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Abstract 

In the present paper, the geometric interpretation and medical application of ordered one-sided hypothesis 

testing are presented. We consider tests for the hypothesis that the mean vectors are zero against one-sided 

alternatives when the observation vectors are independently and identically distributed as normal with 

known and unknown covariance matrices. This problem is an extension of Kudo (1963) and Glimm et al. 

(2002) to several multivariate normal distributions. When the covariance matrices are known, the test 

statistic is derived and we give suitable conditions which under the one-sided restricted alternative 

hypothesis the obtained estimator is the maximum likelihood estimate. We shall discuss a geometric 

interpretation of the test statistic based on the closed convex polyhedral cone and also obtain its null 

distribution in the special case. Also, when the covariance matrices are unknown and common a proper test 

statistic is proposed. To evaluate the results, the effect of a drug is investigated on the body of one-day 

babies for suspected Sepsis disease. 

Keywords: Geometric interpretation; Medical application; Ordered mean vectors; 

Polyhedral cone; Sepsis disease. 

Mathematics Subject Classification. 62F30; 62H15 

1.   Introduction 

Suppose that 
iiii n21 X,,X,X   are random vectors from a p variate normal distribution 

with unknown mean vector iμ  and known nonsingular covariance matrix iΣ , 

),,( iipN Σμ  ki ,,2,1  , where we define the space pR  as the parameter space of the 

mean vectors. We are interested in the problem of testing 

 0μμμ  k210 :H  Versus ,,,,:H 211 0μ0μ0μ  k  (1) 

where there is at least one strict inequality for components of every vector iμ  in 
1H  and 

also 0μ i , ki ,,2,1  , means that all its component are non-negative. The used 

method to obtain the test statistic for the problem is likelihood ratio criterion. The 

problem of testing the homogeneity of k  univariate normal means against an order 

restricted alternative hypothesis was discussed in Bartholomew (1959). Much of the 

development and theory on the ordered subject was assembled by Robertson et al. (1988) 

and Silvapulle and Sen (2005). Kudo (1963) considered a p dimensional normal 

distribution with unknown mean μ  and known covariance matrix Σ . The problem of 

testing was 0μ :H*

0  against the restricted alternative :H*

1 0v , ),,,2,1( pv   

where the inequality is strict for at least one value of v . He obtained a statistic based on 
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the likelihood ratio criterion and discussed its existence and gave a scheme for its 

computation. Perlman (1969) studied this problem under assumption that Σ  is 

completely unknown. Sasabuchi et al. (1983) extended Bartholomew's (1959) problem to 

multivariate normal mean vectors with known covariance matrices and computed the 

likelihood ratio test. 

 

Glimm et al. (2002) considered tests for the hypothesis that the mean vector is zero 

against one-sided alternatives when the observation vectors are independently and 

identically distributed as normal with unknown covariance matrix. Sim and Johnson 

(2004), considered testing the equality of vectors means against a multivariate ordered 

alternative under the assumption that the covariance matrix is known and computed the 

asymptotic distribution of test statistics. Sasabuchi et al. (2003) considered the problem 

of testing for the case of the covariance matrices are common and unknown. He proposed 

a test statistic, studied its upper tail probability under the null hypothesis and estimated its 

critical values. Gamage and Mathew (2008) addressed the problem of testing the equal of 

sub-vectors of two multivariate normal mean vectors when the complementary sub-

vectors are known to be equal. A test procedure is derived using the multivariate 

satterthwait approximation. 

 

Imada (2011) obtained the test statistics and it's null distribution for a multivariate two-

sided test for testing wehther the noram mean vector is equal to zero or not. Bazyari and 

Chinipardaz (2013) considered the problem of testing the isotonic of several p variate 

normal mean vectors against all alternatives. The test statistic proposed and a 

reformulation of the test statistic gave based on the orthogonal projections on the closed 

convex cones and then the upper bound for p value of the test statistic computed. 

Bazyari and Pesarin (2013) considered testing the homogeneity of k  mean vectors 

against two-sided restricted alternatives separately in multivariate normal distributions. 

They examined the problem of testing under two separate cases. One case is that 

covariance matrices are known, the other one is that covariance matrices are unknown but 

common. When that covariance matrices are known the test statistic is obtained using the 

likelihood ratio method. The null distribution of test statistic is derived and its critical 

values are computed at different significance levels. A Monte Carlo study is also 

presented to estimate the power of the test. Bazyari (2015) extend Robertson and 

Wegman's (1978) problem to the multivariate normal distribution. They consider two 

different cases. One case is that covariance matrices are known, the other one is that they 

have an unknown scale factor. For both cases, they derive the test statistics and study 

their null distributions. The critical values and power of tests are estimated by Monte 

Carlo simulation study. 

 

Bazyari (2017) considered testing homogeneity of multivariate normal mean vectors 

under an order restriction when the covariance matrices are unknown, arbitrary positive 

definite and unequal. When the covariance matrices are unknown and unequal, a 

bootstrap test statistic proposed and because of the main advantage of the bootstrap test is 

that it avoids the derivation of the complex null distribution analytically and is easy to 

implement, the bootstrap p value defined and an algorithm presented to estimate it. 

Also, this test investigated more with respect to Type I error rates. Bazyari (2018) 

extended Bazyari and Chinipardaz's (2012) problem to multivariate case. He proposed an 
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approximate test statistic based on orthogonal projections on the closed convex cones, 

studied its upper tail probability under the null hypothesis and estimate its critical values 

for different significance levels by using Monte Carlo simulation. 

 

In the present paper, we consider the problem of testing given in (1) which for known 

covariance matrices is in fact, an extension of Kudo (1963) and Glimm et al. (2002) to 

several multivariate normal distributions. The extension to the multivariate normal 

distributions is important and of course interesting which to the authors’ knowledge, the 

likelihood ratio test for this problem has not been obtained yet. The maximum likelihood 

estimate under the alternative hypothesis in our case also belongs to the parameters 

restricted category. 

 

The rest of the paper is organized as follows. The test statistic based on the likelihood 

ratio criterion which has the general form under the restricted alternative hypothesis is 

obtained in Section 2. In Section 3, the main theorem concerning the maximum 

likelihood estimate under the one sided restricted alternative hypothesis with its proof is 

given. In Section 4, a geometric interpretation of the test statistic is discussed and also its 

null distribution obtained in the special case. In Section 5, we consider the case that 

covariance matrices are unknown and common. The critical values of the test statistic 

when the sample sizes are identical and also when they are different are estimated using 

Monte Carlo simulation in Section 6. Also, to evaluate the results, the effect of a drug is 

investigated on the body of one-day babies for suspected Sepsis disease. 

2. Computing the test statistic 

In this section, we prepare the likelihood ratio test for the problem of testing 0H  versus 

1H . The likelihood function for 2k  multivariate normal distributions is as follows 
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Now, since under the null hypothesis, the mean vectors are equal to zero, so we have that 
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The likelihood ratio test rejects the hypothesis 0H  for small values of λ . The large 

values of the statistic 
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We note that, if there is not any restriction on the mean vector 
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By differentiation of (3), with respect to the vector 
iμ̂ , we have 
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Now, if 0])ˆ[f( i μ , then it is clear that the maximum likelihood estimator of the 

parameter 
iμ  for any ki ,,2,1  , when there is not any restriction on the mean vectors 

is iX . 

3. Main theorem concerning the maximum likelihood estimation 

In this section, our purpose is to find the conditions which under those the estimator *

iμ , 

be the maximum likelihood estimate under the alternative hypothesis. In the following 

theorem, we show that under the especial conditions, *

iμ  is the maximum likelihood 
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iμ . 
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Also we summarize the second term of formula (4) as follows, which the process is 
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So, we should show that 
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From the condition it follows that for any ki ,,2,1  , one of the i th components of the 

two vectors *

iμ  and )}({ *

ii

1

i μXΣ    is zero and the other is non-negative. Since, first 

suppose that for any ki ,,2,1  , i th component of vector )}({Σ *

ii

1

i μX    is zero, then 

it is clear that 

0,)()(n2 *
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1

i

*
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k
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On the other hand, since for any ki ,,2,1  , 
iΣ  is a positive definite, therefore 

0,)()( *

ii

1

i

*

ii  
μμΣμμ  

and the result is clear. 

But if we suppose that for any ki ,,2,1  , i th component of vector )}({ *

ii

1

i μXΣ    is 

non-negative, since 0μ *

i , so that 0μμ  *

ii  and with paying attention to the inequality 

0)()( *

ii

1

i

*

ii  
μμΣμμ , the result is clear. 

4. Geometric interpretation of the test statistic 

In this section a geometric interpretation of the test statistic is given. As for any 

ki ,,2,1  , 
iΣ  is a non-singular symmetric positive definite matrix, there exists a non-

singular matrix )a( iji Α , such that 

,ii IΑΣΑ i  

where I  is the unit matrix. Now, define the variable iii XAY  , then we have that, 

i

-1

ii YAX   and 


 1-

iii AYX . So 

    ,nnT ii

1-

i

k

1i

iiii

k

1i

ii

*
mYΣmYYY 


 



 (6) 

where 
iii μAm  . Therefore *T  is the difference between the sum of the square of length 

of the vector iY  in the space of 
k21 ,,, mmm   and sum of the square of distance between 

a point iY  and a closed convex polyhedral cone C , defined by the inequalities 

0,maμ ij

p

1j

ij

ij 


 

where ijμ  and ijm , pj ,,2,1  , are the j th components of the vectors 
iμ  and 

im  

respectively and we define the inverse of iA  as )(aij-1

i A . 

4.1. The null distribution of the test statistic 

In this subsection, we derive the null distribution of the test statistic in the special case. If 

for any ki ,,2,1  , iY  is in the convex polyhedral convex C , the second term of 

formula (6) vanishes and we have 
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and it is easy to compute the value of the test statistic. To compute the null distribution of 

the statistic, since for any ki ,,2,1  , the matrix 

1

i

i

n
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


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 Σ
 is a symmetric matrix and 

under the null hypothesis, iX  is distributed as 
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
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pχ  with p  degrees of freedom. Also since for any i , ki ,,2,1  , 

i
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i

i
i
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Σ
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





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


 's are independent variables, so the test statistic given in (7) is distributed as 

2χ kp  with kp  degrees of freedom. 

5. Test statistic with unknown and common covariance matrices 

In this section, we suppose that the covariance matrices are completely unknown but 

common. We consider the problem of testing 0H  against 
1H , where 

1H  is defined as 

before. Then the likelihood function is 
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where c  is a positive constant which is independent of parameters 
iμ  and Σ . The 

likelihood ratio test statistic is 
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and since 
Σ

sup  is not dependent on 
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μ

 and 
1H

sup
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, so we have 
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where 
0H

sup
μ

 denotes the supremum for the parameters k1 ,, μμ   under 0H  and 
Σ

sup  

denotes the supremum for all the pp  positive definite matrices. Therefore, we have 
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where 0Σ̂  and 
1Σ̂  are the estimators of the unknown matrix Σ  under the hypotheses 0H  

and 
1H  respectively. So, we can write 
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where the symbol tr  denotes the trace of matrix and *

iμ , ki ,,2,1  , is defined as 

before. Now, using lemma 3.2.2 of Anderson (1984) in the way similar to that of 

Anderson [(1984), Section 8.8], in order to get the likelihood ratio test for our problem 

we need to minimize the determinant 
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under the order hypothesis 0μ0μ0μ  k21 ,,,  . 

Therefore, for the problem of testing 0H  against 
1H , we get the following test statistic 

 ,nT
k

1i

*

i

1*

ii


 
 μSμ  (8) 

for when the covariance matrices of populations are unknown but common. 

6.   Estimation the critical values and medical application 

In this section, the critical values of the test statistic T   are estimated by Monte Carlo 

simulation method. In this simulation, we generate knnn ,,, 21  , 5,4,3k , sets of p

variate normal vectors, 5,4,3p , with different sample variance covariance matrices 

and compute the statistic T  . This computation is repeated 10000 times to get an 

estimated upper   point of T  . We further repeat this process 10 times and compute the 

average of the 10 estimated upper   point for 05.0,025.0,01.0 ,  25,20,15,10,5in , 

ki ,,2,1  , respectively. The estimated critical values are given in Table 1. Also the 

critical values of test statistic are estimated when the sample sizes are unequal. The 

estimated critical values are given in Table 2. 

Table 1: Estimated critical values of test statistic when the sample sizes are equal 

knnn  21    

  p  k  5 10 15 20 25 

01.0  3 3 2.734 2.381 1.160 0.742 0.273 

 4 5 2.916 1.049 0.825 0.535 0.414 

 5 4 1.250 0.635 0.341 0.251 0.123 

025.0  3 3 1.687 1.216 0.732 0.418 0.084 

 4 5 1.662 0.841 0.615 0.416 0.240 

 

05.0  

5 

3 

4 

5 

4 

3 

5 

4 

0.631 

1.120 

0.547 

0.346 

0.452 

0.667 

0.623 

0.381 

0.243 

0.395 

0.352 

0.187 

0.142 

0.223 

0.335 

0.065 

0.046 

0.055 

0.071 

0.026 
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Table 2:  Estimated critical values of test statistic when the sample sizes are unequal 

  p  k  1n
 2n

 3n
 4n

 5n  Critical 

value 

01.0  3 3 8 12 21 18  4.012 

   15 10 31 19  3.209 

   16 23 22 20  2.544 

 4 5 20 15 25 13 10 2.112 

   22 21 23 20  1.730 

   23 21 24 20  1.275 

 5 4 15 18 26 31  1.015 

   23 28 27 21  0.883 

   26 19 39 25  0.441 

025.0  3 3 8 12 21 18  3.725 

   15 10 31 19  2.850 

   16 23 22 20  2.152 

 4 5 20 15 25 13 10 2.006 

   22 21 23 20  1.429 

   23 21 24 20  0.803 

 5 4 15 18 26 31  0.425 

   23 28 27 21  0.081 

   26 19 39 25  0.036 

05.0  3 3 8 12 21 18  3.452 

   15 10 31 19  2.840 

   16 23 22 20  2.573 

 4 5 20 15 25 13 10 1.861 

   22 21 23 20  1.200 

   23 21 24 20  0.723 

 5 4 15 18 26 31  0.395 

   23 28 27 21  0.074 

   26 19 39 25  0.024 

6.1. Real data example (Robertson, et al. 1988) 

To show the obtained results a medical data example is presented. The effect of a drug is 

investigated on the body of one-day babies for suspected Sepsis disease. An experiment 

is carried out to evaluate its effect. For this, we consider three factors: Hyporflexia, 

Hypothermia and Jaundice. According to the medical roles, the normal range of these 

factors are between 9.0 to 34.0. At the beginning of taking the medication by the doctor, 

the mean of one-day babies whom had Sepsis disease were zero, but over time, according 

to observations, the mean of such babies have increased from zero. The experiment was 

conducted in four different hospitals in four cities. In each hospital, 10 one-day babies 

have been studied and their three factors have been measured. Let ),,( 321
 iiii μ , 

4,3,2,1i , be the mean of babies whom have Sepsis disease, and the random vectors of 

mean of one-day babies are distributed with multivariate normal. The results are given in 

Table 3. For this table, the random vectors are 

)5.0,0,4.0(),4.0,4.0,3.0(),3.0,2.0,2.0(),3.0,0,2.0( 4321  XXXX . 
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It is of interest to test whether or not these factors are affected by new drag. Thus, our 

goal is to test the null hypothesis 0μ0μ0μ0μ 
43210 ,,,:H  against the alternative 

hypothesis ,,,,: 43211 0μ0μ0μ0μ H  when the covariance matrices are 

completely unknown. 

Table 3:     One-day babies for suspected Sepsis disease 

    Sepsis disease      

Hospital Factor 1 2 3 4 5 6 7 8 9 10 

1 Hyporflexia 9.23 9.65 10.43 35.40 11.29 12.53 17.82 36.41 16.90 14.15 

 Hypothermia 10.87 13.41 16.20 21.82 14.06 25.12 11.55 16.73 20.11 12.33 

 Jaundice 31.08 37.62 35.24 34.89 16.88 23.40 9.86 12.43 20.93 25.22 

2 Hyporflexia 32.19 10.54 12.10 16.32 25.60 38.16 11.20 22.90 37.12 13.63 

 Hypothermia 9.85 13.56 30.04 19.52 20.04 11.81 35.63 23.40 12.46 35.72 

 Jaundice 30.24 13.61 10.87 24.51 37.10 35.31 19.07 36.12 17.55 36.40 

3 Hyporflexia 12.46 13.52 19.27 35.68 18.51 37.22 23.43 27.80 37.13 12.72 

 Hypothermia 36.33 24.25 16.73 36.44 35.98 13.49 12.80 36.31 15.35 27.94 

 Jaundice 13.07 29.83 35.02 34.88 24.09 14.64 36.21 35.04 27.86 17.81 

4 Hyporflexia 23.60 29.07 35.81 28.60 35.22 19.81 19.07 36.33 35.30 23.61 

 Hypothermia 12.91 11.12 18.75 29.42 23.51 20.05 22.31 31.49 23.56 13.46 

 Jaundice 34.80 19.73 35.89 34.66 17.83 35.06 14.54 14.91 36.77 18.25 

 

The normal range of these factors is between 9.0 to 34.0. 

 

The data matrix is given by 

.

5.04.03.03.0

04.02.00

4.03.02.02.0

















X  

After computing the values of vector *

iμ  and matrix 
1S , from the data and (8), the value 

of test statistic T   is 2.54. For 05.0 , the critical value is 2.86. Therefore, the null 

hypothesis 0H   is not rejected. 

7.   Further Works 

We note that, it would also be an advantage to obtain the critical values of test statistics 

given in (7) and (8) at different significance levels for some of the multivariate normal 

distributions. Also the power and p value of these test statistics can be computed using 

the Monte Carlo simulation. A new problem arises when we suppose that the covariance 

matrices have an unknown scale factor. In this case, the main problem is estimation of the 

unknown parameters under the null and alternative hypothesis to obtain the test statistic. I 

hope to communicate the results of work on these topics later. 

8.   Conclusion 

The geometric interpretation of ordered one-sided hypothesis testing presented. We 

considered tests for the hypothesis that the mean vectors are zero against one-sided 

alternatives when the observation vectors are independently and identically distributed as 

normal with known and unknown covariance matrices. This problem is an extension of 
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Kudo (1963) and Glimm et al. (2002) to several multivariate normal distributions. The 

test statistics computed with known and unknown covariance matrices. To evaluate the 

results, the effect of a drug investigated on the body of one-day babies for suspected 

Sepsis disease. 
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