
Pak.j.stat.oper.res.  Vol.XIV  No.3 2018  pp501-521 

A Modified DDF-Based Super-Efficiency Modelhandling Negative Data 

Elnaz Babazadeh 
Department of Applied Mathematics 

Azarbaijan Shahid Madani University, Tabriz, Iran 

elnaz.babazadeh@azaruniv.ac.ir 

elnazbabazadeh@ymail.com 

 

Jafar Pourmahmoud 
Department of Applied Mathematics 

Azarbaijan Shahid Madani University, Tabriz, Iran 

pourmahmoud@azaruniv.ac.ir 

Abstract 

In conventional DEA models, inputs and outputs are assumed to be non-negative while negative data may 

occur in some DEA application such as the performance analysis of socially responsible and mutual funds; 

and the macroeconomic performance where “rate of growth of GDP per capita” can be either negative or 

positive. To handle the negative data and provide a measure of efficiency for all units, many researches 

have been studied. In this paper, the radial super-efficiency model based on Directional Distance Function 

(DDF) is modified to provide a complete ranking order of the DMUs (including efficient and inefficient 

ones). The proposed model shows more reliability on differentiating efficient DMUs from inefficient ones 

via a new super-efficiency measure. The properties of proposed model include feasibility, monotonicity and 

unit invariance. Moreover, the model can produce positive outputs when data are non-negative. Apart from 

numerical examples, an empirical study in bank sector demonstrates the superiority of the proposed model. 

Keywords: Data envelopment analysis; Super-efficiency; Negative data; DDF model. 

1. Introduction 

Data Envelopment Analysis (DEA) is a powerful tool in the context of production 

management for performance measurement. The purpose of DEA is to measure the 

relative efficiency of a set of decision making units (DMUs) where multiple inputs 

convert into multiple outputs (Charneset al. (1978)). Conventional DEA models assume 

non-negative values for inputs and outputs. However, there are many applications in 

which one or more inputs and/or outputs are necessarily negative such as the performance 

analysis of socially responsible and mutual funds (Basso & Funari (2014)), and the 

macroeconomic performance where “rate of growth of GDP per capita” can be either 

negative or positive (Lovell(1995)).In DEA literature, there have been various 

approaches for dealing with unrestricted in sign variables. 

 

Pastor (1996) approached negative data using a translation invariance classification, for 

the first time. That is, in light of the translation in variance property in basic DEA models 

such as the additive model, the original negative data can be equivalently converted to 

positive data by adding a constant number. However, many DEA models such as CCR 

may not have this property to be applied as a treatment of negative data (Ali & Seiford, 

1990). A number of significant contributions have been developed in the DEA literature 

to address the occurrence of negative data (e.g., Kerstens & Van de Woestyne (2011); 

Silva Portela et al. (2004)) 
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Silva Portelaet al. (2004) proposed range directional measure (RDM) model using some 

variations of the DDF. Sharp et al. (2007) extended a modified slack-based measure for 

negative data inspired by the Silva’s RDM model. Emrouznejadet al. (2010) proposed a 

Semi-Oriented Radial Measure (SORM). While Kerstens and Van de Woestyne (2011) 

modified the traditional proportional distance function, Cheng et al. (2013) suggested 

variant of the traditional input- or output-oriented radial efficiency measure to handle 

negative inputs and outputs. Kerstens and Van de Woestyne (2014) highlighted some 

shortcomings in Cheng’s method using a more general case of the DDF proposed by 

Kerstens and Van de Woestyne (2011). An overview of the many DEA modeling 

approaches can be found in Pastor and Aparicio (2015). 

 

The super-efficiency procedure presents the possible capability of an efficient DMU in 

expanding its inputs and/or reducing its outputs without becoming inefficient (Chen, Du, 

& Hoa (2013)). Banker and Chang (2006)exploited the super-efficiency model to detect 

and remove the outliers. Further, the super-efficiency DEA approach can be viewed as 

atool for sensitivity analysis where a DMU under evaluation is excluded from reference 

set (see, e.g., Rousseau & Semple (1995); and Zhu(2001)). 

 

Whereas, in the absence of negative data, the classical super-efficiency model under 

constant returns to scale (CRS) does not suffer from the infeasibility problem1,the super-

efficiency model based upon the variable returns to scale (VRS) may be infeasible for a 

given DMU under evaluation (see, e.g., Chen & Liang(2011), Lee et al.(2011) and Lee & 

Zhu (2012)).Many modified VRS radial super-efficiency DEA models were proposed to 

address the infeasibility issue (see, e.g., Cook et al.(2009), Leeet al.(2011)). On the other 

hand, Ray (2008) suggested the VRS Nerlove-Luenberger super-efficiency DEA model, 

based on the DDF model and showed that apart from two exceptions the model is 

feasible. By choosing proper directions, Chen et al. (2013) proposed a DDF-based VRS 

super-efficiency DEA model to address the infeasibility issue in the two exceptions. Lin 

and Chen (2015) considered the model in Chen et al. (2013) when zero data exist in 

outputs. All these modified super-efficiency DEA models are proposed for the non-

negative data and the infeasibility issue when there are negative inputs or outputs still 

exists. In 2013, for the first time, Hadi-Vencheh and Esmaeilzadeh (2013) provided a 

super-efficiency model based on the RDM model (VE model) for ranking DMUs in the 

presence of negative data. However, Pourmahmoud et al. (2016) highlighted some 

shortcomings in VE model and proved the model suffers from the common infeasibility 

and unboundedness problems. Recently, Lin and Chen (2017) proposed a novel DDF-

based VRS radial super-efficiency DEA model which is feasible and is able to handle 

negative data. They claimed that their proposed model can provide a measure of 

efficiency for all DMUs in the presence of negative data. This paper highlights some 

cases that their model is not responding for ranking of DMUs for example when DMUs 

consume the same inputs. Apart from Hadi-Vencheh and Esmaeilzadeh (2013), and Lin 

and Chen (2017), super-efficiency models with negative data have received no attention 

in the literature. The contribution of this paper is fivefold: 

                                      
1
Note that zero data can make the super-efficiency model under CCR infeasible (Lee and Zhu (2012)) 
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1. A modified DDF based super-efficiency model interacting with negative data is 

proposed. 

2. The proposed model is always feasible and conveys good properties such as unit 

invariance, monotonicity, and providing positive outputs when data are non-

negative. 

3. The proposed model can provide a ranking order for all DMUs via a new super-

efficiency measure and produce improved targets for inefficient units.  

4. By using different changing rates for inputs and outputs in the proposed model, 

DMU reaches the frontier with maximum potential in inputs and outputs. 

5. This study shows that in distinguishing DMUs to efficient and inefficient ones, 

proposed model shows higher reliability than the other super-efficiency model 

compared in this study. 

 

The rest of the paper is outlined as follows. Section 2 briefly presents the concept of 

DDF,DDF-based super-efficiency model and the model proposed by Lin and Chen 

(2017). In Section 3, a modified DDF-based super-efficiency model handling negative 

data is introduced. In section 4, the proposed model is applied to a numerical example. 

The penultimate section is devoted to an illustration application and finally Section 6 

concludes this study. 

2. Preliminaries 

2.1. DDF model 

Consider a set of n observed DMUs, {𝐷𝑀𝑈𝑗  (𝑗 = 1,2, … , 𝑛)} where each observation 

transforms m inputs,𝑥𝑖𝑗  (𝑖 = 1,2, … ,𝑚), into outputs, 𝑦𝑟𝑗  (𝑟 = 1,2, … , 𝑠). Consider an 

input-output bundle of 𝐷𝑀𝑈𝑜(𝑥𝑜, 𝑦𝑜) and a reference input-output bundle(𝑔𝑥, 𝑔𝑦). 
Furthermore, assume that all data are non-negative. Production possibility set 𝑇𝑜(𝑥, 𝑦) 
from the observed input-output for n DMUs can be defined as follows: 

𝑇𝑜(𝑥, 𝑦) = {(𝑥, 𝑦): 𝑥 ≥∑𝜆𝑗𝑥𝑗;  𝑦 ≤∑𝜆𝑗𝑦𝑗;∑𝜆𝑗 = 1

𝑛

𝑗=1

; 𝜆𝑗 ≥ 0; (𝑗 = 1,2, … , 𝑛)

𝑛

𝑗=1

𝑛

𝑗=1

} 

which is constructed assuming convexity, free disposibility of inputs and outputs, and 

VRS. 

 

Based on 𝑇𝑜, the DDF regarding 𝑇𝑜(𝑥, 𝑦) can be expressed as follows (Chambers et 

al.(1996)): 

𝐷(𝑥𝑜 , 𝑦𝑜; 𝑔
𝑥, 𝑔𝑦) = max𝛽 : (𝑥𝑜 − 𝑔

𝑥, 𝑦𝑜 + 𝑔
𝑦) ∈ 𝑇𝑜.                               (1) 

 

The reference bundle (𝑔𝑥, 𝑔𝑦) can be chosen in an arbitrary way and this makes the DDF 

varies with reference to the evaluated DMU. The VRS DEA formulation for model (1) is 

as follows:  

𝑚𝑎𝑥   𝛽 

𝑠. 𝑡.   ∑𝜆𝑗𝑥𝑖𝑗 ≤ 𝑥𝑖𝑜 − 𝛽𝑔
𝑥

𝑛

𝑗=1

,     i = 1, 2, … ,m, 

(2) 
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∑𝜆𝑗𝑦𝑟𝑗 ≥ 𝑦𝑟𝑜 + 𝛽𝑔
𝑦

𝑛

𝑗=1

,     r = 1, 2, … , s, 

∑𝜆𝑗 = 1

𝑛

𝑗=1

,     

        𝜆𝑗 ≥ 0,         j = 1, 2, … , n.. 

Model (2) combines the features of both an input- and output-oriented models in which 

each input and output of the unit under assessment are decreased and increased 

respectively, at the same time by the same portion β.The factor 𝛽∗as the optimal value of 

βin model (2) is the Nerlove–Luenberger (N–L) measure of technical inefficiency for the 

evaluated DMU. By implication, its efficiency equals 1 − 𝛽∗ (Ray (2008)).  

2.2. Super-efficiency model based on DDF 

The idea behind the super-efficiency method is that a DMU under analysis is excluded 

from the reference set so that the efficientDMUs can receive scores greater than or equal 

to the unity while the score for the inefficient DMUs do not change. In so doing, the 

super-efficiency version of model (1) is obtained when DMUounder evaluation is 

removed from the reference set.𝑇𝑜
𝑠(𝑥, 𝑦) of super-efficiency for nDMUs can be defined 

as follows: 

𝑇𝑜
𝑠(𝑥, 𝑦) =

{
 
 

 
 

(𝑥, 𝑦): 𝑥

≥∑𝜆𝑗𝑥𝑗 ;  𝑦 ≤∑𝜆𝑗𝑦𝑗;∑𝜆𝑗 = 1

𝑛

𝑗=1
𝑗≠𝑜

; 𝜆𝑗 ≥ 0; (𝑗 = 1,2, … , 𝑛; 𝑗 ≠ 𝑜)

𝑛

𝑗=1
𝑗≠𝑜

𝑛

𝑗=1
𝑗≠𝑜 }

 
 

 
 

 

The super-efficiency based on DDF model (Model (1)) is as follows: 

𝐷(𝑥𝑜 , 𝑦𝑜; 𝑔
𝑥, 𝑔𝑦) = max𝛽 : (𝑥𝑜 − 𝑔

𝑥, 𝑦𝑜 + 𝑔
𝑦) ∈ 𝑇𝑜

𝑠. 

DDF-based super-efficiency DEA model can be established as follows: 

max   𝛽 

s. t.   ∑λjxij ≤ xio − 𝛽𝑔
𝑥

n

j=1
j≠o

,     i = 1, 2, … ,m, 

∑ λjyrj ≥ yro + 𝛽𝑔
𝑦n

j=1
j≠o

,     r = 1, 2, … , s,  

∑λj = 1

n

j=1
j≠o

, 

          λj ≥ 0,   j = 1, 2, … , n;  j ≠ o. 

(3) 
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Ray (2008) defined the super-efficiency score of the evaluated DMUo equals1 − 𝛽𝑜
∗, 

where 𝛽𝑜
∗ is the optimum value of model (3). The smaller the value of 𝛽𝑜

∗, more efficient 

the DMUo is. For any efficient DMUo, 1 − 𝛽𝑜
∗ is no less than 1. 

 

The direction vector (𝑔𝑥, 𝑔𝑦) should be non-negative and non-zero, and can be chosen in 

anarbitrary way (Chen et al. (2013), Ray (2008)). I fall input and output data are non-

negative, the standard DDF for the DMUo is adopted by choosing (𝑥𝑜 , 𝑦𝑜) as (𝑔𝑥, 𝑔𝑦) 
(Chambers et al. (1998)) and the N-L super-efficiency model (NLS model) is obtained. 

The NLS model is very often feasible for non-negative data, but it fails in two cases (Ray 

(2008)). To address these infeasibility issues, Chen et al. (2013) selected a new reference 

input–output bundle for the DDF and propose a modified DDF-based VRS super-

efficiency model. However Lin and Chen (2015) showed that the model proposed by 

Chen et al. (2013) does not fully eliminate the infeasibility issue in Ray (2008). In this 

regards, Lin and Chen (2015) proposed a modified DDF-based super-efficiency DEA 

model (LCS model) by choosing(𝑥𝑖𝑜 +max
j≠o

{𝑥𝑖𝑗} , 𝑦𝑟𝑜) as (𝑔𝑥, 𝑔𝑦). The LCS model 

successfully addresses the infeasibility issue in conventional VRS radial super-efficiency 

DEA models and the NLS model under non-negative data. 

2.3. Proposed model by Lin and Chen(2017) 

Lin and Chen (2017) showed that in the presence of negative data, both the NLS and LCS 

models might be infeasible. This is because their related direction vectors might be 

negative, which could result in the DMUo to be further away from the super-efficiency 

frontier and thus lead to infeasibility. Accordingly, they choose a new direction vector 

which is always non-negative and non-zero, independent of inputs and outputs being non-

negative or not. Their proposed model is as follows: 

max   𝛽 

s. t.   ∑λjxij

n

j=1
j≠o

≤ (1 − 𝛽)xio − 𝑎𝑖𝛽,     i = 1, 2, … ,m, 

∑ λjyrj
n
j=1
j≠o

≥ (1 + 𝛽)yro − 𝑏𝑟𝛽,     r = 1, 2, … , s, 

∑λj = 1

n

j=1
j≠o

, 

         λj ≥ 0,   j = 1, 2, … , n;  j ≠ o 

(4) 

 

Where𝑎𝑖 = 𝑘 ∗ max
𝑗=1,2,…,𝑛

{|𝑥𝑖𝑗|} , 𝑖 = 1,2, … ,𝑚 and 𝑏𝑟 = min
𝑗=1,2,…,𝑛

{𝑦𝑟𝑗} , 𝑟 = 1,2, … , 𝑠; k is 

a constant, satisfying k ≥ 3. 

 

To exemplify the Lin and Chen’s proposed model (4), let us consider the numerical 

example presented in Table1 where there are eight DMUs with one positive input(𝑥), and 

two free in sign-valued outputs(𝑦1 𝑎𝑛𝑑 𝑦2). 
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Table 1:    Numerical example 

DMUs 𝑥 𝑦1 𝑦2 

A 1 -6 5 

B 1 -6 3 

C 1 -5 -2 

D 1 -2 -5 

E 1 2 -6 

F 1 -3.5 3.5 

G 1 6.5 -3 

H 1 5 2 

 

The results of applying model (4) to the DMUs in Table 1 are presented in Table 2. The 

optimal values of 1 − 𝛽∗ besides the optimal slack values (s*;𝑡1
∗,𝑡2

∗)are shown in columns 

two-five. The input and outputs projections(𝑥∗; 𝑦1
∗, 𝑦2

∗) are represented in the columns 

six-eight. Projection points are computed by inserting the optimal value in the right-hand 

side of the input and output inequalities in model (4). 

Table 2.   The results of numerical example 

DMUs 1 − 𝛽∗   s* 𝑡1
∗ 𝑡2

∗ 𝑥∗ 𝑦1
∗ 𝑦2

∗ 

A 1.1364 0.5455 2.5000 0.0000 1.5455 -6.0000 3.5000 

B 1.0000 0.0000 7.3333 0.0000 1.0000 -6.0000 3.0000 

C 1.0000 0.0000 10.0000 4.0000 1.0000 -5.0000 -2.0000 

D 1.0000 0.0000 7.0000 7.0000 1.0000 -2.0000 -5.0000 

E 1.0000 0.0000 3.0000 8.0000 1.0000 2.0000 -6.0000 

F 1.0000 0.0000 3.0000 0.0000 1.0000 -3.5000 3.5000 

G 1.1200 0.4800 0.0000 5.3600 1.4800 5.0000 -3.3600 

H 1.2657 1.0627 0.0000 0.0000 2.0627 2.0776 -0.1254 

 

Table 2 reports that𝛽𝐵
∗ = 𝛽𝐶

∗ = 𝛽𝐷
∗ = 𝛽𝐸

∗ = 𝛽𝐹
∗ = 0,𝛽𝐴

∗ = −0.1364,𝛽𝐺
∗ = −0.1200 

and𝛽𝐻
∗ = −0.2657. DMUs A, G and H are Pareto-efficient, while DMUs B, C, D, E and 

F are inefficient due to the optimal slack-values. Table 1 shows that all the DMUs are on 

the frontier in their input components meaning that input level is efficient; but due to 

illogical results for DMUs A, G and H the input projections are not on the efficient 

frontier, as represented in the sixth column of Table 2. This is because𝑥𝑖𝑜 + 𝑎𝑖 > 0, 𝑖 =
1, 2, … ,𝑚 for each 𝑜 ∈ {1, 2, … , 𝑛} and model (4) uses a unified changing rate 𝛽 for both 

inputs and outputs. Thus, when DMUs consume the same inputs, our expectation is 𝛽∗ =
0 and 𝑥∗ = 1 for all DMUs whether efficient or inefficient. This demonstrates that the 

optimal values of 𝛽∗and the projection points for DMUs A, G and H are illogical results. 

Consequently, using the 1 − 𝛽∗ as the super-efficiency measure, model (4) is unable to 

provide a complete ranking order for all DMUs. Note that this expectation is not true, 

when DMUs produce the same outputs; because in this case 𝑦𝑟𝑜 − 𝑏𝑟 = 0, 𝑟 = 1, 2, … , 𝑠 
for each 𝑜 ∈ {1, 2, … , 𝑛}and the output constraints in model (4) is disappeared due to 

convexity constraint. 
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3. Proposed super-efficiency model  

The single input and both outputs cannot be moved at the same rate to the frontier due to 

the fact that input level is already efficient, as shown in Table 1. The proposed model by 

Lin and Chen (2017) is unable to provide a complete ranking order for all the DMUs 

when DMUs consume the same inputs. Different rates 𝛽𝑥 and 𝛽𝑦 should be used for 

inputs and outputs, respectively. To this end, the proposed model is as follows: 

max   𝛽𝑥 + 𝛽𝑦 

𝑠. 𝑡.   ∑𝜆𝑗𝑥𝑖𝑗

𝑛

𝑗=1
𝑗≠𝑜

≤ 𝑥𝑖𝑜 − (𝑥𝑖𝑜 + 𝑎𝑖)𝛽𝑥,     𝑖 = 1, 2, … ,𝑚, 

∑ 𝜆𝑗𝑦𝑟𝑗
𝑛
𝑗=1
𝑗≠𝑜

≥ 𝑦𝑟𝑜 + (𝑦𝑟𝑜 − 𝑏𝑟)𝛽𝑦,     𝑟 = 1, 2, … , 𝑠,  

          𝛽𝑥. 𝛽𝑦 ≥ 0 

∑𝜆𝑗 = 1

𝑛

𝑗=1
𝑗≠𝑜

, 

         𝜆𝑗 ≥ 0,   j = 1, 2, … , n;  j ≠ o 

(5) 

 

In order to the evaluated DMU reach to the super-efficiency frontier, following 

conditions are required. If DMUo is efficient, inputs should be increased and outputs 

should be contracted, which means 𝛽𝑥 ≤ 0and𝛽𝑦 ≤ 0. And if DMUo is inefficient, inputs 

should be contracted and outputs should be increased, which means𝛽𝑥 ≥ 0and𝛽𝑦 ≥ 0. 

These conditions are incorporated by enforcing 𝛽𝑥. 𝛽𝑦 ≥ 0 into the model (5). Due to the 

constraint of 𝛽𝑥. 𝛽𝑦 ≥ 0, model (5) is a non-linear programming problem. This non-linear 

programming problem can be transformed to a linear programming problem using the 

following procedure. Two binary variables, w and z are introduced and the non-linear 

constraint 𝛽𝑥. 𝛽𝑦 ≥ 0is transformed into a set of linear constraints as follows: 

−𝑀(1 − 𝑤) ≤ 𝛽𝑥 ≤ 𝑀𝑤 

−𝑀𝑧 ≤ 𝛽𝑦 ≤ 𝑀(1 − 𝑧) 

𝑧 + 𝑤 = 1, 𝑧 ∈ {0,1},     𝑤 ∈ {0,1} 
where M is a sufficiently large number. Obviously, w=1 and z=0 signify 𝛽𝑥 ≥ 0and𝛽𝑦 ≥

0, respectively; and w=0 and z=1 signify  𝛽𝑥 ≤ 0 and 𝛽𝑦 ≤ 0, respectively.  By 

substitution of this set of the linear constraints for 𝛽𝑥. 𝛽𝑦 ≥ 0, model (5) becomes a 

mixed integer linear programming problem. When the evaluated DMU moves 

simultaneously to the frontier through direction of 𝛽𝑥and  𝛽𝑦, the non-zero slacks may be 

survived. To verify the existence of non-zero slack(s), a non-Archimedean infinitesimal 

with sum of slacks is incorporated into the objective function of model (5) to reflect the 

optimal slack calculation process in the standard DEA model. 

 

Proposition 1.Model (5) is always feasible and the following inequalities are hold: 

a) 0 ≤ 𝛽𝑥
∗ < 1and0 ≤ 𝛽𝑦

∗for (𝑥𝑖𝑜, 𝑦𝑟𝑜) ∈ 𝑇𝑜
𝑠;and also 

b)  −1 ≤ 𝛽𝑥
∗ < 0and−1 ≤ 𝛽𝑦

∗ < 0 for(𝑥𝑖𝑜 , 𝑦𝑟𝑜)𝑇𝑜
𝑠. 

 

Proof. The proof is given in Appendix A. 
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Corollary 1.Let 𝛽𝑥
∗ and 𝛽𝑦

∗ be the optimal solutions of model (5), then
1−𝛽𝑥

∗

1+𝛽𝑦
∗ ≥ 0. 

According to corollary 1, the measure of super-efficiency can be defined as following: 

Definition 1.Let𝜌∗ =
1−𝛽𝑥

∗

1+𝛽𝑦
∗

2, then 

(a)  If𝜌∗ > 1, then DMUo is an extreme efficient unit. 

(b)  If 𝜌∗ = 1andthe optimal value of the slacks generated by model (5) are zero, then 

DMUo is a non-extreme efficient unit. 

(c)  If 𝜌∗ = 1and the optimal value of the slacks produce by model (5) are non-zero, 

then DMUo is a weak efficient unit. 

(d)  If 𝜌∗ < 1, then DMUo is an inefficient unit. 

 

From model (5) the output-projections for 𝐷𝑀𝑈𝑜 are 

 

𝑦𝑟𝑜
∗ = (1 + 𝛽𝑦

∗)yro − 𝑏𝑟𝛽𝑦
∗ = 𝑦𝑟𝑜 + (𝑦𝑟𝑜 − 𝑏𝑟)𝛽𝑦

∗ ,     r = 1, 2, … , s 

where𝛽𝑦
∗ is the optimal value of model (5).According to Proposition 1,  

𝑦𝑟𝑜
∗ = 𝑦𝑟𝑜 + (𝑦𝑟𝑜 − 𝑏𝑟)𝛽𝑦

∗ ≥ 𝑦𝑟𝑜 ,when(𝑥𝑖𝑜 , 𝑦𝑟𝑜) ∈ 𝑇𝑜
𝑠     and 

𝑦𝑟𝑜
∗ = 𝑦𝑟𝑜 + (𝑦𝑟𝑜 − 𝑏𝑟)𝛽𝑦

∗ ≥ 𝑦𝑟𝑜 − (𝑦𝑟𝑜 − 𝑏𝑟) = 𝑏𝑟 , when (𝑥𝑖𝑜 , 𝑦𝑟𝑜)𝑇𝑜
𝑠.∎ 

 

Therefore, the following Lemma is hold. 

 

Lemma 2.For the data set with non-negative outputs, 𝑦𝑟𝑜
∗ ≥ 0satisfies for any DMUo 

(𝑜 ∈ {1,2, … , 𝑛}). 
 

Corollary 2.If𝛽𝑥 = 𝛽𝑦 = 𝛽 in model (5), the proposed model is equivalent with the 

model (4), consequently the conceptual problem described in Ray (2008) does not occur. 

 

Proposition 2. Model (5) is unit invariant. 

Proof. The proof is given in Appendix B. 

 

Proposition 3.If inputs (outputs) of the DMUo are reduced (increased), the optimal value 

of model (5) does not increase. 

Proof. The proof is given in Appendix C. 

 

Further examination of the proposed method is made by applying DMUs in Table 1. 

Table 3 reports the results when proposed model is applied to the numerical example in 

Table1. The optimal solutions of the proposed model i.e. the optimal values of 𝛽𝑥
∗ and𝛽𝑦

∗ 

are shown in the second and third columns of Table 3, respectively; and the super-

efficiency measure (𝜌∗)is presented in the fourth column. The columns five-seven of 

Table 3 show the projection point for a DMU under evaluation.  

                                      
2Note that Whenβy

∗ = −1, 𝜌∗ diverges to infinity, hence the super-efficiency measure is 

assumed to be infinity. 
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Table 3:    The results of applying proposed model for data set in Table 1 (M=100) 

ranking 

order 
𝑦2
∗ 𝑦1

∗ 𝑥∗ 𝜌∗ 𝛽𝑦
∗ 𝛽𝑥

∗ DMUs 

2 3.5000 -6.0000 1.0000 1.1579 -0.1364 0.0000 A 

5 5.0000 -6.0000 1.0000 0.8182 0.2222 0.0000 B 

7 4.2979 -3.4255 1.0000 0.3884 1.5745 0.0000 C 

8 -2.8837 6.4651 1.0000 0.3209 2.1163 0.0000 D 

6 -6.0000 6.5000 1.0000 0.6400 0.5625 0.0000 E 

4 4.2634 -3.2991 1.0000 0.9256 0.0804 0.0000 F 

3 -3.3600 5.0000 1.0000 1.1364 -0.1200 0.0000 G 

1 -0.1254 2.0776 1.0000 1.3618 -0.2657 0.0000 H 

 

The results show that DMUs A, G and H are efficient; since their supper-efficiency 

measures are greater than one. However, DMUs B, C, D, E and F are inefficient, since 

their supper-efficiency measures are less than one. Using different changing rates for 

input and outputs, proposed model provides βx
∗ = 0 for all DMUs, unlike the model (4). 

Column five shows thatx∗ = 1for all the DMUs, and this logical outcome was expected. 

The proposed model provided ranking order for all the DMUs, shown in column eight: 

𝐻 ≻ 𝐴 ≻ 𝐺 ≻ 𝐹 ≻ 𝐵 ≻ 𝐸 ≻ 𝐶 ≻ 𝐷. 

4. Numerical example 

In this section, data set of “the notional effluent processing system” from Sharp et al. 

(2007) is used to show the applicability and merits of the proposed model. 

 

The data set is presented in Table 4. There are 13 DMUs, with two inputs {x1, x2} and 

three outputs {y1, y2, y3}:one positive input (cost), one non-positive input (effluent), one 

positive output (saleable output), and two non-positive outputs (methane and CO2). 

Table 4:    Data sets extracted from Sharp 

DMUs x1 x2 y1 y2 y3 

A 1.03 -0.05 0.56 -0.09 -0.44 

B 1.75 -0.17 0.74 -0.24 -0.31 

C 1.44 -0.56 1.37 -0.35 -0.21 

D 10.8 -0.22 5.61 -0.98 -3.79 

E 1.3 -0.07 0.49 -1.08 -0.34 

F 1.98 -0.1 1.61 -0.44 -0.34 

G 0.97 -0.17 0.82 -0.08 -0.43 

H 9.82 -2.32 5.61 -1.42 -1.94 

I 1.59 0 0.52 0.00 -0.37 

J 5.96 -0.15 2.14 -0.52 -0.18 

K 1.29 -0.11 0.57 0.00 -0.24 

L 2.38 -0.25 0.57 -0.67 -0.43 

M 10.3 -0.16 9.56 -0.58 0.00 

 

Table 5, shows the results of applying model (4) and model (5) on data sets used in Table 

4. The optimal values of𝛽𝑥
∗, 𝛽𝑦

∗ and the super-efficiency measure 𝜌∗ are represented in the 
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columns four-sixin Table 5, respectively. DMUs C, G, H, K and M are efficient, since 

their super-efficiency measures are greater than 1. Other DMUs are inefficient, since their 

supper-efficiency measures are less than 1. The ranking order for DMU M is superior to 

other DMUs, as shown in the seventh column in Table 5. 

Table 5:   Applying the proposed model for data set in Table 4(M=100) 

Ranking 

Order 
𝜌∗ 𝛽𝑦

∗ 𝛽𝑥
∗ 

Ranking 

Order 
1 − 𝛽∗ DMUs 

7 0.9866 0.0136 0.0000 7 0.9982 A 

9 0.9648 0.0253 0.0108 10 0.9863 B 

3 1.0629 0.0000 -0.0629 3 1.0412 C 

13 0.5714 0.7501 0.0000 13 0.9192 D 

8 0.9713 0.0296 0.0000 8 0.9955 E 

10 0.9552 0.0398 0.0068 9 0.9921 F 

5 1.0120 0.0000 -0.0120 5 1.0108 G 

2 1.4239 0.0000 -0.4239 2 1.4023 H 

6 0.9912 0.0000 0.0088 6 1.0000 I 

11 0.9482 0.0000 0.0518 11 0.9829 J 

4 1.0406 -0.0310 -0.0083 4 1.0292 K 

12 0.9132 0.0655 0.0270 12 0.9694 L 

1 2.1747 -0.5402 0.0000 1 1.5402 M 

 

As it is shown in the second and the sixth columns in Table 5, both models are feasible 

for all DMUs and they can differentiate the performance of both efficient and inefficient 

DMUs for used data set. The ranking orders of both models are close; however their 

super-efficiency measures are different. This is due to the fact that, in proposed model 

i.e., model (5) different rates, 𝛽𝑥 and 𝛽𝑦 for inputs and outputs respectively are used, 

while the same rates are used for both inputs and outputs in the model (4). The super-

efficiency measure provided by Model (4) for DMU I is 1.0000 however, the measure of 

𝜌∗ as the measure of super-efficiency yielded by model (5) is 0.9912. This shows that 

model (5) is more responsive than model (4) and it can differentiate the DMUs more 

discretely. Table 6 shows the target input-output values of inefficient DMUs, determined 

by the model (5). The proposed model demonstrates that in each inefficient DMU, the 

inputs and the outputs should be reduced and expanded, respectively, in order to tend to 

the super-efficiency frontier. Hence, the proposed model can provide improved target 

inputs and outputs for all the inefficient DMUs. 

Table 6:   Improved targets for inefficient DMUs 

𝑦3
∗ 𝑦2

∗ 𝑦1
∗ 𝑥2

∗ 𝑥1
∗ DMUs 

-0.3944 -0.0719 0.5610 -0.0500 1.0300 A 

-0.2220 -0.2102 0.7463 -0.2436 1.3801 B 

-3.7900 -0.6500 9.4503 -0.2200 10.8000 D 

-0.2380 -1.0699 0.4900 -0.0700 1.3000 E 

-0.2027 -0.4010 1.6546 -0.1463 1.7479 F 

-0.3700 0.0000 0.5200 -0.0614 1.2900 I 

-0.1800 -0.5200 2.1400 -0.5029 3.9724 J 

-0.2100 -0.6209 0.5752 -0.4314 1.4400 L 
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Lin and Chen (2017) calculated the improved targets for inefficient DMUs. By 

comparison of their results and the results obtained using proposed model, shown in 

Table 6, it can be concluded that for some of the DMUs the targets obtained using model 

(4) is more improved (in some components) than the one obtained using model (5). In 

other DMUs the proposed model provided more improved targets (in some components) 

than the model (4). These variations are due to having different directions in their 

movements to reach the super-efficiency frontier.  

5. An empirical application 

In this section the proposed model is illustrated by applying it to a real world data of the 

61 banks in the GCC3 countries. In this evaluation, the input variables are total assets, 

capital and deposits. The output variables are loans and equity in each branch. Note that 

the last output could take both positive and negative values among the banks. For full 

definitions of variables see Emrouznejad and Anouze (2010). Table 7 below shows the 

descriptive statistics of the variables. 

Table 7:   Descriptive statistics of the banks data 

Variables (million $) Min Max Mean Median St. Dev 

Inputs      

Assets 252.49 29313 5569.16 2390.31 6667.20 

Equity 50.19 2381.04 627.15 398.84 615.02 

Deposit 26.05 25251.31 4495.24 2006.6 5560.15 

Outputs      

Loan 120.97 15379 2777.32 1427.89 3222.04 

Profit -51 647.7 93.11 41.59 128.45 

 

The outcomes after applying assumed data set in Model (4) and in model (5) are reported 

in Table 8. 

                                      
3
The Gulf Cooperation Council (GCC), is a trade bloc involving the six Arab states of thePersian Gulf with 

many economic and social objectives (for full details see www.gcc-sg.org). 
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Table 8: Outcomes after applying the assume data on the model (4) and the model 

(5) (M=100) 

Banks VE model 1 − 𝛽∗ 
Ranking 

Order 
𝛽𝑥
∗ 𝛽𝑦

∗ 𝜌∗ 
Ranking 

Order 

1 Infeasible 1.0052 6 -0.0052 0.0000 1.0052 6 

2 0.9639 0.9904 37 0.0000 0.1116 0.8996 36 

3 1.0077 1.0016 11 -0.0016 0.0000 1.0016 11 

4 0.9327 0.9796 46 0.0000 0.405 0.7117 55 

5 1.0121 1.0030 8 -0.0031 0.0000 1.0031 8 

6 0.9038 0.9743 49 0.0000 0.6089 0.6215 56 

7 1.523 1.0946 3 -0.1352 0.0000 1.1352 3 

8 0.9442 0.9869 41 0.0000 0.6786 0.5957 57 

9 Infeasible 1.1699 2 -0.0067 -0.1699 1.2127 2 

10 0.9009 0.9673 52 0.0000 0.3600 0.7353 53 

11 0.997 0.9994 19 0.0000 0.1358 0.8805 40 

12 0.9879 0.9977 27 0.0000 0.6824 0.5944 58 

13 0.9677 0.9910 36 0.0000 0.3466 0.7426 51 

14 0.9991 0.9998 16 0.0000 0.0116 0.9885 19 

15 0.9920 0.9983 25 0.0000 0.0401 0.9615 23 

16 0.9602 0.9873 40 0.0000 0.2658 0.7900 49 

17 0.9014 0.9752 48 0.0000 0.8026 0.5548 59 

18 0.9951 0.9989 22 0.0000 0.0617 0.9419 28 

19 0.975 0.9936 33 0.0000 0.0513 0.9512 26 

20 0.8804 0.9689 50 0.0000 0.8955 0.5276 60 

21 0.9969 0.9992 21 0.0000 0.0409 0.9607 24 

22 1.0051 1.0015 12 -0.0015 0.0000 1.0015 12 

23 0.9899 0.9971 28 0.0000 0.0359 0.9653 22 

24 0.9952 0.9985 23 0.0000 0.0344 0.9668 21 

25 0.973 0.9916 35 0.0000 0.2267 0.8152 47 

26 1.0585 1.0130 4 -0.0140 0.0000 1.0140 4 

27 0.9962 0.9993 20 0.0000 0.0105 0.9896 18 

28 0.9802 0.9946 31 0.0000 0.2103 0.8262 45 

29 0.9825 0.9952 30 0.0000 0.0558 0.9471 27 

30 0.7877 0.9194 53 0.0000 1.2558 0.4433 61 

31 1.0004 1.0001 15 -0.0001 0.0000 1.0001 16 

32 0.9986 0.9996 18 0.0000 0.0140 0.9862 20 

33 0.9991 0.9997 17 0.0000 0.0024 0.9977 17 

34 0.9754 0.9946 31 0.0000 0.2291 0.8136 48 

35 0.9643 0.9901 38 0.0000 0.1251 0.8888 38 

36 0.9984 0.9996 18 0.0000 0.0139 0.9363 31 

37 0.9489 0.9850 43 0.0000 0.1324 0.8831 39 

38 0.9563 0.9867 42 0.0000 0.3006 0.7689 50 

39 0.8865 0.9675 51 0.0000 0.3934 0.7177 54 

40 0.9949 0.9985 23 0.0000 0.0469 0.9552 25 

41 0.9179 0.9794 47 0.0000 0.1405 0.8768 42 

42 0.9837 0.9967 29 0.0000 0.1512 0.8686 43 

43 0.9935 0.9982 26 0.0000 0.0690 0.9354 32 

44 0.9979 0.9996 18 0.0000 0.0657 0.9384 29 

45 1.0017 1.0003 14 -0.0003 0.0000 1.0004 14 

46 Infeasible 1.2310 1 0.0000 -0.2310 1.3004 1 

47 0.994 0.9984 24 0.0000 0.0674 0.9368 30 

48 1.0249 1.0036 7 -0.0037 0.0000 1.0037 7 

49 1.0025 1.0008 13 -0.0008 0.0000 1.0008 13 

50 1.0206 1.0028 9 -0.0029 0.0000 1.0029 9 

51 1.0059 1.0020 10 -0.0021 0.0000 1.0021 10 

52 0.9301 0.9823 44 0.0000 0.2250 0.8163 46 

53 0.9157 0.9799 45 0.0000 0.1384 0.8784 41 

54 1.028 1.0058 5 -0.0071 0.0000 1.0071 5 

55 0.9562 0.9884 39 0.0000 0.0972 0.9114 35 

56 0.9794 0.9939 32 0.0000 0.0717 0.9331 33 

57 0.956 0.9867 42 0.0000 0.2026 0.8315 44 

58 0.9938 0.9997 17 0.0000 0.0780 0.9277 34 

59 0.9755 0.9926 34 0.0000 0.1245 0.8893 37 

60 1.0009 1.0003 14 -0.0003 0.0000 1.0003 15 

61 0.9681 0.9939 32 0.0000 0.3468 0.7425 52 
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From the second, third and the sixth columns in Table 8, VE model is infeasible for 

DMUs 1, 9 and 46. Both models (4) and (5) are feasible for all DMUs; however their 

super-efficiency measures are different. 16 DMUs are found efficient by both models. 

The super-efficiency measure provided by Model (4) for DMUs 14, 32, 33, 36, 44 and 58 

is almost 1.0000 (this is the case when the values are rounded with 3 decimal digits); 

however the measure of 𝜌∗ as the measure of super-efficiency yielded by proposed model 

is 0.9885, 0.9862, 0.9977, 0.9863, 0.9384 and 0.9277. The result shows that model (5) is 

more precise and responsive than model (4) in discriminating the DMUs. From Table 

8,all the super-efficiency scores yielded by model (5) for inefficient(efficient) DMUs are 

less than or equal (bigger than or equal)to those generated by model (4) as shown in 

Figure 1.Thus, super-efficiency scores vary from 0.9194 to 1.2310 under the Lin and 

Chen’s model, whereas they vary from 0.4433 to 1.3004 under our proposed model. As 

can be seen,in general, the super-efficiency scores obtained from model (4) is around 

1.0000 for inefficient DMUs, whereas these scores yielded from model (5) have bigger 

changing ranges for inefficient ones. From Table 8, DMUs 46 and 30 have the best and 

the worst performance, respectively under both models. Column seven presents a 

complete ranking order for all DMUs (both efficient and inefficient ones) using proposed 

model. However, Lin and Chen’s model cannot put discriminations between some 

inefficient DMUs: between DMUs 45 and 60,DMUs 33 and 58,DMUs 32, 36 and 

44,DMUs 24 and 40,DMUs 28 and 34,DMUs 56 and 61,and also DMUs 38 and 57. 

 

 

Figure 1:  Comparison of efficiency score from Lin and Chen’s model  

and our proposed model. 
 

 
 

Table 9 shows the target input-output values of inefficient DMUs, determined by both 

models.  
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Table 9:   Improved targets for inefficient DMUs provided by two models 

Banks 

Input targets (million $) Output targets (million $) 

Proposed model Lin & Chen’s model Proposed model Lin & Chen’s model 

ASST EQTY DEPO ASST EQTY DEPO LOAN PROF LOAN PROF 

2 7538.18 1197.54 5907.17 6617.272 1117.092 5119.522 5253.485 183.8281 4782.684 162.2876 

4 4380.82 565.94 3731.92 2496.008 408.551 2109.128 2680.895 110.8868 1980.148 66.5723 

6 5135.9 830.62 3819.89 2747.486 626.0042 1777.93 3414.922 126.6405 2220.816 62.2433 

8 1578.94 343.73 1196.72 403.3107 245.406 186.1356 568.6948 47.9013 391.2029 8.6938 

10 11827.75 947.4 10201.28 8565.898 682.8822 7390.993 5771.99 226.6537 4412.044 159.835 

11 557.8217 101.8401 448.9115 506.7941 97.6627 404.9726 481.3384 12.7962 438.4429 5.2024 

12 578.9017 73.8301 490.7114 373.3876 57.0744 313.6925 414.831 11.7863 296.0455 -13.5934 

13 1519.85 200.55 1295.13 718.7452 134.7874 605.155 809.5766 41.4435 636.9193 18.2648 

14 894.68 123.3 739.03 875.712 121.7485 722.697 731.5667 21.9483 724.6789 21.1254 

15 4011.57 398.84 3350.71 3859.332 386.3531 3219.74 3310.991 64.0195 3193.218 59.7731 

16 3230.48 348.62 2618.47 2071.636 253.3934 1622.288 1775.329 78.4453 1444.502 52.5598 

17 4737.69 508.77 4146.69 2437.568 318.8595 2163.655 3568.177 108.4197 2080.813 39.635 

18 604.9817 114.3901 484.5915 508.2422 106.4609 401.2964 376.2554 19.7516 361.6827 15.7128 

19 11938.44 1268.61 10014.88 11299.11 1214.765 9465.86 5898.156 282.2494 5651.285 268.009 

20 5847.25 608.25 4873.6 2933.961 367.4686 2369.061 4474.92 126.5676 2489.353 45.59 

21 790.47 107.73 673.22 722.5455 102.1793 614.7132 591.107 20.1165 572.9657 17.3723 

23 6162.47 704.78 4205.81 5892.144 682.2353 3976.109 3335.32 136.4975 3232.844 130.52 

24 1686.95 216.09 1313.85 1552.081 205.0158 1197.878 891.8053 44.7726 867.3114 41.7293 

25 2036.58 224.86 1771.65 1280.482 162.9441 1120.174 1056.687 51.5756 890.1801 33.3227 

27 7410.83 1227.33 5138.18 7347.426 1221.764 5084.39 5663.239 154.2958 5609.497 152.3051 

28 1357.11 182.06 1144.07 872.186 142.2805 726.4742 891.0535 36.5915 760.6852 21.763 

29 6666.75 852.58 5191.39 6209.315 813.9194 4800.005 3730.952 163.2356 3556.642 152.8911 

30 16236.5 1128.2 10846.5 7838.055 461.3808 3864.926 7192.661 256.4717 3508.525 96.2883 

32 749.66 153.97 586.46 712.0383 150.8746 554.0765 538.5225 24.3397 532.9347 23.3315 

33 8316.03 852.87 6435.87 8290.827 850.7763 6414.35 6043.059 178.3379 6030.717 177.8599 

34 2034.35 351.27 1408.3 1551.683 311.0659 994.3586 1623.848 55.9112 1350.229 36.4466 

35 6448.93 920.3 5239.81 5517.134 840.698 4440.241 3839.523 161.0573 3458.708 139.3407 

36 547.0617 209.3101 329.2715 509.4482 206.1848 296.9301 151.0723 21.493 150.6726 20.5304 

37 10632.27 1049.15 9271.54 9154.37 926.3216 7996.735 7638.406 207.6757 6858.962 180.8549 

38 2937.26 406.95 2454.04 1725.153 306.2472 1410.903 1558.978 77.9793 1241.377 49.4927 

39 9575.26 1495.09 8005.01 6401.541 1213.949 5278.975 3458.211 234.7276 2593.98 160.7339 

40 731.25 168.62 549.36 596.649 157.5208 433.532 451.9965 25.0855 437.66 21.7903 

41 17607.16 1784.31 15033.36 15434.78 1600.563 13164.75 8140.124 411.2825 7297.072 362.6828 

42 2390.31 249.19 2006.6 2094.683 224.9967 1752.108 2026.527 6.9297 1781.627 -0.5153 

43 797.94 157.57 630.01 638.8151 144.4783 493.0367 565.3628 25.4458 537.4154 20.6382 

44 653.38 181.7 431.15 615.9367 178.6042 398.9506 612.4373 19.3466 582.3349 15.0379 

47 942.39 121.52 806.86 801.8951 110.0368 685.8403 662.1367 24.4553 628.7614 19.8017 

52 8531.06 1368.26 7038.11 6821.406 1217.42 5570.859 6687.406 205.4391 5576.113 162.0398 

53 17944.87 2239.12 14832.36 15814.53 2050.354 13009.8 7232.414 426.3225 6493.494 376.7259 

55 12342.48 1143.57 10589.42 11174.81 1047.08 9584.043 5952.318 285.4342 5497.787 259.2105 

56 7182.1 614.89 6201.61 6603.553 567.7041 5703.139 3455.216 159.9511 3250.942 147.0272 

57 5328.43 576.72 4536.16 4083.508 473.6765 3464.458 2830.325 129.6702 2403.911 101.2353 

58 1047.94 254.01 49.1 1023.128 251.9474 27.9636 364.9945 18.9507 347.4031 13.9081 

59 4006.94 462.38 3495.95 3322.783 405.7885 2906.263 2643.642 97.9223 2381.133 82.4255 

61 939.38 210.85 495.51 393.6935 165.6988 27.3614 120.97 30.5334 120.97 9.9117 

 

The proposed model demonstrates that in each inefficient DMU, the inputs and the 

outputs should be reduced and expanded, respectively, in order to tend to the super-

efficiency frontier.  
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From the theoretical analyses it is concluded that, the same as Lin and Chen’s model, the 

proposed model can deal with the data set with free in sign values and can provide 

improved targets for inefficient DMUs. 

6. Conclusion 

Conventional DEA models are introduced to evaluate DMUs with non-negative data, 

while in practice there are important DMUs with negative data and they need to be 

evaluated. Recently, Lin and Chen (2017) proposed a novel DDF-based VRS radial 

super-efficiency DEA model which is feasible and is able to handle negative data. They 

claimed that their proposed model can provide a measure of efficiency for all DMUs. In 

this study, it is shown that although their proposed model can overcome the common 

infeasibility problem, the model has failing in some cases. It is unable to provide a 

complete ranking order and logical results in such a case that all DMUs consume the 

same inputs. This is because(i) in this model a unified changing rate for both inputs and 

outputs is used and (ii) the input improvement direction is strictly positive. In this study, 

a modified radial DDF-based super-efficiency model is proposed to provide a complete 

ranking order for all the DMUs via a new super-efficiency measure. 
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Appendix A 
 

Proposition 1.Model (5) is always feasible and the following inequalities are hold: 

a) 0 ≤ 𝛽𝑥
∗ < 1and 0 ≤ 𝛽𝑦

∗for (𝑥𝑖𝑜, 𝑦𝑟𝑜) ∈ 𝑇𝑜
𝑠;and also 

b)  −1 ≤ 𝛽𝑥
∗ < 0and−1 ≤ 𝛽𝑦

∗ < 0 for(𝑥𝑖𝑜 , 𝑦𝑟𝑜)𝑇𝑜
𝑠. 

 

Proof. Since𝑥𝑖𝑜 + 𝑎𝑖 > 0, we have 

𝛽𝑥 ≤

xio−∑ λjxij
n
j=1

j≠o

𝑥𝑖𝑜+𝑎𝑖
, 𝑖 = 1,2, … ,𝑚. 

 

(6) 

Following the notations used by Lin and Chen (2017), let 𝐽𝑜 = {𝑟|𝑦𝑟𝑜 − 𝑏𝑟 > 0, r =
1,2, … , s} and𝑂𝑜 = {𝑟|𝑦𝑟𝑜 − 𝑏𝑟 = 0, r = 1,2, … , s}for each 𝑜 ∈ {1, 2, … , 𝑛}. Thus, yro −
𝑏𝑟 ≥ 0 implies thatJo ∪ Oo = {r = 1,2, … , s}. Due to convexity constraint i.e. ∑ λj =

n
j=1
j≠o

1, we have 
∑ λjyrj
n
j=1
j≠o

≥ min
j≠o

{yrj} ≥ min
j
{yrj} = br = yro, r ∈ 𝑂𝑜.  

This shows that the output constraints in model (5) satisfy for allr ∈ 𝑂𝑜.Hence, the output 

constraints in model (5) are equivalent to  

𝛽𝑦 ≤

∑ λjyrj
n
j=1

j≠o

−yro

yro−𝑏𝑟
,   r ∈ 𝐽𝑜. 

 

There are two cases as follows: 

 

(7) 

Case (I)when (𝑥𝑖𝑜 , 𝑦𝑟𝑜) ∈ 𝑇𝑜
𝑠:  

We have ∑ λjxij
n
j=1
j≠o

≤ xio, 𝑖 = 1, 2, … ,𝑚and∑ λjyrj
n
j=1
j≠o

≥ yro, 𝑟 = 1, 2, … , 𝑠. So, 

xio − ∑ λjxij
n
j=1
j≠o

𝑥𝑖𝑜 + 𝑎𝑖
≥ 0, 𝑖 = 1, 2, … ,𝑚, 

 

(8) 

∑ λjyrj
n
j=1

j≠o

−yro

yro−𝑏𝑟
≥ 0, r ∈ 𝐽𝑜. 

 

(9) 

Inequalities of (6)-(9) result that 𝛽𝑥 = 𝛽𝑦 = 0 is a feasible solution of model (5), and 

consequently 𝛽𝑥
∗ ≥ 0, and 𝛽𝑦

∗ ≥ 0 always hold for 𝑜 ∈ {1, 2, … , 𝑛}. In addition  

𝛽𝑥 ≤

xio−∑ λjxij
n
j=1

j≠o

𝑥𝑖𝑜+𝑎𝑖
≤

xio+max
j≠o

{|𝑥𝑖𝑗|}

𝑥𝑖𝑜+𝑎𝑖
≤

xio+ max
j=1,2,…,n

{|𝑥𝑖𝑗|}

𝑥𝑖𝑜+𝑎𝑖
< 1.  

Thus, 0 ≤ 𝛽𝑥
∗ < 1 and 0 ≤ 𝛽𝑦

∗for (𝑥𝑖𝑜, 𝑦𝑟𝑜) ∈ 𝑇𝑜
𝑠. 

Case (II)when (𝑥𝑖𝑜 , 𝑦𝑟𝑜)𝑇𝑜
𝑠:  

 

In this case∃𝑖: ∑ λjxij
n
j=1
j≠o

> xio and/or∃𝑟: ∑ λjyrj
n
j=1
j≠o

< yro which implies that xio −

∑ λjxij
n
j=1
j≠o

< 0 and/or∑ λjyrj
n
j=1
j≠o

− yro < 0. Due to (6), (7) and the constraint 𝛽𝑥. 𝛽𝑦 ≥ 0, 

model (5) is still feasible; and 𝛽𝑥
∗ ≤ 0 and/or𝛽𝑦

∗ ≤ 0 are the optimal solutions. In general, 

(a) if ∃𝑖: ∑ λjxij
n
j=1
j≠o

> xio, then 𝛽𝑥
∗ < 0 and 𝛽𝑦

∗ = 0, 

(b) if ∃𝑟: ∑ λjyrj
n
j=1
j≠o

< yro, then 𝛽𝑥
∗ = 0 and 𝛽𝑦

∗ < 0, 
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(c) if∃𝑖: ∑ λjxij
n
j=1
j≠o

> xio and ∃𝑟: ∑ λjyrj
n
j=1
j≠o

< yro, then 𝛽𝑥
∗ < 0 and 𝛽𝑦

∗ < 0. 

In addition, it is obvious that max
j=1,2,…,n

{|𝑥𝑖𝑗|} ≤ 2𝑥𝑖𝑜 + 𝑎𝑖due to𝑘 ≥ 3. Consequently, 

xio − ∑ λjxij
n
j=1
j≠o

𝑥𝑖𝑜 + 𝑎𝑖
≥
xio − max

j=1,2,…,n
{|𝑥𝑖𝑗|}

𝑥𝑖𝑜 + 𝑎𝑖
≥
𝑥𝑖𝑜 − 2𝑥𝑖𝑜 − 𝑎𝑖

𝑥𝑖𝑜 + 𝑎𝑖
= −1,

𝑖 = 1, 2, … ,𝑚. 

 

              

(10) 

On the other hand, 
∑ λjyrj
n
j=1

j≠o

−yro

yro−𝑏𝑟
≥

min
j
{y
rj
}−yro

yro−𝑏𝑟
= −1,      r ∈ 𝐽𝑜. 

 

(11) 

According to the objective function of model (5), inequalities of (10) and (11) implies 

that −1 ≤ 𝛽𝑥
∗ < 0 and −1 ≤ 𝛽𝑦

∗ < 0 for (𝑥𝑖𝑜 , 𝑦𝑟𝑜)𝑇𝑜
𝑠, ∎ 

 

 

Appendix B 

Proposition 2. Model (5) is unit invariant. 
 

Proof. To show the units invariance of model (5), assume that the inputs xij and outputs 

yrj are multiplied by the positive α𝑖and μr, respectively. Let x̃ij = αixij (i =

1, 2, … ,m;  j = 1,2, … , n), ỹrj = μryrj (r = 1, 2, … , s;  j = 1, 2, … , n), ãi = 𝑘 ∗

max
𝑗=1,2,…,𝑛

{|x̃ij|} (𝑖 = 1,2, … ,𝑚) and 𝑏̃r = min
𝑗=1,2,…,𝑛

{ỹrj} (r = 1, 2, … , s). 

Hence, the model (5) using the transformed date is written as following:  

 

max   𝛽𝑥 + 𝛽𝑦 

𝑠. 𝑡.   ∑𝜆𝑗x̃ij

𝑛

𝑗=1
𝑗≠𝑜

≤ x̃io − (x̃io + ãi)𝛽𝑥,     𝑖 = 1, 2, … ,𝑚, 

∑ 𝜆𝑗ỹrj
𝑛
𝑗=1
𝑗≠𝑜

≥ ỹro + (ỹro − 𝑏̃r)𝛽𝑦,     𝑟 = 1, 2, … , 𝑠,  

          𝛽𝑥. 𝛽𝑦 ≥ 0 

∑𝜆𝑗 = 1

𝑛

𝑗=1
𝑗≠𝑜

, 

         𝜆𝑗 ≥ 0,   j = 1, 2, … , n;  j ≠ o 

This model is transformed to the model (5), in terms of the untransformed data, after 

substitution of 𝛼𝑖xij for x̃ij in the input constraints and 𝜇𝑟𝑦𝑟𝑗 for ỹrj in the output 

constraints, and cancellation of the common factors from both sides of the inequalities. 
 

 

Appendix C 

Model (5) has also monotonicity property. Suppose that the inputs and the outputs of 

DMUo are reduced by ∆xio and increased by ∆𝑦ro, respectively; and let xio ≥ 0, i = 1, 2, 

..., m, and 𝑦ro ≥ 0, r = 1, 2, ..., s. Since the input and output data of DMUo are changed, 
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the constants ai and brshould be adjusted correspondingly. According to model (5), ai 
and br should be redefined by 

𝑎𝑖 = 𝑘 ∗ max
𝑗=1,2,…,𝑛

{|𝑥𝑖𝑗|, ∀𝑗, |xio − ∆xio|} , 𝑖 = 1,2, … ,𝑚 (12) 

𝑏𝑟 = min
𝑗=1,2,…,𝑛

{𝑦𝑟𝑗, ∀𝑗, 𝑦ro + ∆𝑦ro} , 𝑟 = 1,2, … , 𝑠. (13) 

 

Following conclusion is made after redefining aiand br. 
 

Proposition 3.If inputs (outputs) of the DMUo are reduced (increased), the optimal value 

of model (5) does not increase for ai and br defined in (12) and (13). 

 

Proof. If specified input reduction and output expansion happens, the direction vector is 

(xio − ∆xio + ai, yro + ∆yro − br). The following statement is made by having the 

definitions of (12) and (13). xio − ∆xio + ai > 0, i = 1, 2, . . . ,m, and yro + ∆yro − br >
0, r = 1, 2, . . . , s. Consequently the corresponding model (5) for the DMUo is rewritten 

as 

max   βx + βy 

s. t.   ∑λjxij

n

j=1
j≠o

≤ (1 − βx)(xio − ∆xio) − aiβx,     i = 1, 2, … ,𝑚, 

∑ λjyrj
n
j=1
j≠o

≥ (1 + β𝑦)(yro + ∆yro) − brβy,     r = 1, 2, … , 𝑠,  

∑λj = 1

n

j=1
j≠o

, 

         𝛽𝑥. 𝛽𝑦 ≥ 0 

         λj ≥ 0,   j = 1, 2, … , 𝑛, j ≠ o 

(14) 

 

Assume the optimal solution of model (14) as (λ𝑗
′, 𝛽𝑥

′ , 𝛽𝑦
′ ). A similar derivation made in 

(10) is applied for input constraint of the model (14) using (12) as following: 

𝛽𝑥
′ ≤

xio − ∆xio − ∑ λ𝑗
′xij

n
j=1
j≠o

xio − ∆xio + 𝑎𝑖
≤
xio − ∆xio +max

j≠o
{|𝑥𝑖𝑗|}

xio − ∆xio + 𝑎𝑖
< 1,   i

= 1, 2, … ,𝑚 

 

(15) 

 

Thus, 𝛽𝑥
′ < 1. A similar derivation made in (11) is applied for output constraint of the 

model (14) using (13) as following. 

𝛽𝑦
′ ≥

∑ λjyrj
n
j=1
j≠o

− yro − ∆yro

yro + ∆yro − 𝑏𝑟
≥

min
j=1,2,…,n

{𝑦𝑟𝑗} − yro − ∆yro

yro + ∆yro − 𝑏𝑟
= −1,   r ∈ 𝐽𝑜

′  

 

(16) 

where 𝐽𝑜
′ = {𝑟|𝑦𝑟𝑜 + ∆yro − 𝑏𝑟 > 0, 𝑟 = 1, 2, … , 𝑠}. Since we maximize 𝛽𝑥 and 𝛽𝑦 in 

model (14), 𝛽𝑦
′ ≥ −1. Following statements is made using (15) and (16). 

1 − 𝛽𝑥
′and1 + 𝛽𝑦

′  are non-negative,  
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∑λ𝑗
′xij

n

j=1
j≠o

≤ (1 − 𝛽𝑥
′ )(xio − ∆xio) − ai𝛽𝑥

′ ≤ (1 − 𝛽𝑥
′ )xio − ai𝛽𝑥

′ ,     i

= 1, 2, … ,𝑚, 

(17) 

∑λ𝑗
′yrj

n

j=1
j≠o

≥ (1 + 𝛽𝑦
′ )(yro + ∆yro) − br𝛽𝑦

′ ≥ (1 + 𝛽𝑦
′ )yro − br𝛽𝑦

′ ,     r

= 1, 2, … , 𝑠. 

(18) 

Therefore, (λ𝑗
′, 𝛽𝑥

′ , 𝛽𝑦
′ ) is a feasible solution for model (14). 

Maximizing of 𝛽𝑥 and 𝛽𝑦 is aimed in model (5), hence 𝛽𝑥
∗ ≥ 𝛽𝑥

′and 𝛽𝑦
∗ ≥ 𝛽𝑦

′ . 


