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Abstract 

In this article we present a Bayesian prediction of multiplicative seasonal autoregressive moving average 

(SARMA) processes using the Gibbs sampling algorithm. First, we estimate the unobserved errors using 

the nonlinear least squares (NLS) method to approximate the likelihood function. Second, we employ 

conjugate priors on the model parameters and initial values and assume the model errors are normally 

distributed to derive the conditional posterior and predictive distributions. In particular, we show that the 

conditional posterior distribution of the model parameters and the variance are multivariate normal and 

inverse gamma respectively, and the conditional predictive distribution of the future observations is a 

multivariate normal. Finally, we use these closed-form conditional posterior and predictive distributions to 

apply the Gibbs sampling algorithm to approximate empirically the marginal posterior and predictive 

distributions, enabling us easily to carry out multiple-step ahead predictions. We evaluate our proposed 

Bayesian method using simulation study and real-world time series datasets. 

Keywords: Multiplicative SARMA models; Posterior analysis; Predictive analysis; 

MCMC methods; Gibbs sampler.  

1. Introduction  

Bayesian analysis of seasonal autoregressive moving average (SARMA) models is 

difficult since the likelihood function is analytically intractable, which causes problems in 

the posterior and predictive analysis. Different approaches have been proposed in 

literature for the Bayesian analysis of SARMA models including analytical 

approximations and Markov Chain Monte Carlo (MCMC) methods-based 

approximations. 

 

By the analytical approximations, we mean the proposed Bayesian methods that 

approximate the posterior and predictive densities to be standard closed-form 

distributions that are analytically tractable, see for example Newbold (1973), Zellner and 

Reynolds (1978), Broemeling and Shaarawy (1984), and Amin (2018a, 2018b). However, 

these methods are conditioning on the initial values leading to waste observations, and 

treat SARMA model as an additive not a multiplicative model which can increase the 

number of unnecessary parameters. In order to address these limitations, MCMC 

methods, especially Gibbs sampling algorithm, have been proposed to ease and advance 

the Bayesian time series analysis. 

 

Chib and Greenberg (1994) and Marriott et al. (1996) assumed prior distributions 

on the initial observations and errors and used MCMC methods to develop a Bayesian 

analysis for ARMA models without dealing with the seasonality feature. Barnett et al. 

(1996, 1997) estimated the multiplicative seasonal autoregressive (SAR) and ARMA 

models using MCMC methods. Their algorithm is based on sampling functions of the 

partial autocorrelations, which makes it relatively complicated compared to other 
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approaches, and it does not consider the prediction problem. These approaches restrict the 

coefficients space to satisfy stationarity and invertibility conditions. Vermaak et al. 

(1998) proposed a Bayesian estimation of SAR models, aiming to model speech 

production for voiced sounds. Their estimation is based on the state space formulation 

and using the Metropolis within Gibbs sampling algorithm, without considering the 

prediction problem. 

 

Amin (2009) and Amin and Ismail (2014,2015) used the Gibbs sampling 

algorithm to present a Bayesian estimation of multiplicative SARMA and double SAR 

models, without considering the prediction problem. In addition, Amin (2017a, 2017b) 

used the Gibbs sampling algorithm to develop a Bayesian estimation of multiplicative 

double SMA and double SARMA models respectively. Moreover, Amin (2019a) used the 

Gibbs sampling algorithm to analyze pure multiplicative double (SAR) models. Based on 

our review for the existing Bayesian analysis of SARMA models, there is no work that 

considers the prediction problem along with the estimation of SARMA models and deals 

with the problems of initial values and multiplicativity. 

 

In order to fill this gap in literature, we use the Gibbs sampling algorithm to 

present a Bayesian prediction of multiplicative SARMA processes. The main idea of our 

proposed Bayesian prediction is that we first estimate the unobserved errors in the 

multiplicative SARMA processes using the nonlinear least squares (NLS) method to 

approximate the likelihood function. Assuming a prior distribution on the initial 

observations and errors, we then use the approximate likelihood function along with the 

conjugate priors to derive the conditional posterior and predictive distributions that we 

require to implement the Gibbs sampling algorithm. The main advantages of this work 

are: (1) the proposed Bayesian analysis is unconditional on the initial values and treats 

the SARMA model as a multiplicative not an additive model to hold the parsimonious 

property, (2) the conditional posteriors of the model parameters are standard 

distributions, i.e. normal and inverse gamma, for which sampling techniques exist, and 

(3) the conditional predictive distribution of the future observations is a multivariate 

normal, which is expressed in a form that enables us to easily carry out multiple-step 

ahead predictions. 

 

The paper is organized as follows. Section 2 describes the multiplicative SARMA 

models and their Bayesian concepts. Sections 3 and 4 introduce the posterior and 

predictive analyses of the multiplicative SARMA models respectively. Section 5 presents 

the implementation details of the proposed Bayesian prediction based on Gibbs sampling 

algorithm, including the convergence monitoring. The proposed Bayesian analysis is 

evaluated in Section 6 using simulation study and two real-world time series datasets. 

Finally, the paper is concluded in Section 7. 

 

2. Multiplicative SARMA Models and Bayesian Concepts  

A mean deleted time series {𝑦𝑡} is said to be generated by a multiplicative SARMA 

model of orders p, q, P and Q, denoted by SARMA(p,q)(P,Q)𝑠, if it satisfies 

  

 𝜙𝑝(𝐵)Φ𝑃(𝐵
𝑠)𝑦𝑡 = 𝜃𝑞(𝐵)Θ𝑄(𝐵

𝑠)𝜀𝑡 (1) 
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where {𝜀𝑡} is a sequence of independent normal variates with zero mean and variance 𝜎2. 

The backshift operator B is defined as 𝐵𝑦𝑡 = 𝑦𝑡−1, and 𝑠 is the seasonal period. The 

nonseasonal autoregressive polynomial is 𝜙𝑝(𝐵) = (1 − 𝜙1𝐵 − 𝜙2𝐵
2 −⋯−𝜙𝑝𝐵

𝑝) 

with order p, and the nonseasonal moving average polynomial is 𝜃𝑞(𝐵) = (1 + 𝜃1𝐵 +

𝜃2𝐵
2 +⋯+ 𝜃𝑞𝐵

𝑞) with order q. The seasonal autoregressive polynomial is Φ𝑃(𝐵
𝑠) =

(1 − Φ1𝐵
𝑠 −Φ2𝐵

2𝑠 −⋯−Φ𝑃𝐵
𝑃𝑠) with order P, and Θ𝑄(𝐵

𝑠) = (1 + Θ1𝐵
𝑠 + Θ2𝐵

2𝑠 +

⋯+ Θ𝑄𝐵
𝑄𝑠) is the seasonal moving average polynomial with order Q. The nonseasonal 

and seasonal autoregressive coefficients are 𝜙 = (𝜙1, 𝜙2, ⋯ , 𝜙𝑝)
𝑇
 and Φ =

(Φ1, Φ2, ⋯ ,Φ𝑃)
𝑇, and the nonseasonal and seasonal moving average coefficients are 

𝜃 = (𝜃1, 𝜃2, ⋯ , 𝜃𝑞)
𝑇
 and Θ = (Θ1, Θ2, ⋯ , Θ𝑄)

𝑇
. The time series {𝑦𝑡} is assumed to start 

at time t=1 with unknown starting observations 𝑦0 = (𝑦0, 𝑦−1, ⋯ , 𝑦1−𝑝−𝑃𝑠) and unknown 

starting errors 𝜀0 = (𝜀0, 𝜀−1, ⋯ , 𝜀1−𝑞−𝑄𝑠). 

 

The model (1) can be expanded and written as  

𝑦𝑡 =∑

𝑝

𝑖=1

𝜙𝑖𝑦𝑡−𝑖 +∑

𝑃

𝑗=1

Φ𝑗𝑦𝑡−𝑗𝑠 −∑

𝑝

𝑖=1

∑

𝑃

𝑗=1

𝜙𝑖Φ𝑗𝑦𝑡−𝑖−𝑗𝑠 +∑

𝑞

𝑖=1

𝜃𝑖𝜀𝑡−𝑖 +∑

𝑄

𝑗=1

Θ𝑗𝜀𝑡−𝑗𝑠 + 

∑

𝑞

𝑖=1

∑

𝑄

𝑗=1

𝜃𝑖Θ𝑗𝜀𝑡−𝑖−𝑗𝑠 + 𝜀𝑡 

   =   𝑋𝑡𝛽 + Λ𝑡𝛼 + 𝜀𝑡 (2) 

where,  

𝑋𝑡 = (𝑦𝑡−1,⋯ , 𝑦𝑡−𝑝; 01; 𝑦𝑡−𝑠, 𝑦𝑡−𝑠−1, ⋯ , 𝑦𝑡−𝑠−𝑝; 01;⋯ ; 𝑦𝑡−𝑃𝑠, 𝑦𝑡−𝑃𝑠−1, ⋯ , 𝑦𝑡−𝑃𝑠−𝑝), 

𝛽 = (𝜙1, ⋯ , 𝜙𝑝; 01; Φ1, −𝜙1Φ1,⋯ , −𝜙𝑝Φ1; 01;⋯ ;Φ𝑃, −𝜙1Φ𝑃, ⋯ ,−𝜙𝑝Φ𝑃)
𝑇
, 

Λ𝑡 = (𝜀𝑡−1, ⋯ , 𝜀𝑡−𝑞; 02; 𝜀𝑡−𝑠, 𝜀𝑡−𝑠−1, ⋯ , 𝜀𝑡−𝑠−𝑞; 02;⋯ ; 𝜀𝑡−𝑄𝑠, 𝜀𝑡−𝑄𝑠−1, ⋯ , 𝜀𝑡−𝑄𝑠−𝑞), 

𝛼 = (𝜃1, ⋯ , 𝜃𝑞; 02; Θ1, 𝜃1Θ1, ⋯ , 𝜃𝑞Θ1; 02;⋯ ; Θ𝑄 , 𝜃1Θ𝑄 , ⋯ , 𝜃𝑞Θ𝑄)
𝑇
, 

 

and 01 and 02 are (s-p-1) and (s-q-1) row vectors of zeros respectively. From the model 

(2), we can observe that the multiplicative SARMA model can be written as ARMA 

model of order 𝑝 + 𝑃𝑠 and 𝑞 + 𝑄𝑠 with some coefficients are zeros and some are 

products of nonseasonal and seasonal coefficients. Thus, the SARMA model is nonlinear 

in the coefficients 𝜙, Φ, 𝜃 and Θ, which complicates its Bayesian analysis. For more 

details about the properties of SARMA model, see Box and Jenkins (1976). 

 

Bayesian analysis of time series models is based on Bayes’ theorem that combines 

the prior distribution of the model parameters with the likelihood function of observed 

sample to get the posterior distribution (Amin, 2019b). Regarding the specification of 

prior distribution, assuming the parameters 𝜙, Φ, 𝜃, Θ, 𝑦0 and 𝜀0 are independent apriori 

given the model variance 𝜎2, the joint prior distribution is given as 

  

𝜁(𝜙,Φ, 𝜃, Θ, 𝜎2, 𝑦0, 𝜀0) = 𝜁(𝜙|𝜎
2) × 𝜁(Φ|𝜎2) × 𝜁(𝜃|𝜎2) × 𝜁(Θ|𝜎2) × 𝜁(𝑦0|𝜎

2) × 

                 𝜁(𝜀0|𝜎
2) × 𝜁(𝜎2) 
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             = 𝑁𝑝(𝜇𝜙, 𝜎
2Σ𝜙) × 𝑁𝑃(𝜇Φ, 𝜎

2ΣΦ) × 𝑁𝑞(𝜇𝜃, 𝜎
2Σ𝜃) ×

𝑁𝑄(𝜇Θ, 𝜎
2ΣΘ) × 

                   𝑁𝑝+𝑃𝑠(𝜇𝑦0 , 𝜎
2Σ𝑦0) × 𝑁𝑞+𝑄𝑠(𝜇𝜀0 , 𝜎

2Σ𝜀0) × 𝐼𝐺(
𝜈

2
,
𝜆

2
), (3) 

where 𝑁𝑟(𝜇, Δ) is the r-variate normal distribution with mean 𝜇 and variance Δ and IG(a, 

b) is the inverse gamma distribution with parameters a and b. Accordingly, the joint prior 

distribution can be simplified and written as  

 

𝜁(𝜙,Φ, 𝜃, Θ, 𝜎2, 𝑦0, 𝜀0)

∝ (𝜎2)−(
𝜈+2𝑝+𝑃+𝑃𝑠+2𝑞+𝑄+𝑄𝑠

2
+1) exp {−

1

2𝜎2
[𝜆 + (𝜙 − 𝜇𝜙)

𝑇
Σ𝜙
−1(𝜙 − 𝜇𝜙) + 

         (Φ − 𝜇Φ)
𝑇ΣΦ

−1(Φ − 𝜇Φ) + (𝜃 − 𝜇𝜃)
𝑇Σ𝜃

−1(𝜃 − 𝜇𝜃) + (Θ −
𝜇Θ)

𝑇ΣΘ
−1 × 

        (Θ − 𝜇Θ) + (𝑦0 − 𝜇𝑦0)
𝑇
Σ𝑦0
−1(𝑦0 − 𝜇𝑦0) + (𝜀0 − 𝜇𝜀0)

𝑇
Σ𝜀0
−1(𝜀0 −

𝜇𝜀0)]} 

 . (4) 

 The prior distribution (4) is chosen to be conditionally a conjugate prior in order to 

facilitate the mathematical calculations. Employing a straightforward random variable 

transformation from 𝜀𝑡 to 𝑦𝑡, the likelihood function is given by  

 

 𝐿(𝜙,Φ, 𝜃, Θ, 𝜎2, 𝜀0|𝑦) ∝ (𝜎
2)−

𝑛

2exp {−
1

2𝜎2
∑𝑛𝑡=1 𝜀𝑡

2} 

                       = (𝜎2)−
𝑛

2exp {−
1

2𝜎2
(𝑦 −   𝑋𝛽 − Λ𝛼)𝑇(𝑦 −   𝑋𝛽 − Λ𝛼)} (5) 

 

Multiplying the joint prior distribution (4) by the likelihood function (5) results in 

the joint posterior density of 𝜙,Φ, 𝜃, Θ, 𝜎2, 𝑦0, 𝜀0 that can be written as  

 

𝜁(𝜙,Φ, 𝜃, Θ, 𝜎2, 𝑦0, 𝜀0|𝑦)

∝ (𝜎2)−(
𝑛+𝜈+2𝑝+𝑃+𝑃𝑠+2𝑞+𝑄+𝑄𝑠

2
+1)exp {−

1

2𝜎2
[𝜆 + (𝜙 − 𝜇𝜙)

𝑇
Σ𝜙
−1 × 

                   (𝜙 − 𝜇𝜙) + (Φ − 𝜇Φ)
𝑇ΣΦ

−1(Φ − 𝜇Φ) + (𝜃 − 𝜇𝜃)
𝑇Σ𝜃
−1(𝜃 −

𝜇𝜃) + 

                   (Θ − 𝜇Θ)
𝑇ΣΘ

−1(Θ − 𝜇Θ) + (𝑦0 − 𝜇𝑦0)
𝑇
Σ𝑦0
−1(𝑦0 − 𝜇𝑦0) +

(𝜀0 − 𝜇𝜀0)
𝑇
× 

           Σ𝜀0
−1(𝜀0 − 𝜇𝜀0) + (𝑦 −   𝑋𝛽 − Λ𝛼)

𝑇(𝑦 −   𝑋𝛽 − Λ𝛼)]} (6) 

 

 

 

 

3. Posterior Analysis for SARMA Models 

The joint posterior density (6) is analytically intractable because of two reasons. First, the 

elements of the matrix Λ are unknown lagged errors. Second, the likelihood function (5) 
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is nonlinear function in the coefficients 𝜙,Φ, 𝜃, and Θ. In order to address the first 

problem, the unknown errors can be estimated recursively as:  

 

𝜀𝑡̂ = 𝑦𝑡 −∑

𝑝

𝑖=1

𝜙̂𝑖𝑦𝑡−𝑖 −∑

𝑃

𝑗=1

Φ̂𝑗𝑦𝑡−𝑗𝑠 +∑

𝑝

𝑖=1

∑

𝑃

𝑗=1

𝜙̂𝑖Φ̂𝑗𝑦𝑡−𝑖−𝑗𝑠 −∑

𝑞

𝑖=1

𝜃𝑖𝜀𝑡̂−𝑖 − 

 ∑𝑄𝑗=1 Θ̂𝑗𝜀𝑡̂−𝑗𝑠 − ∑
𝑞
𝑖=1 ∑

𝑄
𝑗=1 𝜃𝑖Θ̂𝑗𝜀𝑡̂−𝑖−𝑗𝑠, (7) 

  

where, 𝜙̂𝑖 ∈ 𝑅
𝑝, Φ̂𝑗 ∈ 𝑅

𝑃, 𝜃𝑖 ∈ 𝑅
𝑞, and Θ̂𝑗 ∈ 𝑅

𝑄 are nonlinear least squares (NLS) 

estimates obtained by minimizing ∑𝑛𝑡=1 𝜀𝑡
2 = 𝑆𝑆(𝜙,Φ, 𝜃, Θ) with respect to 𝜙,Φ, 𝜃, and 

Θ over the staionarity and invertibility regions. Accordingly, the joint posterior density 

(6) can be approximated as  

𝜁å(𝜙,Φ, 𝜃, Θ, 𝜎2, 𝑦0, 𝜀0|𝑦)

∝ (𝜎2)−(
𝑛+𝜈+2𝑝+𝑃+𝑃𝑠+2𝑞+𝑄+𝑄𝑠

2
+1)exp {−

1

2𝜎2
[𝜆 + (𝜙 − 𝜇𝜙)

𝑇
Σ𝜙
−1 × 

                     (𝜙 − 𝜇𝜙) + (Φ − 𝜇Φ)
𝑇ΣΦ

−1(Φ − 𝜇Φ) + (𝜃 − 𝜇𝜃)
𝑇Σ𝜃

−1(𝜃 −

𝜇𝜃) + 

                    (Θ − 𝜇Θ)
𝑇ΣΘ

−1(Θ − 𝜇Θ) + (𝑦0 − 𝜇𝑦0)
𝑇
Σ𝑦0
−1(𝑦0 − 𝜇𝑦0) + 

                  (𝜀0 − 𝜇𝜀0)
𝑇
Σ𝜀0
−1(𝜀0 − 𝜇𝜀0) + (𝑦 −   𝑋𝛽 − Λ̂𝛼)

𝑇
(𝑦 −   𝑋𝛽 −

Λ̂𝛼)]}, (8) 

 

where Λ̂ is an 𝑛 × (𝑞 + 𝑄𝑠) matrix with the 𝑡𝑡ℎ row:  

 

 Λ̂𝑡 =

(𝜀𝑡̂−1, ⋯ , 𝜀𝑡̂−𝑞; 02; 𝜀𝑡̂−𝑠, 𝜀𝑡̂−𝑠−1, ⋯ , 𝜀𝑡̂−𝑠−𝑞; 02;⋯ ; 𝜀𝑡̂−𝑄𝑠, 𝜀𝑡̂−𝑄𝑠−1, ⋯ , 𝜀𝑡̂−𝑄𝑠−𝑞) 

 

Since the likelihood function (5) is nonlinear in the coefficients 𝜙,Φ, 𝜃, and Θ, the 

marginal approximate posteriors of the model coefficients cannot be obtained. In order to 

solve this problem, we introduce the Gibbs sampling method, as one of the MCMC 

methods, to approximate the marginal posteriors of the model coefficients. However, to 

be able to achieve this work the full conditional posteriors of the model parameters have 

to be standard distributions or at least in closed form as one of the main requirements of 

implementing the Gibbs sampling algorithm. In general, we can derive the conditional 

posterior distribution of each of the model parameters by grouping together terms in the 

approximate joint posterior (8) that depend on this parameter, and then finding the 

appropriate normalizing constant to form a proper density. In our previous work (Amin, 

2009), we showed in detail that all the conditional posteriors are standard distributions, in 

particular the conditional posteriors of 𝜙,Φ, 𝜃, Θ, 𝑦0, and 𝜀0 are the multivariate normal 

and the conditional posterior of 𝜎2 is the inverse gamma, for which sampling techniques 

exist. In the following, we present these conditional posteriors of the model parameters 

without proofs, and for more details about the proofs see Amin (2009). 
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The conditional posterior of 𝝓 

The conditional posterior of 𝜙 given 𝑦, 𝜎2, Φ, 𝜃, Θ, 𝑦0, and 𝜀0 is a multivariate normal 

with location vector 𝜇𝜙
å , and dispersion matrix 𝑣𝜙

å , where,  

 

𝜇𝜙
å = [(𝐻𝑇𝐻 + Σ𝜙

−1)
−1
(Σ𝜙
−1𝜇𝜙 + 𝐻

𝑇(𝑦 − 𝐿Φ − Λ̂𝛼))] , 𝑣𝜙
å = 𝜎2(𝐻𝑇𝐻 + Σ𝜙

−1)
−1
, 

 

H is an 𝑛 × 𝑝 matrix with ti-th element 𝐻𝑡𝑖 = (𝑦𝑡−𝑖 − ∑
𝑃
𝑗=1 Φ𝑗𝑦𝑡−𝑗𝑠−𝑖) and L is an 𝑛 × 𝑃 

matrix with tj-th element 𝐿𝑡𝑗 = (𝑦𝑡−𝑗𝑠). 

 

The conditional posterior of 𝚽 

The conditional posterior of Φ given 𝑦, 𝜎2, 𝜙, 𝜃, Θ, 𝑦0, and 𝜀0 is a multivariate normal 

with location vector 𝜇Φ
å , and dispersion matrix 𝑣Φ

å , where,  

 

𝜇Φ
å = [(𝐺𝑇𝐺 + ΣΦ

−1)−1 (ΣΦ
−1𝜇Φ + 𝐺

𝑇(𝑦 − 𝑅𝜙 − Λ̂𝛼))] , 𝑣Φ
å = 𝜎2(𝐺𝑇𝐺 + ΣΦ

−1)−1, 

 

G is an 𝑛 × 𝑃 matrix with tj-th element 𝐺𝑡𝑗 = (𝑦𝑡−𝑗𝑠 − ∑
𝑝
𝑖=1 𝜙𝑖𝑦𝑡−𝑗𝑠−𝑖) and R is an 

𝑛 × 𝑝 matrix with ti-th element 𝑅𝑡𝑖 = (𝑦𝑡−𝑖). 
 

The conditional posterior of 𝛉 

The conditional posterior of 𝜃 given 𝑦, 𝜎2, 𝜙, Φ, Θ, 𝑦0, and 𝜀0 is a multivariate normal 

with location vector 𝜇𝜃
å , and dispersion matrix 𝑣𝜃

å , where,  

 

 𝜇𝜃
å = [(𝐴𝑇𝐴 + Σ𝜃

−1)
−1
(Σ𝜃
−1𝜇𝜃 + 𝐴

𝑇(𝑦 − 𝐾Θ −   𝑋𝛽))] , 𝑣𝜃
å = 𝜎2(𝐴𝑇𝐴 + Σ𝜃

−1)
−1
, 

 

A is an 𝑛 × 𝑞 matrix with ti-th element 𝐴𝑡𝑖 = (𝜀𝑡̂−𝑖 + ∑
𝑄
𝑖=1 Θ𝑗𝜀𝑡̂−𝑗𝑠−𝑖) and K is an 𝑛 × 𝑄 

matrix with tj-th element 𝐾𝑡𝑗 = (𝜀𝑡̂−𝑗𝑠). 

 

The conditional posterior of 𝚯 

The conditional posterior of Θ given 𝑦, 𝜎2, 𝜙,Φ, 𝜃, 𝑦0, and 𝜀0 is a multivariate normal 

with location vector 𝜇Θ
å , and dispersion matrix 𝑣Θ

å , where,  

 

𝜇Θ
å = [(𝑊𝑇𝑊 + ΣΘ

−1)−1(ΣΘ
−1𝜇Θ +𝑊

𝑇(𝑦 − 𝑍𝜃 −   𝑋𝛽))] , 𝑣Θ
å = 𝜎2(𝑊𝑇𝑊+ ΣΘ

−1)−1, 

 

W is an 𝑛 × 𝑄 matrix with tj-th element 𝑊𝑡𝑗 = (𝜀𝑡̂−𝑗𝑠 +∑
𝑞
𝑖=1 𝜃𝑖𝜀𝑡̂−𝑗𝑠−𝑖) and Z is an 

𝑛 × 𝑞 matrix with ti-th element 𝑍𝑡𝑖 = (𝜀𝑡̂−𝑖). 
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The conditional posterior of 𝛔𝟐 

The conditional posterior of 𝜎2 given 𝑦, 𝜙,Φ, 𝜃, Θ, 𝑦0, and 𝜀0 is an inverse gamma with 

parameters 𝑎 =
𝜈å

2
, and 𝑏 =

𝜆+𝑛𝑆2

2
, where,  

 

𝜈å = 𝑛 + 𝜈 + 2𝑝 + 𝑃 + 𝑃𝑠 + 2𝑞 + 𝑄 + 𝑄𝑠, and 

 𝑛𝑆2 = [(𝜙 − 𝜇𝜙)
𝑇
Σ𝜙
−1(𝜙 − 𝜇𝜙) + (Φ − 𝜇Φ)

𝑇ΣΦ
−1(Φ − 𝜇Φ) + (𝜃 − 𝜇𝜃)

𝑇Σ𝜃
−1(𝜃 −

𝜇𝜃) +  

(Θ − 𝜇Θ)
𝑇ΣΘ

−1(Θ − 𝜇Θ) + (𝑦0 − 𝜇𝑦0)
𝑇
Σ𝑦0
−1(𝑦0 − 𝜇𝑦0) + (𝜀0 − 𝜇𝜀0)

𝑇
Σ𝜀0
−1(𝜀0 −

𝜇𝜀0)  

+(𝑦 −   𝑋𝛽 − Λ̂𝛼)
𝑇
(𝑦 −   𝑋𝛽 − Λ̂𝛼)].  

 

Accordingly, we can sample the parameter 𝜎2 from the Chi square distribution using the 

transformation 
𝜆+𝑛𝑆2

𝜎2
~𝜒

𝜈å
2 . 

 

The conditional posterior of 𝐲𝟎 and 𝛆𝟎 

Using the model (2), the equations for the elements of 𝑦0 and 𝜀0 can be expanded and 

written as 

  

 𝐹𝑦𝑝+𝑃𝑠 = 𝐷𝑦0 +𝑀𝜀0 + 𝑁𝜀𝑝+𝑃𝑠 

where,  

 𝐹 =

(

 
 
 

1 0 0 ⋯ ⋯ 0 0
−𝛽1 1 0 ⋯ ⋯ 0 0
−𝛽2 −𝛽1 1 ⋯ ⋯ 0 0
⋮ ⋮ ⋮ ⋯ ⋯ ⋮ ⋮
−𝛽𝑝+𝑃𝑠−1 −𝛽𝑝+𝑃𝑠−2 ⋯ ⋯ −𝛽2 −𝛽1 1

)

 
 
 

(𝑝+𝑃𝑠)×(𝑝+𝑃𝑠)

, 

 

 𝐷 =

(

 
 
 
 
 

𝛽1 𝛽2 𝛽3 ⋯ ⋯ 𝛽𝑝+𝑃𝑠−1 𝛽𝑝+𝑃𝑠
𝛽2 𝛽3 𝛽4 ⋯ ⋯ 𝛽𝑝+𝑃𝑠 0

𝛽3 𝛽4 ⋯ ⋯ 0 0
⋮ ⋮ ⋮ ⋯ ⋯ ⋮ ⋮
𝛽𝑝+𝑃𝑠−1 𝛽𝑝+𝑃𝑠 0 ⋯ ⋯ 0 0

𝛽𝑝+𝑃𝑠 0 0 ⋯ ⋯ 0 0
)

 
 
 
 
 

(𝑝+𝑃𝑠)×(𝑝+𝑃𝑠)

, 
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 𝑀 =

(

 
 
 
 
 

𝛼1 𝛼2 𝛼3 ⋯ ⋯ 𝛼𝑞+𝑄𝑠−1 𝛼𝑞+𝑄𝑠
𝛼2 𝛼3 𝛼4 ⋯ ⋯ 𝛼𝑞+𝑄𝑠 0

𝛼3 𝛼4 ⋯ ⋯ 0 0
⋮ ⋮ ⋮ ⋯ ⋯ ⋮ ⋮
𝛼𝑝+𝑃𝑠−1 𝛼𝑝+𝑃𝑠 0 ⋯ ⋯ 0 0

𝛼𝑝+𝑃𝑠 0 0 ⋯ ⋯ 0 0
)

 
 
 
 
 

(𝑝+𝑃𝑠)×(𝑞+𝑄𝑠)

, 

 

 𝑁 =

(

 
 
 

1 0 0 ⋯ ⋯ 0 0
𝛼1 1 0 ⋯ ⋯ 0 0
𝛼2 𝛼1 1 ⋯ ⋯ 0 0
⋮ ⋮ ⋮ ⋯ ⋯ ⋮ ⋮
𝛼𝑝+𝑃𝑠−1 𝛼𝑝+𝑃𝑠−2 ⋯ ⋯ 𝛼2 𝛼1 1

)

 
 
 

(𝑝+𝑃𝑠)×(𝑝+𝑃𝑠)

, 

 

𝛼𝑟 = 0∀𝑟 = 𝑞 + 𝑄𝑠 + 1,⋯ , 𝑝 + 𝑃𝑠 if 𝑝 + 𝑃𝑠 > 𝑞 + 𝑄𝑠, 𝑦𝑝+𝑃𝑠 = (𝑦1, 𝑦2, ⋯ , 𝑦𝑝+𝑃𝑠)
𝑇
 

and 𝜀𝑝+𝑃𝑠 = (𝜀1, 𝜀2, ⋯ 𝜀𝑝+𝑃𝑠)
𝑇
 which has the (p+Ps) normal distribution with zero mean 

and variance (𝜎2𝐼𝑝+𝑃𝑠) where 𝐼𝑝+𝑃𝑠 is the unit matrix of order (p+Ps). With some 

manipulations, we derived the conditional posterior of 𝑦0 given 𝑦, 𝜎2, 𝜙,Φ, 𝜃, Θ, and 𝜀0 

as a multivariate normal with location vector 𝜇𝑦0
å , and dispersion matrix 𝑣𝑦0

å , where,  

 

 𝜇𝑦0
å = [𝐷𝑇(𝑁𝑁𝑇)−1𝐷 + Σ𝑦0

−1]
−1
[Σ𝑦0
−1𝜇𝑦0 + 𝐷

𝑇(𝑁𝑁𝑇)−1(𝐹𝑦𝑝+𝑃𝑠 −𝑀𝜀0)], 

 

 and 𝑣𝑦0
å = 𝜎2(𝐷𝑇(𝑁𝑁𝑇)−1𝐷 + Σ𝑦0

−1)
−1

 

 

Similarly, the conditional posterior of 𝜀0 given 𝑦, 𝜎2, 𝜙,Φ, 𝜃, Θ, and 𝑦0 is a multivariate 

normal with location vector 𝜇𝜀0
å , and dispersion matrix 𝑣𝜀0

å , where,  

 𝜇𝜀0
å = [𝑀𝑇(𝑁𝑁𝑇)−1𝑀+ Σ𝜀0

−1]
−1
[Σ𝜀0
−1𝜇𝜀0 +𝑀

𝑇(𝑁𝑁𝑇)−1(𝐹𝑦𝑝+𝑃𝑠 − 𝐷𝑦0)], 

 

 and 𝑣𝜀0
å = 𝜎2[𝑀𝑇(𝑁𝑁𝑇)−1𝑀+ Σ𝜀0

−1]
−1

 

4. Predictive Analysis for SARMA Models 

The predictive density of the next 𝑘 future observations is the conditional density of 

future observations 𝑦𝑓 = (𝑦𝑛+1, 𝑦𝑛+2, … 𝑦𝑛+𝑘) given the time series data 𝑦. This 

predictive density can be obtained by averaging the distribution of future values with 

respect to the joint posterior density of the model parameters as 

  

𝜁(𝑦𝑓|𝑦) =

∫
𝜙
∫
Φ
∫
𝜃
∫
Θ
∫
𝜎2
∫
𝑦0
∫
𝜀0
𝜁(𝑦𝑓 , 𝜙,Φ, 𝜃, Θ, 𝜎

2, 𝑦0, 𝜀0|𝑦)𝑑𝜙𝑑Φ𝑑𝜃𝑑Θ𝑑𝜎
2𝑑𝑦0𝑑𝜀0 (9) 

 

This predictive density does not have an analytical closed form, which complicates the 

predictive analysis of SARMA models. Therefore, we try to obtain the conditional 
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predictive distribution of 𝑦𝑓 given 𝑦, 𝜙, Φ, 𝜃, Θ, 𝜎2, 𝑦0, and 𝜀0, and then employ the Gibbs 

sampling method to approximate the predictive density. In order to derive the conditional 

predictive distribution of 𝑦𝑓, we use the model (2) to obtain the equations of the 𝑘 future 

observations as  

 

 Ψ𝑦𝑓 = Ω𝑦𝐿 + Π𝜀𝐿 + Γ𝜀𝑓 

 where,  

 Ψ =

(

 
 
 

1 0 0 ⋯ ⋯ 0 0
−𝜓1 1 0 ⋯ ⋯ 0 0
−𝜓2 −𝜓1 1 ⋯ ⋯ 0 0
⋮ ⋮ ⋮ ⋯ ⋯ ⋮ ⋮
−𝜓𝑘−1 −𝜓𝑘−2 ⋯ ⋯ −𝜓2 −𝜓1 1

)

 
 
 

𝑘×𝑘

, 

 

 Ω =

(

 
 
 

𝜔1 𝜔2 𝜔3 ⋯ ⋯ 𝜔𝑝+𝑃𝑠−1 𝜔𝑝+𝑃𝑠
𝜔2 𝜔3 𝜔4 ⋯ ⋯ 𝜔𝑝+𝑃𝑠 0

𝜔3 𝜔4 ⋯ ⋯ 0 0
⋮ ⋮ ⋮ ⋯ ⋯ ⋮ ⋮
𝜔𝑘 𝜔𝑘+1 ⋯ 𝜔𝑝+𝑃𝑠 0 ⋯ 0

)

 
 
 

𝑘×(𝑝+𝑃𝑠)

, 

 

 Π =

(

 
 
 

𝜋1 𝜋2 𝜋3 ⋯ ⋯ 𝜋𝑞+𝑄𝑠−1 𝜋𝑞+𝑄𝑠
𝜋2 𝜋3 𝜋4 ⋯ ⋯ 𝜋𝑞+𝑄𝑠 0

𝜋3 𝜋4 ⋯ ⋯ 0 0
⋮ ⋮ ⋮ ⋯ ⋯ ⋮ ⋮
𝜋𝑘 𝜋𝑘+1 ⋯ 𝜋𝑞+𝑄𝑠 0 ⋯ 0

)

 
 
 

𝑘×(𝑞+𝑄𝑠)

, 

 

 Γ =

(

 
 
 

1 0 0 ⋯ ⋯ 0 0
𝛾1 1 0 ⋯ ⋯ 0 0
𝛾2 𝛾1 1 ⋯ ⋯ 0 0
⋮ ⋮ ⋮ ⋯ ⋯ ⋮ ⋮
𝛾𝑘−1 𝛾𝑘−2 ⋯ ⋯ 𝛾2 𝛾1 1

)

 
 
 

𝑘×𝑘

, 

 

𝜓𝑟 = 𝛽𝑟 and 𝜔𝑟 = 𝛽𝑟∀𝑟 ≤ 𝑝 + 𝑃𝑠 and zeros otherwise, 𝜋𝑟 = 𝛼𝑟 and 𝛾𝑟 = 𝛼𝑟∀𝑟 ≤ 𝑞 +

𝑄𝑠 and zeros otherwise, 𝑦𝐿 = (𝑦𝑛, 𝑦𝑛−1, ⋯ , 𝑦𝑛−𝑝−𝑃𝑠+1)
𝑇
, 𝜀𝐿 =

(𝜀𝑛, 𝜀𝑛−1, ⋯ , 𝜀𝑛−𝑞−𝑄𝑠+1)
𝑇
, and 𝜀𝑓 = (𝜀𝑛+1, 𝜀𝑛+2, ⋯ , 𝜀𝑛+𝑘)

𝑇. It is worth noting that we 

assume 𝜀𝑓 has a multivariate normal distribution with zero mean and variance (𝜎2𝐼𝑘), and 

𝜀𝑓 and 𝜀𝐿 are independent. Using the above defined matrices and with some 

manipulations, we derive the conditional predictive distribution of 𝑦𝑓 given 

𝑦, 𝜙,Φ, 𝜃, Θ, 𝜎2, and 𝑦0 to be a multivariate normal with location vector 𝜇𝑦𝑓
å , and 

dispersion matrix 𝑣𝑦𝑓
å , where,  
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 𝜇𝑦𝑓
å = Ψ−1[Ω𝑦𝐿 + Π𝜀𝐿],   and   𝑣𝑦𝑓

å = 𝜎2[(Γ−1Ψ)𝑇(Γ−1Ψ)]−1 

 

It should be noted that the elements in 𝜀𝐿 are unknown and can be estimated as discussed 

in Section 3. Accordingly, using this derived conditional predictive distribution of 𝑦𝑓 

along with the conditional posteriors of the model parameters presented in Section 3, we 

apply the Gibbs sampling method not only to approximate the marginal posteriors but 

also to approximate the predictive density (9). In the following section we introduce our 

proposed Gibbs sampling algorithm for Bayesian analysis of SARMA models. 

5. Proposed Gibbs Sampling Algorithm for SARMA Models 

The proposed Gibbs sampling algorithm for the Bayesian analysis of SARMA models 

can be implemented in the following steps: 

 

1. Specify starting values {𝜙0, Φ0, 𝜃0, Θ0, (𝜎2)0, 𝑦0
0, 𝜀0

0, 𝑦𝑓
0} and set j=0. These starting values 

can be obtained from the initial estimates of the model parameters obtained using the NLS 

method, as we discussed in Section 3.  

 

2. Generate one value for each model parameter from its conditional posterior distribution and 

for future observations 𝑦𝑓 from the conditional predictive distribution as   

• 𝜙𝑗~𝜁(𝜙𝑗|𝑦, (𝜎2)𝑗−1, Φ𝑗−1, 𝜃𝑗−1, Θ𝑗−1, 𝑦0
𝑗−1, 𝜀0

𝑗−1, 𝑦𝑓
𝑗−1),  

• Φ𝑗~𝜁(Φ𝑗|𝑦, (𝜎2)𝑗−1, 𝜙𝑗, 𝜃𝑗−1, Θ𝑗−1, 𝑦0
𝑗−1, 𝜀0

𝑗−1, 𝑦𝑓
𝑗−1),  

• 𝜃𝑗~𝜁(𝜃𝑗|𝑦, (𝜎2)𝑗−1, 𝜙𝑗, Φ𝑗, Θ𝑗−1, 𝑦0
𝑗−1, 𝜀0

𝑗−1, 𝑦𝑓
𝑗−1),  

• Θ𝑗~𝜁(Θ𝑗|𝑦, (𝜎2)𝑗−1, 𝜙𝑗, Φ𝑗 , 𝜃𝑗, 𝑦0
𝑗−1, 𝜀0

𝑗−1, 𝑦𝑓
𝑗−1),  

• (𝜎2)𝑗~𝜁((𝜎2)𝑗|𝑦, 𝜙𝑗, Φ𝑗, 𝜃𝑗, Θ𝑗, 𝑦0
𝑗−1, 𝜀0

𝑗−1, 𝑦𝑓
𝑗−1),  

• 𝑦0
𝑗~𝜁(𝑦0

𝑗|𝑦, (𝜎2)𝑗, 𝜙𝑗, Φ𝑗 , 𝜃𝑗, Θ𝑗, 𝜀0
𝑗−1, 𝑦𝑓

𝑗−1),  

• 𝜀0
𝑗~𝜁(𝜀0

𝑗|𝑦, (𝜎2)𝑗, 𝜙𝑗 , Φ𝑗, 𝜃𝑗, Θ𝑗, 𝑦0
𝑗 , 𝑦𝑓

𝑗−1),  

• 𝑦𝑓
𝑗~𝜁(𝑦𝑓

𝑗|𝑦, (𝜎2)𝑗, 𝜙𝑗, Φ𝑗 , 𝜃𝑗, Θ𝑗 , 𝑦0
𝑗, 𝜀0

𝑗).  

Now, the algorithm gives the first value of the Markov chain 

{𝜙𝑗, Φ𝑗, 𝜃𝑗, Θ𝑗, (𝜎2)𝑗 , 𝑦0
𝑗
, 𝜀0
𝑗
, 𝑦𝑓
𝑗
}.  

 

3. Set j = j+1 and go to 2. The algorithm gives the next value of the Markov chain, say 

{𝜙𝑗+1, Φ𝑗+1, 𝜃𝑗+1, Θ𝑗+1, (𝜎2)𝑗+1, 𝑦0
𝑗+1
, 𝜀0
𝑗+1
, 𝑦𝑓
𝑗+1
} by simulating each of the full 

conditionals where the conditioning elements are revised each iteration.  

 

This iterative process is repeated for a large number of iterations and its 

convergence is monitored. Once the chain has converged, the simulated values from the 

conditional posterior and predictive distributions are used as samples from the joint 

posterior and from the predictive distribution respectively. Accordingly, posterior 

estimates of the model parameters and Bayesian forecasts of the future observations can 

be computed directly by sample averages of the simulation outputs. Regarding the 

convergence of the obtained Markov chain, three groups of diagnostics can be used to 

monitor including autocorrelation estimates, Raftery and Lewis diagnostics, and Geweke 

diagnostics. First, autocorrelation estimates indicate how much independence exists in the 

sequence of each parameter draws. A high degree of autocorrelation indicates that more 

draws are needed to be generated to get accurate posterior estimates. Second, diagnostics 
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proposed by Raftery and Lewis (1992,1995) include (1) Burn: the number of draws used 

as initial draws or "burn-in" before starting to sample draws for the purpose of posterior 

approximation, (2) Total: the total number of draws needed to achieve the desired level of 

accuracy, (3) Nmin: the number of draws that would be needed if the draws represented 

an iid chain, and (4) I-stat: the ratio of the (Total) to (Nmin). Raftery and Lewis 

suggested that a convergence problem may be indicated when the I-stat values exceed 5. 

Third, diagnostics proposed by Geweke (1992) include two groups:   

 
1. The first group includes the numerical standard errors (NSE) and the relative numerical 

efficiency (RNE). The NSE estimates reflect the variation that can be expected if the 

simulation is to be repeated. The RNE estimates indicate the number of draws that is 

required to produce the same numerical accuracy when iid sample is drawn directly from the 

posterior distribution.  

 

2. The second group of diagnostics includes a test of whether the sampler has attained an 

equilibrium state. This is done by carrying out Z-test for the equality of the two means of the 

first and last parts of draws and the Chi squared marginal probability is obtained. Usually, 

the first and last parts are the first 20% and the last 50% of the draws.  

 

These convergence diagnostics are used in the following section to monitor the 

convergence of the proposed Bayesian method. 

6. Simulation Study and Real-World Application 

We have two parts in this section. First, we present a simulation study to evaluate the 

accuracy of our proposed Bayesian analysis for SARMA models. Second, we apply the 

proposed Bayesian analysis to real-world time series datasets. 

6.1 Simulation Study 

In this subsection we present four simulations of SARMA models, and Table 1 shows the 

design of these simulations including true parameters values, sample size, seasonality 

period, model variance, and next 𝑘 future values. By these simulations we try to represent 

different seasonality patterns with different data types. 

  

Table 1: Simulation design. 

Model 𝜙 Φ 𝜃 Θ 𝑛 𝑠 𝜎2 𝑘 
I 0.8 0.3 0.5 0.8 100 4 1.0 4 
II 0.3 0.4 0.4 0.7 100 4 1.0 4 

III 0.6 0.5 0.3 0.5 300 12 1.0 12 

IV -0.5 0.6 -0.5 0.8 300 12 1.0 12 

 

Once the time series datasets are generated from these SARMA models, the 

Bayesian analysis is performed by assuming a non informative prior for the parameters 

𝜙, Φ, 𝜃 , Θ, and 𝜎2 and a normal prior with zero mean for both initial observations   𝑦0 

with variance 𝜎2𝐼𝑝+𝑃𝑠 and initial errors 𝜀0 with variance 𝜎2𝐼𝑞+𝑄𝑠. To apply the proposed 

Gibbs sampler, the starting values for the parameters 𝜙, Φ, 𝜃, Θ, and 𝜎2 are obtained 

using the NLS method, and the starting values for 𝑦0, 𝜀0, and 𝑦𝑓 are assumed to be zeros. 
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For each dataset, the Gibbs sampler was run 6,000 iterations where the first 1,000 draws 

are ignored and every fifth value in the sequence of the last 5,000 draws is recorded to 

have an approximately independent sample. All the posterior estimates of the model 

parameters and the Bayesian forecasts are computed directly as sample averages of the 

Gibbs sampler draws. In the following, we discuss the results and investigate the 

convergence diagnostics. 

 

Table 2 presents the Bayesian estimates of the model parameters and the Bayesian 

forecasts of the next 𝑘 future observations with the corresponding true values for Model 

I. The 95% credible intervals using the 0.025 and 0.975 percentiles of the simulated 

draws is computed and presented in Table 2. From Table 2, it is clear that the Bayesian 

estimates and forecasts are close to the true values and the 95% credible interval includes 

the true value for each parameter and future observation. Sequential plots of generated 

sequences of the model parameters together with their marginal posterior densities are 

displayed in Figure 1, while marginal predictive densities of the next four future 

observations are displayed in Figure 2. Figure 1 shows that the posterior draws of the 

proposed algorithm are stable and fluctuate in the neighborhood of the true values. On the 

other hand, the marginal posteriors show that the true value of each parameter falls in the 

constructed 95% credible interval, as indicated by the vertical line. Similar conclusions 

can be obtained from Figure 2 about the predictive performance of the proposed Gibbs 

sampling algorithm. 

 

Table 2: Bayesian results for Model I. 

Parameter True 
values Mean Std. 

Dev. 
Lower 95 % 

limit 
Median 

Upper 95 
% limit 

𝜙 0.80 0.82 0.03 0.76 0.82 0.88 

Φ 0.30 0.20 0.08 0.04 0.20 0.34 

𝜃 0.50 0.36 0.09 0.20 0.36 0.54 

Θ 0.80 0.83 0.11 0.61 0.82 1.04 

𝜎2 1.00 0.97 0.13 0.74 0.96 1.27 

𝑦𝑛+1 0.53 0.43 0.99 -1.54 0.44 2.29 

𝑦𝑛+2 -0.24 -0.42 1.52 -3.49 -0.34 2.43 

𝑦𝑛+3 0.69 -0.41 1.87 -4.04 -0.36 3.17 

𝑦𝑛+4 -0.66 -1.53 2.06 -5.63 -1.59 2.54 
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Figure 1: Sequential plots and marginal posterior distributions of Model I 
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Figure 2: Marginal predictive distributions of Model I 

Using the convergence diagnostics summarized in Section 5, the convergence of 

the proposed Gibbs sampling algorithm is monitored. In particular, the autocorrelations 

and Raftery and Lewis diagnostics are displayed in Table 3 and Geweke diagnostics are 

displayed in Table 4. Table 3 shows that the draws for each parameter have small 

autocorrelations, indicating that there is no convergence problem. This conclusion was 

confirmed by the diagnostic measures of Raftery and Lewis where the reported (Nmin) is 

994 which is close to the 1000 draws we used and I-stat value is about 1 which is less 

than 5. Scanning the entries of Table 4, confirms the convergence of the proposed 

algorithm where Chi squared probabilities show that the equal means hypothesis cannot 

be rejected and no dramatic differences between the NSE estimates are found. In 

addition, the RNE estimates are close to 1 which indicates the iid nature of the output 

sample. 

   

A similar analysis, to that applied to Model I, is applied to Models II, III, and IV, 

and all the Bayesian results are presented in Tables 5, 6, and 7. From all these results we 

can claim that similar conclusions to those of Model I are obtained for the other three 

models, which confirm the accuracy of the proposed Gibbs sampling algorithm. 
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Table 3: Autocorrelations and Raftery-Lewis diagnostics for Model I. 

parameter 
Autocorrelations Raftery-Lewis Diagnostics 

Lag 1 Lag 5 Lag 10 Lag 50 Burn Total(N) (Nmin) I-stat 

𝜙 -0.00 0.00 -0.02 0.02 3 1117 994 1.12 

Φ -0.02 0.01 -0.05 0.01 2 948 994 0.95 

𝜃 0.01 -0.01 0.03 0.07 2 1028 994 1.03 

Θ 0.04 -0.05 0.02 0.03 2 1028 994 1.03 

𝜎2 0.01 -0.02 0.04 0.02 2 1028 994 1.03 

𝑦𝑛+1 -0.01 -0.05 0.01 0.02 2 1028 994 1.03 

𝑦𝑛+2 0.03 -0.04 0.03 0.02 2 948 994 0.95 

𝑦𝑛+3 0.06 -0.07 0.03 0.00 2 948 994 0.95 

𝑦𝑛+4 0.06 -0.01 0.07 0.02 2 948 994 0.95 

 

Table 4: Geweke diagnostics for Model I. 

Param. 
NSE 
iid RNE iid NSE 4% RNE 4% NSE 8% RNE 8% NSE 15% RNE 15% 𝜒2 

𝜙 0.0009 1 0.0009 1.0232 0.0008 1.3247 0.0007 1.8775 0.1923 

Φ 0.0024 1 0.0028 0.7065 0.0025 0.9109 0.0021 1.2951 0.2428 

𝜃 0.0028 1 0.0026 1.1402 0.0026 1.2052 0.0026 1.1569 0.2212 

Θ 0.0034 1 0.0030 1.2620 0.0023 2.1333 0.0022 2.3668 0.3100 

𝜎2 0.0042 1 0.0043 0.9884 0.0036 1.3734 0.0033 1.6717 0.6940 

𝑦𝑛+1 0.0313 1 0.0313 1.0035 0.0311 1.0130 0.0272 1.3280 0.8612 

𝑦𝑛+2 0.0480 1 0.0478 1.0049 0.0459 1.0895 0.0321 2.2326 0.9631 

𝑦𝑛+3 0.0592 1 0.0574 1.0632 0.0529 1.2506 0.0421 1.9789 0.9746 

𝑦𝑛+4 0.0653 1 0.0717 0.8283 0.0674 0.9366 0.0666 0.9594 0.9384 

 

 

Table 5: Bayesian results for example II. 

 

Parameter True 
values Mean Std. 

Dev. 
Lower 95 % 

limit 
Median 

Upper 95 % 
limit 

𝜙 0.30 0.20 0.10 0.02 0.20 0.39 

Φ 0.40 0.31 0.07 0.17 0.31 0.46 

𝜃 0.40 0.39 0.14 0.13 0.39 0.68 

Θ 0.70 0.71 0.13 0.45 0.71 0.96 

𝜎2 1.00 0.96 0.14 0.73 0.95 1.26 

𝑦𝑛+1 -0.06 -0.17 0.99 -2.14 -0.15 1.69 

𝑦𝑛+2 -0.67 -0.63 1.13 -2.91 -0.59 1.49 

𝑦𝑛+3 0.83 -0.07 1.19 -2.44 -0.08 2.24 

𝑦𝑛+4 -0.98 -1.13 1.23 -3.47 -1.18 1.29 
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Table 6: Bayesian results for Model III. 

Parameter 

True 

values Mean 

Std. 

Dev. 

Lower 95 % 

limit Median 

Upper 95 % 

limit 

𝜙 0.60 0.64 0.05 0.55 0.64 0.74 

Φ 0.50 0.51 0.05 0.41 0.51 0.61 

𝜃 0.30 0.21 0.07 0.08 0.21 0.35 

Θ 0.50 0.41 0.09 0.24 0.41 0.58 

𝜎2 1.00 0.92 0.07 0.79 0.92 1.08 

𝑦𝑛+1 -2.42 -2.62 0.95 -4.53 -2.64 -0.69 

𝑦𝑛+2 0.18 -1.50 1.27 -3.90 -1.55 0.97 

𝑦𝑛+3 -0.48 -2.00 1.37 -4.64 -2.06 0.66 

𝑦𝑛+4 -2.73 -2.98 1.41 -5.65 -3.03 -0.20 

𝑦𝑛+5 -3.59 -3.09 1.44 -5.86 -3.13 -0.13 

𝑦𝑛+6 -4.77 -2.67 1.43 -5.43 -2.68 -0.02 

𝑦𝑛+7 -2.93 -1.65 1.43 -4.36 -1.71 1.14 

𝑦𝑛+8 0.29 -0.84 1.49 -3.78 -0.88 2.06 

𝑦𝑛+9 -0.52 -1.51 1.49 -4.37 -1.53 1.42 

𝑦𝑛+10 0.04 -1.86 1.45 -4.90 -1.88 1.11 

𝑦𝑛+11 -0.24 -2.01 1.45 -4.82 -1.99 0.81 

𝑦𝑛+12 -2.36 -2.09 1.49 -5.13 -2.08 0.73 

 

 

Table 7: Bayesian results for Model IV. 

Parameter 

True 

values Mean 

Std. 

Dev. 

Lower 95 % 

limit Median 

Upper 95 % 

limit 

𝜙 -0.50 -0.57 0.04 -0.65 -0.58 -0.49 

Φ 0.60 0.60 0.04 0.51 0.60 0.68 

𝜃 -0.50 -0.51 0.07 -0.64 -0.51 -0.37 

Θ 0.40 0.29 0.06 0.17 0.29 0.42 

𝜎2 1.00 0.93 0.07 0.80 0.93 1.10 

𝑦𝑛+1 -2.17 -2.31 0.97 -4.22 -2.33 -0.32 

𝑦𝑛+2 4.05 2.71 1.43 -0.10 2.75 5.55 

𝑦𝑛+3 -4.16 -2.72 1.53 -5.82 -2.75 0.17 

𝑦𝑛+4 0.74 0.77 1.60 -2.27 0.74 4.12 

𝑦𝑛+5 -0.66 -0.54 1.63 -3.73 -0.49 2.49 

𝑦𝑛+6 -1.11 0.30 1.60 -2.90 0.30 3.46 

𝑦𝑛+7 2.00 -0.02 1.59 -3.04 -0.06 3.30 

𝑦𝑛+8 0.61 0.11 1.60 -3.05 0.09 3.12 

𝑦𝑛+9 -2.56 -1.16 1.62 -4.27 -1.22 1.91 

𝑦𝑛+10 2.75 0.59 1.59 -2.54 0.54 3.67 

𝑦𝑛+11 -2.24 -0.67 1.62 -3.80 -0.61 2.35 

𝑦𝑛+12 -0.36 0.40 1.62 -2.74 0.36 3.75 
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6.2 Real-World Application 

In this subsection we apply the proposed Bayesian analysis of SARMA models to two 

real-world time series that characterized by exhibiting seasonal pattern. The first time 

series dataset is 84 observations of average monthly soil temperature near Zurich at seven 

different depths, averaged over four years beginning in 1762, and the temperature 

measurements are related to the ’du Crest’ scale (see Lambert, 1779, Page 358). This 

time series dataset is one of the earliest time series in scientific literature. The second 

time series dataset is the Federal Reserve Board Production Index that consists of 372 

monthly values from January 1948 to December 1978 (Shumway and Stoffer, 2006). 

These two time series datasets are shown in Figure 3. Figure 3 shows that the average soil 

temperature time series is stationary, however, Figure 3 shows that the production index 

time series is nonstationary. We used the first (nonseasonal) difference to stationarize the 

production index time series but still it seems nonstationary in the seasonal component as 

shown in Figure 3, and accordingly we used the seasonal difference and now it seems 

stationary as displayed in Figure 3. This implies that we apply our proposed Bayesian 

analysis for the stationary differenced production index, not for its nonstationary raw 

data. 

 

 
(a) Average monthly soil temperature near Zurich 

 
(b) Federal reserve board production index 

 
(c) Nonseasonal difference of production index 

 
(d) Nonseasonal and seasonal differences of production 

index 

Figure 3: Time-plot of the two real-world time series datasets 
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We use the first 78 observations of the average soil temperature data and the first 

360 observations of the production index data to identify the suitable SARMA models 

and apply our proposed algorithm to conduct the posterior and predictive analysis to 

these two time series datasets, and the remaining observations (i.e. 𝑘 = 6 for the average 

soil temperature data and 𝑘 = 12 for the production index data) we use to evaluate out of 

sample prediction performance. In order to identify the best suitable order of the SARMA 

models for the two time series, we use the Akaike information criterion (AIC) with 

assuming the maximum order of each of the nonseasonal and seasonal polynomials is two 

in the SARMA model (1) according to the recommendation of Laing and Smith (1987). 

We compute the AIC for all the combinations of SARMA models and select the best 

model with smallest value of AIC. In particular, the identified models are 

SARMA(2,2)(1,1) 12 for the average soil temperature data and SARMA(1,1)(2,2) 12 for 

the differenced production index data. 

 

Using the identified models, we apply the proposed Bayesian analysis to conduct 

the posterior and predictive analysis to the two real-world time series datasets with 

choosing the hyperparameters as in the simulation study. Table 8 summarizes the 

Bayesian results for the average soil temperature data, wheretheir marginal predictive 

densities are displayed in Figure 4. On the other hand, the Bayesian results for the 

differenced production index are presented in Table 9, and their marginal predictive 

densities are displayed in Figure 5. From the Bayesian forecasts of the next six future 

values of the average soil temperature data (displayed in Figure 4) and those of the next 

twelve future values of the production index data (displayed in Figure 5), we can confirm 

the applicability of our proposed Gibbs sampling algorithm to real-world time series. 

 

 

Table 8: Bayesian results for the average soil temperature. 

 True  Std. Lower  Upper 

Parameter values Mean Dev. 95 % limit Median 95 % limit 

𝜙1 - 1.58 0.08 1.39    1.58 1.71 

𝜙2 - -0.75 0.09 -0.88 -0.76 -0.55 

Φ - 0.62 0.06 0.51 0.62 0.74 

𝜃1 - -0.39 0.10 -0.58 -0.39 -0.19 

𝜃2 - -0.19 0.11 -0.41 -0.19 0.03 

Θ - -0.12 0.13 -0.36 -0.12 0.09 

𝜎2 - 14.13 2.75 10.03 13.65 20.51 

𝑦𝑛+1 18.00 17.35 3.98 10.00 17.26 25.45 

𝑦𝑛+2 26.00 26.33 6.23 13.90     26.50 38.62 

𝑦𝑛+3 28.00 26.44 7.33 12.49     26.39 41.13 

𝑦𝑛+4 14.00 12.60 8.23 -2.45 12.15 30.77 

𝑦𝑛+5 0.00 -1.03 8.53 -16.96 -1.57 16.68 

𝑦𝑛+6 -20.00 -17.66 8.48 -33.59     -17.78 0.30 
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Table 9: Bayesian results for the differenced production index.  

 True  Std. Lower  Upper 
Parameter values Mean Dev. 95 % limit Median 95 % limit 

𝜙 - 0.63 0.09 0.44 0.64 0.81 

Φ1 - -0.23 0.10 -0.41 -0.24 -0.03 
Φ2 - -0.30 0.06 -0.41 -0.30 -0.19 

𝜃 - -0.31 0.11 -0.52 -0.31 -0.10 
Θ1 - -0.46 0.12 -0.70 -0.45 -0.25 

Θ2 - 0.05 0.08 -0.11 0.05 0.21 

𝜎2 - 1.19 0.09 1.03 1.18 1.37 
𝑦𝑛+1 -0.60 -0.30 1.13 -2.49 -0.29 1.91 

𝑦𝑛+2     0.00 -0.71 1.10 -2.96 -0.70 1.25 
𝑦𝑛+3 -0.30 -1.33 1.14 -3.65 -1.33 0.84 

𝑦𝑛+4     2.30 0.32 1.19 -2.05 0.32 2.57 

𝑦𝑛+5 -1.00 0.10 1.20 -2.35 0.08 2.44 
𝑦𝑛+6     0.30 0.13 1.21 -2.07 0.09 2.69 

𝑦𝑛+7     0.50 0.98 1.16 -1.21 0.97 3.25 

𝑦𝑛+8     0.90 1.15 1.21 -1.10 1.14 3.57 
𝑦𝑛+9     0.90 0.11 1.23 -2.26 0.10 2.44 

𝑦𝑛+10     0.30 -0.51 1.19 -2.88 -0.49 1.76 

𝑦𝑛+11     0.30 0.25 1.20 -2.05 0.24 2.60 
𝑦𝑛+12 -0.10 -0.73 1.23 -3.07 -0.79 1.75 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  4: Marginal predictive distributions of the average soil temperature 
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Figure 5: Marginal predictive distributions of the differenced production index 
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7. Conclusions 

In this paper we first used the nonlinear least squares (NLS) method to estimate the 

unobserved errors in the multiplicative SARMA models and accordingly approximate its 

likelihood function. We employed conjugate priors on the model parameters and initial 

values to show that the conditional posterior distributions of the model parameters and 

variance are multivariate normal and inverse gamma respectively, and the conditional 

predictive distribution of the future observations is a multivariate normal. Exploiting that 

the conditional posterior and predictive densities are standard distributions, we used the 

Gibbs sampling algorithm to present a Bayesian method for estimating the SARMA 

model parameters and obtaining multiple-step ahead predictions. Simply, we applied the 

Gibbs sampling algorithm to approximate empirically the marginal posterior and 

predictive distributions along with using several convergence diagnostics. Accordingly, 

we computed directly the posterior estimates of the model parameters and the Bayesian 

forecasts of the future values as sample averages of the Gibbs sampling chains. The 

empirical results of the simulated and real-world time series datasets confirmed the 

accuracy of the proposed Bayesian method. Future work may include model 

identification using stochastic search variable selection, outliers detection, and extension 

to multivariate seasonal time series models. 
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