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Abstract

In this article we present a Bayesian prediction of multiplicative seasonal autoregressive moving average
(SARMA) processes using the Gibbs sampling algorithm. First, we estimate the unobserved errors using
the nonlinear least squares (NLS) method to approximate the likelihood function. Second, we employ
conjugate priors on the model parameters and initial values and assume the model errors are normally
distributed to derive the conditional posterior and predictive distributions. In particular, we show that the
conditional posterior distribution of the model parameters and the variance are multivariate normal and
inverse gamma respectively, and the conditional predictive distribution of the future observations is a
multivariate normal. Finally, we use these closed-form conditional posterior and predictive distributions to
apply the Gibbs sampling algorithm to approximate empirically the marginal posterior and predictive
distributions, enabling us easily to carry out multiple-step ahead predictions. We evaluate our proposed
Bayesian method using simulation study and real-world time series datasets.

Keywords: Multiplicative SARMA models; Posterior analysis; Predictive analysis;
MCMC methods; Gibbs sampler.

1. Introduction

Bayesian analysis of seasonal autoregressive moving average (SARMA) models is
difficult since the likelihood function is analytically intractable, which causes problems in
the posterior and predictive analysis. Different approaches have been proposed in
literature for the Bayesian analysis of SARMA models including analytical
approximations and Markov Chain Monte Carlo (MCMC) methods-based
approximations.

By the analytical approximations, we mean the proposed Bayesian methods that
approximate the posterior and predictive densities to be standard closed-form
distributions that are analytically tractable, see for example Newbold (1973), Zellner and
Reynolds (1978), Broemeling and Shaarawy (1984), and Amin (2018a, 2018b). However,
these methods are conditioning on the initial values leading to waste observations, and
treat SARMA model as an additive not a multiplicative model which can increase the
number of unnecessary parameters. In order to address these limitations, MCMC
methods, especially Gibbs sampling algorithm, have been proposed to ease and advance
the Bayesian time series analysis.

Chib and Greenberg (1994) and Marriott et al. (1996) assumed prior distributions
on the initial observations and errors and used MCMC methods to develop a Bayesian
analysis for ARMA models without dealing with the seasonality feature. Barnett et al.
(1996, 1997) estimated the multiplicative seasonal autoregressive (SAR) and ARMA
models using MCMC methods. Their algorithm is based on sampling functions of the
partial autocorrelations, which makes it relatively complicated compared to other
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approaches, and it does not consider the prediction problem. These approaches restrict the
coefficients space to satisfy stationarity and invertibility conditions. Vermaak et al.
(1998) proposed a Bayesian estimation of SAR models, aiming to model speech
production for voiced sounds. Their estimation is based on the state space formulation
and using the Metropolis within Gibbs sampling algorithm, without considering the
prediction problem.

Amin (2009) and Amin and Ismail (2014,2015) used the Gibbs sampling
algorithm to present a Bayesian estimation of multiplicative SARMA and double SAR
models, without considering the prediction problem. In addition, Amin (2017a, 2017b)
used the Gibbs sampling algorithm to develop a Bayesian estimation of multiplicative
double SMA and double SARMA models respectively. Moreover, Amin (2019a) used the
Gibbs sampling algorithm to analyze pure multiplicative double (SAR) models. Based on
our review for the existing Bayesian analysis of SARMA models, there is no work that
considers the prediction problem along with the estimation of SARMA models and deals
with the problems of initial values and multiplicativity.

In order to fill this gap in literature, we use the Gibbs sampling algorithm to
present a Bayesian prediction of multiplicative SARMA processes. The main idea of our
proposed Bayesian prediction is that we first estimate the unobserved errors in the
multiplicative SARMA processes using the nonlinear least squares (NLS) method to
approximate the likelihood function. Assuming a prior distribution on the initial
observations and errors, we then use the approximate likelihood function along with the
conjugate priors to derive the conditional posterior and predictive distributions that we
require to implement the Gibbs sampling algorithm. The main advantages of this work
are: (1) the proposed Bayesian analysis is unconditional on the initial values and treats
the SARMA model as a multiplicative not an additive model to hold the parsimonious
property, (2) the conditional posteriors of the model parameters are standard
distributions, i.e. normal and inverse gamma, for which sampling techniques exist, and
(3) the conditional predictive distribution of the future observations is a multivariate
normal, which is expressed in a form that enables us to easily carry out multiple-step
ahead predictions.

The paper is organized as follows. Section 2 describes the multiplicative SARMA
models and their Bayesian concepts. Sections 3 and 4 introduce the posterior and
predictive analyses of the multiplicative SARMA models respectively. Section 5 presents
the implementation details of the proposed Bayesian prediction based on Gibbs sampling
algorithm, including the convergence monitoring. The proposed Bayesian analysis is
evaluated in Section 6 using simulation study and two real-world time series datasets.
Finally, the paper is concluded in Section 7.

2. Multiplicative SARMA Models and Bayesian Concepts

A mean deleted time series {y,} is said to be generated by a multiplicative SARMA
model of orders p, g, P and Q, denoted by SARMA(p,q)(P,Q)s, if it satisfies

¢p(B)Pp(B*)y: = 04(B)0q(B*)e;
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where {&.} is a sequence of independent normal variates with zero mean and variance o2.
The backshift operator B is defined as By, = y;_4, and s is the seasonal period. The
nonseasonal autoregressive polynomial is ¢,(B) = (1 —¢,B — ¢,B* —---— ¢,BP)
with order p, and the nonseasonal moving average polynomial is 6,(B) = (1 + 6,B +
0,B% + -+ Hqu) with order g. The seasonal autoregressive polynomial is ®,(B%) =
(1 — ®,BS — ®,B? — - — ®,B*) with order P, and ©,(B*) = (1 + 0,8 + 0,8% +
et G)QBQS) is the seasonal moving average polynomial with order Q. The nonseasonal
and seasonal autoregressive coefficients are ¢ = (¢>1,¢>2, ---,¢p)T and o =
(Dq, Dy, -, Pp)T, and the nonseasonal and seasonal moving average coefficients are
0 = (61,85,,6,) and © = (0,,0,,-+,0,) . The time series {y,} is assumed to start
at time t=1 with unknown starting observations y, = (yo,y_l, ---,yl_p_PS) and unknown
starting errors &y = (&9, €_1, ", €1-g—gs)-

The model (1) can be expanded and written as

p P p P q Q
Ve = z biye—i + Z Djye—js — Z Z G Pjye-i-js + Z Oi€r—; + Z Oj&—js +
i=1 = i=1 j=1 i=1 =1
q Q
Z Z 9i®j£t_i_js + Et
i=1 j=1
= Xtﬁ + Ata + gt (2)

where,

X = (yt—lr""yt—p; 01 YVtmss Vees—10"""» Ye—s—p 015 "3 Ve—pss yt—Ps—lﬂ""Yt—Ps—p)'
B = (4’1’ Yy ¢pi 0; @1, —p1 Py, _()bpq)l; 0y Pp,—p1Pp, -+, _Cbp‘bP)T»

Ay = (St—lr o E-qs 025 &5 Et—s—1, " Et—s—q3 025 "5 Et—0sr Et—Qs-1, "> gt—Qs—q)'
a= (91, 045 02;,01,0104,++,0,01;05;:++;04,60,0, -, HqG)Q)T,

and 0, and 0, are (s-p-1) and (s-g-1) row vectors of zeros respectively. From the model
(2), we can observe that the multiplicative SARMA model can be written as ARMA
model of order p + Ps and g + Qs with some coefficients are zeros and some are
products of nonseasonal and seasonal coefficients. Thus, the SARMA model is nonlinear
in the coefficients ¢, ®, 8 and ©, which complicates its Bayesian analysis. For more
details about the properties of SARMA model, see Box and Jenkins (1976).

Bayesian analysis of time series models is based on Bayes’ theorem that combines
the prior distribution of the model parameters with the likelihood function of observed
sample to get the posterior distribution (Amin, 2019b). Regarding the specification of
prior distribution, assuming the parameters ¢, ®, 8, 0, y, and &, are independent apriori
given the model variance o2, the joint prior distribution is given as

(¢, @,0,0,0%,y,, &) = {($|o?) X {(P|d?) X {(B]0?) x {(B]0?) X {(yolo?) X
{(eolo?) x ¢(a?)
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= Np(kg,0%Z¢) X Np(tep, 0%Zg) X Ny (g, 0°Zg) X
No(te, 0%2g) X
Np+Ps(ﬂy0r O-Zzyo) X Nq+Qs(.ueoi 02280) X IG(%!%)’ (3)
where N,.(u, A) is the r-variate normal distribution with mean u and variance A and 1G(a,

b) is the inverse gamma distribution with parameters a and b. Accordingly, the joint prior
distribution can be simplified and written as

((d)r q)r 9! G)r 0-21 yO! 80)

V+2p+P+Ps+2q+Q+Qs |

1 T
o< (02 ? ) exp{—zftz[/H (¢ —ng) Zp (D —g) +
(@ — 1) g (P — po) + (6 — 1) ™25 (6 — pg) + (6 —

He) Zo" X

ue,)])

The prior distribution (4) is chosen to be conditionally a conjugate prior in order to
facilitate the mathematical calculations. Employing a straightforward random variable
transformation from ¢, to y,, the likelihood function is given by

© — o) + (Yo — iy,) T3t (vo — 1y, ) + (g0 — e,) T2t (0 —

(4)

_n 1
L(®,®,6,0,0%, goly) x (07) zexp{~ 55 Biy

202

= () 2exp{- 5~ XB—A) (v~ XB—Ad)) (5)

Multiplying the joint prior distribution (4) by the likelihood function (5) results in
the joint posterior density of ¢, ®, 8,0, 52, y,, £, that can be written as

((¢l ¢l 91 (.:.)’ 0-2’ yO’ Eoly)

Nn+v+2p+P+Ps+2q+Q+Qs

" 1 .
x (02)_( 2 N )exp {—F [/1 + (¢ — y¢)TZ¢1 X
(¢ —pg) + (P — pe) 25 (P — po) + (6 — 1) 25" (0 —

Hg) +
(0 — 16)"25"(8 — o) + (Yo — Hy,) Tyt (vo — iy, ) +
(50 - ﬂso)T X
Sel(eo —He) + (V= XB—A)(y— XB —Aa)]} (6)

3. Posterior Analysis for SARMA Models

The joint posterior density (6) is analytically intractable because of two reasons. First, the
elements of the matrix A are unknown lagged errors. Second, the likelihood function (5)
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is nonlinear function in the coefficients ¢, ®,6, and ©. In order to address the first
problem, the unknown errors can be estimated recursively as:

P

P
gt Ve — Z d)lyt i Z i Vt—js +Z Z $iAjyt—i—js -

i=1 ]:1 1=

Zj=1 ngt—]s Zl 1 Z 9 @ é\t i—js»

M Q
A
My
T

[y

where, ¢; € RP,®; € R,0;, € R, and ©; € R? are nonlinear least squares (NLS)
estimates obtained by minimizing X1, 2 = SS(¢, @, 8, ©) with respect to ¢, ®,0, and
O over the staionarity and invertibility regions. Accordingly, the joint posterior density
(6) can be approximated as

Cé((p' (D' 9' 9' 0—2' in gOly)

o (0_2)_(n+v+2p+P+§s+2q+Q+QS, )exp {_Tiz [/1 n (¢ _ ,u¢)TZ<_p1 x
(¢ —ugp) + (@ — te) S5 (@ — po) + (6 — 1p) 25" (6 —
o) +
(0 — 1e)"25 (® — o) + (o — 1ty,) %5 (yo Hy,) +
(20— teg) Zat (0 — ey) + (v — XB - Aa) (yv— xB-
A ®

where Ais an n X (g + Qs) matrix with the t** row:

At =
(St—l' 8 0285 &1 Et—s—q 025 5 €05 Et—0s-1, s gt—Qs—q)

Since the likelihood function (5) is nonlinear in the coefficients ¢, ®, 8, and 0, the
marginal approximate posteriors of the model coefficients cannot be obtained. In order to
solve this problem, we introduce the Gibbs sampling method, as one of the MCMC
methods, to approximate the marginal posteriors of the model coefficients. However, to
be able to achieve this work the full conditional posteriors of the model parameters have
to be standard distributions or at least in closed form as one of the main requirements of
implementing the Gibbs sampling algorithm. In general, we can derive the conditional
posterior distribution of each of the model parameters by grouping together terms in the
approximate joint posterior (8) that depend on this parameter, and then finding the
appropriate normalizing constant to form a proper density. In our previous work (Amin,
2009), we showed in detail that all the conditional posteriors are standard distributions, in
particular the conditional posteriors of ¢, ®, 8,0, y,, and ¢, are the multivariate normal
and the conditional posterior of o2 is the inverse gamma, for which sampling techniques
exist. In the following, we present these conditional posteriors of the model parameters
without proofs, and for more details about the proofs see Amin (2009).
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The conditional posterior of ¢

The conditional posterior of ¢ given y,a2,®,0,0,y,, and g, is a multivariate normal
with location vector pg, and dispersion matrix vg,, where,

ul = |(HTH + 3517 (S5ug + HT(y — L& — Rar) )|, v§ = a2 (H"H + 331) 7,

H is an n X p matrix with ti-th element Hy; = (y,—; — -, ®;y,—js—;) and Lisann x P
matrix with tj-th element Ly; = (y,—js)-

The conditional posterior of &

The conditional posterior of @ given y,a2,¢,8,0,y,, and &, is a multivariate normal
with location vector ug,, and dispersion matrix vg,, where,

pd = [(GTG +3IzH)? (zg,lyq, +GT(y —Rop — T\a))],vé}, =0%(GTG + 32",

G is an n x P matrix with tj-th element G,; = (v,—js — Xr_; ¢:¥—js—;) and R is an
n X p matrix with ti-th element R;; = (y;—;)-

The conditional posterior of 6

The conditional posterior of 8 given y, a2, ¢, ®,0,y,, and &, is a multivariate normal
with location vector ug, and dispersion matrix vy, where,

iy = (474 +35) 7 (550 me + ATy — KO — XB))|,vh = 0?(4TA+351) 7,

A is an n x q matrix with ti-th element A;; = (4_; + X%, ©;&,_js_;) and Kisann x Q
matrix with tj-th element K,; = (&_js).

The conditional posterior of @

The conditional posterior of ® given y, o2, ¢, ®,0,y,, and g, is a multivariate normal
with location vector ug, and dispersion matrix vg, where,

i = [WTW + 32507 (35 e + WT(y = 20 — XB))|, vé = a2(WTW + 351,

W is an n x Q matrix with tj-th element W,; = (é,_;s + X7, 6:é—js—;) and Z is an
n X q matrix with ti-th element Z,; = (&;_;).
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The conditional posterior of ¢>

The conditional posterlor of a2 given y, ¢, @,0,0,y,, and &, is an inverse gamma with
A+ns?

parameters a = 7, and b = , Where,

vi=n+v+2p+P+Ps+2q+Q+Qs,and
ns? = [(¢ —1p) 251 (9 — t1g) + (@ = o) T3 (® — o) + (0 — ue) 25 (6 -
to) + .

(0 — 1o)"Z6M(0 — o) + (Yo — Hy,) Zyt (Vo — Hy) + (€0 — tey) Za (50 —
He, )

+(y— XB - /A\a)T(y - Xp — Ka)].

Accordingly, we can sample the parameter ¢ from the Chi square distribution using the

. A+nS? 2
transformation — Xy

The conditional posterior of y, and g,

Using the model (2), the equations for the elements of y, and &, can be expanded and
written as

Fypips = Dyo + Méeg + Ney i ps
where,
1 0 0 - - 0 0
1 1 0 e 0 0
0

B P1 1 0
ﬁp+P51 ﬁp+P52 —ﬁz _ﬁl 1
(p+Ps)x(p+Ps)
/ - Pz ﬁp+Ps—1 ,3p+Ps
B3 Ba - 0 PBpsrs O
| B, e e 0 0
D=|: : : e e :
.8p+Ps 1 .8p+Ps 0 e 0 0
Bprs 0 o w0 0

(p+Ps)x(p+Ps)
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aq a; az 0t Qgigs-1 %g+Qs
az a3 a4 cee cee aq-I-QS 0
as ay 0 0
M = : )
Ap+ps—1  Ap+Pps 0 0 0 |
Apips O 0 0 0
(p+Ps)x(q+Qs)
1 0 0 0 O
ay 1 0 0 0
1 0 O
N = 24/) aq ) ’
\ap+Ps—1 Apips—2 = = A ap 1
(p+Ps)X(p+Ps)

= O0Vr =q+Qs+1,,p+Ps if p+Ps>q+0QS, Vpsrs = (V1Yo Ypips)
and &p4ps = (gl,gz, ep+PS)T which has the (p+Ps) normal distribution with zero mean
and variance (o%l,4ps) Where I,,ps is the unit matrix of order (p+Ps). With some
manipulations, we derived the conditional posterior of y, given y,c?2, ¢, ®,8,0, and g,
as a multivariate normal with location vector yf‘,o, and dispersion matrix vf}o, where,

'uflfo = [DT(NNT)_lD + 2:3_/01 _1[23701'“3/0 + DT(NNT)_l(prH’S - MEO)]'

and vi = g2(DT(NNT)™*D + ;1)

Similarly, the conditional posterlor of g, given y,a?, ¢, ,6,0, and y, is a multivariate

normal with location vector g , and dispersion matrix vg , Where,
-1
:uso - [MT(NNT) M + 2801 [Zso He, + MT(NNT) 1(pr+Ps - DYO)]»

and vi = g2[MT(NNT)*M + 371

4. Predictive Analysis for SARMA Models

The predictive density of the next k future observations is the conditional density of
future observations yr = (Vn+1,Yn+2 - Yn+k) Qiven the time series data y. This
predictive density can be obtained by averaging the distribution of future values with
respect to the joint posterior density of the model parameters as

COrly) =
f¢ fq; fg f@ faz f)’o fso f(}’f' b, ®,6,0,02,y,, & |}’)d¢dq’d9d®d02d}’od50

This predictive density does not have an analytical closed form, which complicates the
predictive analysis of SARMA models. Therefore, we try to obtain the conditional
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predictive distribution of y, given y, ¢, ®,6, 0,02, y,, and &, and then employ the Gibbs
sampling method to approximate the predictive density. In order to derive the conditional
predictive distribution of y., we use the model (2) to obtain the equations of the k future
observations as

WYyr = Qy, + g, + Tef

R
\%1@“?.. - )

where,

\
‘S
=Y
—_
o O
o O

oS O O

Wy W3 w3z - "t Wpips-1 (‘)p+Ps
/‘Uz w3 Wy "t Wpips \
o=l o) f’ L
kwk Wr1 ° Wpips 0 /
kx(p+Ps)
Ty T3 T3 - vt Tg+Qs-1 7Tq+Qs
/71'2 71'3 7'[4 e e nq-l—Qs \
H:|T[3 Ty ves ves 0 0 |
\”k Tg+1  *° Tgigs O /
kx(q+Qs)
1 0 0 -« - 0 0
/h 1 0 - - 0 0\
r=| o2
Yk-1 Yk-2 Y2 "N 1/

Y, = B, and w, = B,Vr < p + Ps and zeros otherwise, 7, = a, and y, = a,.Vr < q +
Qs and zeros otherwise, v = Vn Vo1, ---,yn_p_Ps+1)T, g =
(en, en_l,---,en_q_Qs+1)T, and & = (&n41,€ns2,» Ensi) - It is worth noting that we
assume & has a multivariate normal distribution with zero mean and variance (oI,), and
g and g, are independent. Using the above defined matrices and with some
manipulations, we derive the conditional predictive distribution of 1y, given
y,¢,®,0,0,052, and y, to be a multivariate normal with location vector Mf‘;f, and
dispersion matrix vf}f, where,
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yf,f =¥Y-Qy, + g, ], and vf)f =?[(T" YT 1y)]?!
It should be noted that the elements in g, are unknown and can be estimated as discussed
in Section 3. Accordingly, using this derived conditional predictive distribution of y,
along with the conditional posteriors of the model parameters presented in Section 3, we
apply the Gibbs sampling method not only to approximate the marginal posteriors but
also to approximate the predictive density (9). In the following section we introduce our
proposed Gibbs sampling algorithm for Bayesian analysis of SARMA models.

5. Proposed Gibbs Sampling Algorithm for SARMA Models

The proposed Gibbs sampling algorithm for the Bayesian analysis of SARMA models
can be implemented in the following steps:

1. Specify starting values {¢°, ®°,6°,0°, (6%)°, y(, €7, £} and set j=0. These starting values
can be obtained from the initial estimates of the model parameters obtained using the NLS
method, as we discussed in Section 3.

2. Generate one value for each model parameter from its conditional posterior distribution and

for future observations y; from the conditional predictive distribution as

o (Pl (0PI 00y T e STy,

o DI~g(@y, (02 @007, 00 7y T e Ty Y,

b 61~((91|YI (0-2)]'_1; ¢]'I CDJ'; G)]'_lr }{0]_1; 6.‘0]_1I }'Ifj_l)r

o O~{(0]y, (0% ¢, 0,07,y & Ly,

¢ (0-2)]“'(((0-2)] |y' ¢]' q)]' 9]' G)]' YO]_I' 801_1' yf]_l)'

o Y~y 1y, (62), 97, @7,67,07, 6771y,

o el ~(e’ 1y, (0%), 47, 1,607,080, y00, 30 7),

o Y~y (0%, ¢, 07,67,07, 57, 7).
Now, the algorithm gives the first wvalue of the Markov chain
{¢),07,07,07,(c%),y),€),v1}.

3. Setj =j+1 and go to 2. The algorithm gives the next value of the Markov chain, say
(@1, @I+, 9741, 0771, (g2) 1, yJ* *1 ] * 1} by simulating each of the full
conditionals where the conditioning elements are revised each iteration.

This iterative process is repeated for a large number of iterations and its
convergence is monitored. Once the chain has converged, the simulated values from the
conditional posterior and predictive distributions are used as samples from the joint
posterior and from the predictive distribution respectively. Accordingly, posterior
estimates of the model parameters and Bayesian forecasts of the future observations can
be computed directly by sample averages of the simulation outputs. Regarding the
convergence of the obtained Markov chain, three groups of diagnostics can be used to
monitor including autocorrelation estimates, Raftery and Lewis diagnostics, and Geweke
diagnostics. First, autocorrelation estimates indicate how much independence exists in the
sequence of each parameter draws. A high degree of autocorrelation indicates that more
draws are needed to be generated to get accurate posterior estimates. Second, diagnostics
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proposed by Raftery and Lewis (1992,1995) include (1) Burn: the number of draws used
as initial draws or "burn-in" before starting to sample draws for the purpose of posterior
approximation, (2) Total: the total number of draws needed to achieve the desired level of
accuracy, (3) Nmin: the number of draws that would be needed if the draws represented
an iid chain, and (4) I-stat: the ratio of the (Total) to (Nmin). Raftery and Lewis
suggested that a convergence problem may be indicated when the I-stat values exceed 5.
Third, diagnostics proposed by Geweke (1992) include two groups:

1. The first group includes the numerical standard errors (NSE) and the relative numerical
efficiency (RNE). The NSE estimates reflect the variation that can be expected if the
simulation is to be repeated. The RNE estimates indicate the number of draws that is
required to produce the same numerical accuracy when iid sample is drawn directly from the
posterior distribution.

2. The second group of diagnostics includes a test of whether the sampler has attained an
equilibrium state. This is done by carrying out Z-test for the equality of the two means of the
first and last parts of draws and the Chi squared marginal probability is obtained. Usually,
the first and last parts are the first 20% and the last 50% of the draws.

These convergence diagnostics are used in the following section to monitor the
convergence of the proposed Bayesian method.

6. Simulation Study and Real-World Application

We have two parts in this section. First, we present a simulation study to evaluate the
accuracy of our proposed Bayesian analysis for SARMA models. Second, we apply the
proposed Bayesian analysis to real-world time series datasets.

6.1 Simulation Study

In this subsection we present four simulations of SARMA models, and Table 1 shows the
design of these simulations including true parameters values, sample size, seasonality
period, model variance, and next k future values. By these simulations we try to represent
different seasonality patterns with different data types.

Table 1: Simulation design.

Model ¢ ) 0 8] n S g? k
I 0.8 0.3 0.5 0.8 100 4 1.0 4
I 0.3 0.4 04 0.7 100 4 1.0 4
Il 0.6 05 0.3 0.5 300 12 1.0 12

v -0.5 06 -05 0.8 300 12 1.0 12

Once the time series datasets are generated from these SARMA models, the
Bayesian analysis is performed by assuming a non informative prior for the parameters
¢, @, 8,0, and o2 and a normal prior with zero mean for both initial observations y,
with variance 021p+PS and initial errors g, with variance 021q+QS. To apply the proposed
Gibbs sampler, the starting values for the parameters ¢, ®, 8, ©, and o2 are obtained
using the NLS method, and the starting values for y,, €y, and y, are assumed to be zeros.
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For each dataset, the Gibbs sampler was run 6,000 iterations where the first 1,000 draws
are ignored and every fifth value in the sequence of the last 5,000 draws is recorded to
have an approximately independent sample. All the posterior estimates of the model
parameters and the Bayesian forecasts are computed directly as sample averages of the
Gibbs sampler draws. In the following, we discuss the results and investigate the
convergence diagnostics.

Table 2 presents the Bayesian estimates of the model parameters and the Bayesian
forecasts of the next k future observations with the corresponding true values for Model
I. The 95% credible intervals using the 0.025 and 0.975 percentiles of the simulated
draws is computed and presented in Table 2. From Table 2, it is clear that the Bayesian
estimates and forecasts are close to the true values and the 95% credible interval includes
the true value for each parameter and future observation. Sequential plots of generated
sequences of the model parameters together with their marginal posterior densities are
displayed in Figure 1, while marginal predictive densities of the next four future
observations are displayed in Figure 2. Figure 1 shows that the posterior draws of the
proposed algorithm are stable and fluctuate in the neighborhood of the true values. On the
other hand, the marginal posteriors show that the true value of each parameter falls in the
constructed 95% credible interval, as indicated by the vertical line. Similar conclusions
can be obtained from Figure 2 about the predictive performance of the proposed Gibbs
sampling algorithm.

Table 2: Bayesian results for Model I.

True Std. Lower 95 % Median Upper 95

Parameter values Mean Dev. limit % limit
n 080 082 003 076 0.82 0.88
@ 030 020 008 004 0.20 0.34
0 050 036 009 020 0.36 0.54
0 080 083 011 061 0.82 1.04
o2 100 097 013 074 0.96 1.27
Vot 053 043 099  -1.54 0.44 2.29
Voso 024  -042 152  -3.49 034 243
Viss 069  -041 187  -4.04 036 317
Visa 066  -153 206  -5.63 159 254
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Figure 2: Marginal predictive distributions of Model |

Using the convergence diagnostics summarized in Section 5, the convergence of
the proposed Gibbs sampling algorithm is monitored. In particular, the autocorrelations
and Raftery and Lewis diagnostics are displayed in Table 3 and Geweke diagnostics are
displayed in Table 4. Table 3 shows that the draws for each parameter have small
autocorrelations, indicating that there is no convergence problem. This conclusion was
confirmed by the diagnostic measures of Raftery and Lewis where the reported (Nmin) is
994 which is close to the 1000 draws we used and I-stat value is about 1 which is less
than 5. Scanning the entries of Table 4, confirms the convergence of the proposed
algorithm where Chi squared probabilities show that the equal means hypothesis cannot
be rejected and no dramatic differences between the NSE estimates are found. In
addition, the RNE estimates are close to 1 which indicates the iid nature of the output
sample.

A similar analysis, to that applied to Model 1, is applied to Models II, 111, and 1V,
and all the Bayesian results are presented in Tables 5, 6, and 7. From all these results we
can claim that similar conclusions to those of Model | are obtained for the other three
models, which confirm the accuracy of the proposed Gibbs sampling algorithm.

410 Pak.j.stat.oper.res. Vol.XV No.2 2019 pp397-418



Gibbs Sampling for Bayesian Prediction of SARMA Processes

Table 3: Autocorrelations and Raftery-Lewis diagnostics for Model I.

parameter Autocorrelations Raftery-Lewis Diagnostics

Lagl Lag5 Lagl10 Lag50 | Burn  Total(N) (Nmin) I-stat

¢ -0.00  0.00 -0.02 002 | 3 1117 994 1.12
P -0.02 0.01 -0.05 001 | 2 948 994 0.95
0 001 -0.01 0.03 0.07 | 2 1028 994 1.03
C] 0.04  -0.05 0.02 003 | 2 1028 994 1.03
o? 0.01 -0.02 0.04 002 | 2 1028 994 1.03
VYn+1 -0.01  -0.05 0.01 0.02 | 2 1028 994 1.03
VYn2 0.03 -0.04 0.03 002 | 2 948 994 0.95
VYn+3 0.06 -0.07 0.03 0.00 | 2 948 994 0.95
Vn+a 0.06 -0.01 0.07 002 | 2 948 994 0.95

Table 4: Geweke diagnostics for Model 1.

Param. l\IIISdE RNE iid NSE 4% RNE 4% NSE 8% RNE 8% NSE 15%RNE 15%  x?

b 0.0009 1 0.0009 1.0232 0.0008 1.3247 0.0007 1.8775 0.1923
P 0.0024 1 0.0028 0.7065 0.0025 0.9109 0.0021 1.2951 0.2428
0 0.0028 1 0.0026 1.1402 0.0026 1.2052 0.0026 1.1569 0.2212
0 0.0034 1 0.0030 1.2620 0.0023 2.1333 0.0022 2.3668 0.3100
g? 00042 1 0.0043 0.9884 0.0036 1.3734 0.0033 1.6717 0.6940
Ype1 00313 1 0.0313 1.0035 0.0311 1.0130 0.0272 1.3280 0.8612
yn+2 00480 1 0.0478 1.0049 0.0459 1.0895 0.0321 2.2326 0.9631
Y43 0.0592 1 0.0574 1.0632 0.0529 1.2506 0.0421 1.9789 0.9746
ynia 0.0653 1 0.0717 0.8283 0.0674 0.9366 0.0666 0.9594 0.9384
Table 5: Bayesian results for example 11.

) 0.30 0.20 0.10 0.02 0.20 0.39

d 0.40 0.31 0.07 0.17 0.31 0.46

0 0.40 0.39 0.14 0.13 0.39 0.68

0 0.70 0.71 0.13 0.45 0.71 0.96

o2 1.00 0.96 0.14 0.73 0.95 1.26

Vo1 -0.06 -0.17  0.99 -2.14 -0.15 1.69

Vni2 -0.67 -0.63 1.13 -2.91 -0.59 1.49

Vn+3 0.83 -0.07 1.19 -2.44 -0.08 2.24

Vnia -0.98 -1.13 1.23 -3.47 -1.18 1.29
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Table 6: Bayesian results for Model 111.

True Std. Lower 95 % Upper 95 %
Parameter values Mean Dev. limit Median limit
[0) 0.60 0.64 0.05 0.55 0.64 0.74
0] 0.50 0.51 0.05 041 0.51 0.61
6 0.30 0.21 0.07 0.08 0.21 0.35
Q] 0.50 0.41 0.09 0.24 0.41 0.58
o? 1.00 0.92 0.07 0.79 0.92 1.08
Vn+1 -2.42 -2.62 0.95 -4.53 -2.64 -0.69
V42 0.18 -1.50 1.27 -3.90 -1.55 0.97
Vn+3 -0.48 -2.00 1.37 -4.64 -2.06 0.66
Vn+4a -2.73 -2.98 141 -5.65 -3.03 -0.20
Vis 359  -3.09 1.44 -5.86 -3.13 -0.13
Vn+é -4.77 -2.67 1.43 -5.43 -2.68 -0.02
V7 -2.93 -1.65 1.43 -4.36 -1.71 1.14
Vis 0.29 084 149 -3.78 -0.88 2.06
Vo -0.52 -1.51 1.49 -4.37 -1.53 1.42
Vn+10 0.04 -1.86 1.45 -4.90 -1.88 1.11
Vn+il -0.24 -2.01 1.45 -4.82 -1.99 0.81
V12 -2.36 -2.09 1.49 -5.13 -2.08 0.73
Table 7: Bayesian results for Model 1V.
True Std. Lower 95 % Upper 95 %
Parameter values Mean Dev. limit Median limit
¢ -0.50 -0.57 0.04 -0.65 -0.58 -0.49
o 0.60 0.60 0.04 0.51 0.60 0.68
7] -0.50 -0.51 0.07 -0.64 -0.51 -0.37
Q] 0.40 0.29 0.06 0.17 0.29 0.42
o? 1.00 0.93 0.07 0.80 0.93 1.10
VYn+1 -2.17 -2.31 0.97 -4.22 -2.33 -0.32
Va2 4.05 2.71 1.43 -0.10 2.75 5.55
VYn+3 -4.16 -2.72 1.53 -5.82 -2.75 0.17
Vn+a 0.74 0.77 1.60 -2.27 0.74 4.12
VYn+s -0.66 -0.54 1.63 -3.73 -0.49 2.49
Vi 111 030 160 -2.90 0.30 3.46
Vne7 2.00 -0.02 1.59 -3.04 -0.06 3.30
VYn+8 0.61 0.11 1.60 -3.05 0.09 3.12
Vn+9 -2.56 -1.16 1.62 -4.27 -1.22 1.91
VYn+10 2.75 0.59 1.59 -2.54 0.54 3.67
Vn+11 -2.24 -0.67 1.62 -3.80 -0.61 2.35
Vna12 -0.36 0.40 1.62 -2.74 0.36 3.75
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6.2 Real-World Application

In this subsection we apply the proposed Bayesian analysis of SARMA models to two
real-world time series that characterized by exhibiting seasonal pattern. The first time
series dataset is 84 observations of average monthly soil temperature near Zurich at seven
different depths, averaged over four years beginning in 1762, and the temperature
measurements are related to the ’du Crest’ scale (see Lambert, 1779, Page 358). This
time series dataset is one of the earliest time series in scientific literature. The second
time series dataset is the Federal Reserve Board Production Index that consists of 372
monthly values from January 1948 to December 1978 (Shumway and Stoffer, 2006).
These two time series datasets are shown in Figure 3. Figure 3 shows that the average soil
temperature time series is stationary, however, Figure 3 shows that the production index
time series is nonstationary. We used the first (nonseasonal) difference to stationarize the
production index time series but still it seems nonstationary in the seasonal component as
shown in Figure 3, and accordingly we used the seasonal difference and now it seems
stationary as displayed in Figure 3. This implies that we apply our proposed Bayesian
analysis for the stationary differenced production index, not for its nonstationary raw
data.
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(a) Average monthly soil temperature near Zurich (b) Federal reserve board production index
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Figure 3: Time-plot of the two real-world time series datasets
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We use the first 78 observations of the average soil temperature data and the first
360 observations of the production index data to identify the suitable SARMA models
and apply our proposed algorithm to conduct the posterior and predictive analysis to
these two time series datasets, and the remaining observations (i.e. k = 6 for the average
soil temperature data and k = 12 for the production index data) we use to evaluate out of
sample prediction performance. In order to identify the best suitable order of the SARMA
models for the two time series, we use the Akaike information criterion (AIC) with
assuming the maximum order of each of the nonseasonal and seasonal polynomials is two
in the SARMA model (1) according to the recommendation of Laing and Smith (1987).
We compute the AIC for all the combinations of SARMA models and select the best
model with smallest value of AIC. In particular, the identified models are
SARMA(2,2)(1,1) ,, for the average soil temperature data and SARMA(1,1)(2,2) ., for
the differenced production index data.

Using the identified models, we apply the proposed Bayesian analysis to conduct
the posterior and predictive analysis to the two real-world time series datasets with
choosing the hyperparameters as in the simulation study. Table 8 summarizes the
Bayesian results for the average soil temperature data, wheretheir marginal predictive
densities are displayed in Figure 4. On the other hand, the Bayesian results for the
differenced production index are presented in Table 9, and their marginal predictive
densities are displayed in Figure 5. From the Bayesian forecasts of the next six future
values of the average soil temperature data (displayed in Figure 4) and those of the next
twelve future values of the production index data (displayed in Figure 5), we can confirm
the applicability of our proposed Gibbs sampling algorithm to real-world time series.

Table 8: Bayesian results for the average soil temperature.

True Std. Lower Upper
Parameter values  Mean Dev. 95 % limit Median 95 % limit
ol - 1.58 0.08 1.39 1.58 1.71
(o - -0.75 0.09 -0.88 -0.76 -0.55
() - 0.62 0.06 0.51 0.62 0.74
0, - -0.39 0.10 -0.58 -0.39 -0.19
0, - -0.19 0.11 -0.41 -0.19 0.03
0 - -0.12 0.13 -0.36 -0.12 0.09
o? - 14.13 2.75 10.03 13.65 20.51
Vn+1 18.00 17.35 3.98 10.00 17.26 25.45
Vnt2 26.00 26.33 6.23 13.90 26.50 38.62
Vn+3 28.00 26.44 7.33 12.49 26.39 41.13
Yn+a 14.00 12.60 8.23 -2.45 12.15 30.77
Yn+s 0.00 -1.03 8.53 -16.96 -1.57 16.68
Yn+6 -20.00 -17.66 8.48 -33.59 -17.78 0.30
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Table 9: Bayesian results for the differenced production index.

True Std. Lower Upper

Parameter values Mean Dev. 95%Ilimit Median 95 % limit
¢ - 0.63 0.09 0.44 0.64 0.81
d, - -0.23  0.10 -0.41 -0.24 -0.03
D, - -0.30 0.06 -0.41 -0.30 -0.19
6 - -0.31 0.11 -0.52 -0.31 -0.10
0, - -0.46 0.12 -0.70 -0.45 -0.25
0, - 0.05 0.08 -0.11 0.05 0.21
o? - 1.19 0.09 1.03 1.18 1.37
Vn+1 -0.60 -0.30 1.13 -2.49 -0.29 1.91
Vo 0.00 -0.71  1.10 -2.96 -0.70 1.25
Vn+3 -0.30 -1.33  1.14 -3.65 -1.33 0.84
Vnta 2.30 0.32 1.19 -2.05 0.32 2.57
Vit -1.00 0.10 1.20 -2.35 0.08 2.44
Vn+6 0.30 0.13 1.21 -2.07 0.09 2.69
V47 0.50 0.98 1.16 -1.21 0.97 3.25
Vnag 0.90 1.15 1.21 -1.10 1.14 3.57
Yn+9 0.90 0.11 1.23 -2.26 0.10 2.44
Y410 0.30 -051 1.19 -2.88 -0.49 1.76
Vi1 0.30 0.25 1.20 -2.05 0.24 2.60
Vn+12 -0.10 -0.73 1.23 -3.07 -0.79 1.75

.....

40

20

Figure 4: Marginal predictive distributions of the average soil temperature
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Figure 5: Marginal predictive distributions of the differenced production index
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7. Conclusions

In this paper we first used the nonlinear least squares (NLS) method to estimate the
unobserved errors in the multiplicative SARMA models and accordingly approximate its
likelihood function. We employed conjugate priors on the model parameters and initial
values to show that the conditional posterior distributions of the model parameters and
variance are multivariate normal and inverse gamma respectively, and the conditional
predictive distribution of the future observations is a multivariate normal. Exploiting that
the conditional posterior and predictive densities are standard distributions, we used the
Gibbs sampling algorithm to present a Bayesian method for estimating the SARMA
model parameters and obtaining multiple-step ahead predictions. Simply, we applied the
Gibbs sampling algorithm to approximate empirically the marginal posterior and
predictive distributions along with using several convergence diagnostics. Accordingly,
we computed directly the posterior estimates of the model parameters and the Bayesian
forecasts of the future values as sample averages of the Gibbs sampling chains. The
empirical results of the simulated and real-world time series datasets confirmed the
accuracy of the proposed Bayesian method. Future work may include model
identification using stochastic search variable selection, outliers detection, and extension
to multivariate seasonal time series models.
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