, . . . , 𝑛) are the order statistics of the sample, against 

𝑟/𝑛. If the shape is a straight diagonal the hazard is constant. It is convex shape for 

decreasing hazards and concave shape for increasing hazards. 

 

The TTT plot for both data sets presented in Figure 5, from this Figure we note that first 

and second data sets have increasing failure rate functions. In both real data sets, the 

results show that the TIGEW distribution yields a better fit than other distributions. 

Table 1:  Parameters estimates and standard deviation in parenthesis for first 

dataset 

  Model    Estimates  -Log Likelihood 

TIGEW(𝛼, 𝛽, 𝜆, 𝑐)   0.20(0.01), 7.39(0.73), 1.09(0.07), 7.83(0.56)   316.955  

Kw-W(𝑎, 𝑏, 𝛽, 𝑐)  2.33(0.40), 0.30(0.03), 1.13(0.04), 0.33(0.02)   316.975  

BW(𝑎, 𝑏, 𝛽, 𝑐)  3.56(0.22), 4.94(0.31), 0.73(0.04), 0.05(3𝑒−3)   317.023  

BEW(𝑎, 𝑏, 𝛼, 𝑐, 𝜆)   26.98(1.07), 7.88(0.30), 0.14(5𝑒−3), 0.89(0.03), 0.02(1𝑒−3)   316.994  
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Table 2:  Parameters estimates and standard deviation in parenthesis for second 

dataset  

  Model    Estimates   −Log Likelihood  

 TIGEW(𝛼, 𝛽, 𝜆, 𝑐)   0.90(0.06), 60.54(4.25), 2.16(0.02), 11.44(0.09)   488.987  

 kw-W(𝑎, 𝑏, 𝛽, 𝑐)   33.82(2.34), 1.03(0.07), 2.41(0.03), 0.07(6𝑒−4)   489.108  

 BW(𝑎, 𝑏, 𝛽, 𝑐)   76.09(2.59), 4.45(0.14), 1.33(0.01), 0.09(8𝑒−3)   490.102  

Table 3:   Formal goodness of fit statistics for first dataset 

   Model    Goodness of fit criteria  

  𝐴𝐼𝐶   𝐵𝐼𝐶   𝐻𝑄𝐼𝐶   𝐶𝐴𝐼𝐶  

 TIGEW   641.91   652.33   640.01   642.33  

 Kw-W   641.94   652.37   640.05   642.37  

 BW   642.04   652.46   640.15   642.46  

 BEW  643.98   657.01   641.62   644.62  

Table 4:   Formal goodness of fit statistics for second dataset 

  Model    Goodness of fit criteria  

  𝐴𝐼𝐶   𝐵𝐼𝐶   𝐻𝑄𝐼𝐶   𝐶𝐴𝐼𝐶  

 TIGEW   985.97   999.20   984.65   986.17  

 Kw-W   986.217   999.45   984.89   986.42  

 BW   988.205   1001.43   986.88   988.40  

 

 

Figure 5 : TTT-plot for the first dataset (left Fig.) and for the second dataset (right Fig.) 
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8.   Conclusions 

There has been a great interest among the statisticians and practitioners to generate new 

extended families. In this paper, we present a new class of distributions called the Type I 

General Exponential (TIGE) family of distributions, The mathematical properties of this 

new family including explicit expansions for the ordinary and incomplete moments, 

generating function, mean deviations, order statistics, probability weighted moments are 

provided. Characterizations based on two truncated moments are presented. The model 

parameters are estimated by the maximum likelihood estimation method and the observed 

information matrix is determined. Simulation results to assess the performance of the 

maximum likelihood estimators are discussed. It is shown that a special case of the TIGE 

class (TIGEW) can provide a better fit than other models generated by well-known 

families in two real data sets. 
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