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Abstract 

 

The analysis and modeling of zero truncated count data is of primary interest in many fields such as engineering, 

public health, sociology, psychology, epidemiology. Therefore, in this article we have proposed a new and simple 

structure model, named a zero truncated discrete Lindley distribution. The distribution contains some sub models 

and represents a two-component mixture of a zero truncated geometric distribution and a zero truncated negative 

binomial distribution with certain parameters. Several properties of the distribution are obtained such as mean 

residual life function, probability generating function, moments of residual life function, raw moments, estimation 

of parameters, Shannon and Rényi entropies, a characterization, and stress-strength parameter. Moreover, the 

collective risk model is discussed by considering the proposed distribution as primary distribution and exponential 

and Erlang distributions as secondary ones. Test and evaluation statistics as well as three real-life data applications 

are considered to assess the performance of the distribution among the most frequently zero truncated discrete 

probability models.  
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Introduction  

An important statistical property which is used in many fields, such as reliability theory, queueing systems, medicine, 

industry and many others, is the truncation of probability distributions. The truncation of probability models occurs 

when a range of possible values of the variables either is ignored or is impossible to be observed. The zero truncation 

of the models is also a truncation phenomena in which one intends to model count data without zero. For example: 

length of hospital stay is recorded as a minimum of at least one day, number of times a voter has voted (among the 

people who have voted) during the general election, number of journal articles published in different disciplines, 

number of tickets received by teenagers as predicted by school performance, number of children ever born to sample 

of mothers over 40 years of age, number of eggs and gall-cells (at different dates) were counted in flowers heads in 

two years, number of occupants in passenger cars, number of stressful events reported by patients, number ofhouses 

replying to a postal survey etc. For modeling the above situations usually the zero truncated Poisson (ZTP),\ zero 

truncated negative binomial (ZTNB), zero truncated generalized negative binomial (ZTGNB), zero truncated Poisson 

Lindley (ZTPL),Zero Truncated Discrete Shanker (ZTDS), zero-truncated  Poisson-Amarendra (ZTPA),  zero-

truncated Poisson-Garima (ZTPGr)  and zero truncated Poisson Gamma (ZTPG) distributions.  Applications of the 

distributions above as follows. Finney and Varley (1955) used the ZTP for the analysis of number of eggs and 

gall-cells counts in flowers heads, Brass (1959) modeled the number of children ever born to sample of mothers 

over 40 years of age by ZTNB distribution , Creel and Loomis (1990) applied the ZTP distribution on deer 

hunting in California, Lindsay (1995) used the ZTP for the analysis of postal survey data, Lee et al. (2003) 

applied the ZTNB distribution in a regression model for analyzing the over dispersed positive count data of 

ischemic stroke hospitalizations, Kennedy (2005) used the ZTP, ZTNB and ZTGNB distributions for the analysis 
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of stroke count data, Phange and Loh (2013) and the reference therein discussed the application of ZTNB in the 

analysis of abundance of rare species and hospital stay. Groggan and Carson (1991) applied the truncated model 

to a number of recreational fishing trips taken from a sample of Alaskan fishermen. Moreover, Ghitany et al., 

(2008), Borah and Saikia (2017), Shanker (2017) and Shanker and Shukla (2017) discussed the ZTPL, ZTDS, 

ZTPA and ZTPGr distributions respectively and applied to real count data. It is observed in the above discussed 

zero truncated models that neither have high peakedness nor possess heavy tail. In addition, these models do not 

work very well in both over and under dispersion phenomena. Moreover, none of the above mentioned models 

exhibit skewness and kurtosis in the domain of interval (2, ∞) and (6, ∞) respectively, also these models do not 

possess closed form and algebraically manipulate able survival functions. The mentioned drawbacks above were 

the motivation to propose a simple structure zero truncated model with two parameters under the name zero 

truncated discrete Lindley distribution (ZTDL). The proposed ZTDL has closed form structure of its various 

statistical properties along with heavy right tail than the above competing zero truncated models. Moreover, the 

peakedness and skewness of the proposed ZTDL model approach to 6 and 2, respectively, which is not observed 

in the above mentioned models except the ZTPL distribution. Further, the proposed model may be helpful in 

developing hurdle models by acting as a baseline distribution and in regression modeling. Also, the distribution 

is over- and under-dispersed.  The flexibility of the two parameter ZTDL over the one parameter ZTDL and ZTG 

(zero truncated geometric) distributions shall be investigated later by using stochastic ordering. Further, the 

flexibility of the model is investigated by its consonance with some real data sets as revealed through techniques 

such as empirical distribution function plots, empirical hazard function plots, Anderson-Darling, Kolmogrov-

Simnorov (KS), Akaike information criterion (AIC), Bayesian information criterion (BIC) and Akaike 

information criterion corrected (AICc) statistics.   For this purpose three real data sets   are analyzed and it is 

noted that the proposed model is the most suitable distribution among others by exhibiting minimum values for 

those statistics.  In addition, the proposed model only exhibits the increasing failure rate phenomena which is 

the desired requirement of the life testing experiment. Other motivations of the model in terms of its hazard rate 

and mean residual life functions are discussed in the coming sections. A Lindley distribution is used extensively 

to describe the lifetime of a process or a device in a wide variety of fields, including reliability, engineering, 

biology, and medicine. The first version of Lindley was proposed by Lindley (1958). After that a number of 

forms of the distribution has been described in academic literature, such as a generalized Lindley by Nadaragha 

et al. (2011), an extended Lindley (EL) distribution by Bakouch et al. (2012), a power Lindley by Ghitany et al. 

(2013), a new weighted Lindley distribution by Asgharzadeh et al. (2016). Similarly, Shanker et al. (2013) 

introduced the two parameter continuous Lindley (TPL) distribution defined by 

                      𝑓(𝑥) =
𝜃2

𝜃+𝛽
(1 + 𝛽 𝑥)𝑒𝑥𝑝(−𝜃 𝑥), 𝑥 >  0;  𝛽 ≥  0, 𝜃 >  0.           (1.1)                                             

The proposed discrete distribution here is the zero truncated discrete version of the distribution specified by (1.1) and 

its probability mass function is obtained via the discretization approach by incorporating (1.1) in the following identity 

𝑃(𝑌 = 𝑥) = 𝑓(𝑥) (∑ 𝑓(𝑘)

∞

𝑘=1

)

−1

, 

where f(x) is the probability density function of a continuous random variable. Therefore in the light of equations 

above we define the zero truncated discrete Lindley distribution denoted by ZTDL(𝑝 𝛽) with parameters 𝑝 and 𝛽 as 

                       𝑃(𝑌 = 𝑥) = 𝑝𝑥 =
(1 − 𝑝)2

1 + 𝛽 − 𝑝
(1 + 𝛽 𝑥)𝑝𝑥−1, 𝑥 = 1,2,3, ….                  (1.2) 

where  0 < 𝑝 < 1 and 𝛽 ≥ 0.  For 𝛽 = 0  the distribution reduces to zero truncated geometric distribution and for 

β = 1 it becomes one parameter zero truncated dis- crete Lindley distribution, respectively, noting that the case 

for β = 1 is not discussed before. Also, when𝛽 = 2, the distribution reduces to the zero truncated negative 

binomial distribution with parameters (2, p). Moreover, the probability mass function in (1.2) shows that the 

ZTDL(𝑝 𝛽) distribution is a two-component mixture of a zero truncated geometric distribution with parameter 

p and a zero truncated negative binomial distribution  with  parameters (2, p)  and mixing proportions  
1−𝑝

1+𝛽−𝑝
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and 
𝛽

1+𝛽−𝑝
 respectively. Figure 1 indicates how the parameters p and β affect the ZTDL probability mass function 

and shows right skewness and uni-modality. Moreover, it can be noted that, the ZTDL distribution can be 

obtained by using the expression 

𝑃(𝑌 = 𝑥) =
𝑃(𝑊 = 𝑥)

1 − 𝑃(𝑊 = 0)
, 

where 𝑃(𝑊 = 𝑥) is the two parameter discrete Lindley distribution introduced by Hussain et al. (2016) and 

given by  

𝑃(𝑌 = 𝑥) =
(1 − 𝑝)2

1 + 𝑝(𝛽 − 1)
(1 + 𝛽 𝑥)𝑝𝑥 , 𝑥 = 0, 1,2,3, … .    0 < 𝑝 < 1,   𝛽 ≥ 0 . 

The recursive relation between ZTDL probabilities is given by 

(1 + 𝛽 𝑥)𝑃(𝑌 = 𝑥 + 1) = 𝑝 (1 + 𝛽(𝑥 + 1))𝑃(𝑌 = 𝑥). 

Since ZTDL is based on two parameters namely shape parameter p and scale parameter β, so Figure 1 under the 

influence of theses parameters indicates that as p → 0   the mode of the function moves towards left that is 

probability graph of ZTDL makes a reverse J shape for all values of β. However, as p→1 the mode of the 

distribution moves towards right for all values of β. Moreover, the distribution does not achieve perfect symmetry 

for all values of p and β. In addition to, we have also theoretically observe that 𝑝𝑥 = 0 as p→1 and 𝑝𝑥 =

𝑥(1 − 𝑝)2𝑝𝑥−1 as 𝛽 → ∞. Thus the survival and hazard functions of the ZTDL distribution are 

 

Figure 1: Plots of the ZTDL Probasbility mass function for some parameter values. 

𝑆𝑥 =
(1 + 𝛽𝑥 + 𝑝(𝛽 − (1 + 𝛽𝑥))) 𝑝𝑥−1

1 + 𝛽 − 𝑝
, 𝑥 = 1,2,3, … .    0 < 𝑝 < 1,   𝛽 ≥ 0 , (1.3) 

and  

ℎ𝑥 =
(1 + 𝛽𝑥)(1 − 𝑝)2

(1 + 𝛽𝑥 + 𝑝(𝛽 − (1 + 𝛽𝑥)))
, 𝑥 = 1,2,3, … .    0 < 𝑝 < 1,   𝛽 ≥ 0 ,                   (1.4) 

It is clear from equation (1.4) that ℎ𝑥 = 1 as 𝑝 → 0 and ℎ𝑥 = 0 as 𝑝 → 1. Moreover, ℎ𝑥 = 1 − 𝑝 as 𝛽 → 0 and ℎ𝑥 =
𝑥(1−𝑝)2

𝑥(1−𝑝)+𝑝
 as 𝛽 → ∞. However, ℎ𝑥 = 1 − 𝑝 as 𝑥 → ∞, therefore, the hazard rate function of the ZTDL distribution is 

bounded above, which is an important property for the lifetime models. Figure 2 gives some plots of the hazard rate 

function for some selected values of the parameters. It is observed that the ZTDL distribution exhibits an increasing 

failure rate for all values 𝑥, 𝑝 anf 𝛽. However,  if p is considered as successfully working of the product then as p 
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→ 1 the intensity of failure rate decreases for all values of β .  Moreover, if p →0 the distribution has a 

constant failure rate.  The mean residual life (MRL) function of the ZTDL distribution is defined as 

𝐾𝑥 = 𝐸(𝑌 − 𝑥|𝑌 ≥ 𝑥) =
∑ 𝑆𝑘

∞
𝑘=𝑥

𝑆𝑥

, 

and for ZTDL is expressed as 

𝐾𝑥 =
𝑝 ℎ𝑥

(1 − 𝑝)2
+

𝑝 𝛽 (1 + 𝑝)

(1 − 𝑝)(1 + 𝛽𝑥 + 𝑝(𝛽 − (1 + 𝛽𝑥)))
, 𝑥 = 1,2,3, … . 0 < 𝑝 < 1,   𝛽 ≥ 0 . 

We may interpret the second term of equation (1.5) as a correction term for the MRL of the ZTDL 

distribution than the zero truncated geometric that for which β = 0. Also, it is noted that the MRL of ZTDL 

distribution is greater (equal) than (to) the MRL of zero truncated geometric and one parameter zero truncated 

discrete Lindley distribution based on value of the parameter β. Further discussion to MRL will be given 

later.  

Rest of the article is organized as follows. Section 2 gives several properties of the ZTDL distribution such as 

reliability function, mean residual life function, probability generating function, moments, moments of residual 

life function, estimation of parameters via maximum likelihood method and associated Fisher information 

matrix, Shannon  and  Rènyi  entropies.   A characterization, convolution and stress-strength parameter are 

investigated in Section 3, besides the collective risk model where the proposed distribution is considered as 

primary distribution and exponential and Erlang distributions as secondary ones. Test and evaluation statistics as 

well as three real data application for the ZTDL distribution are discussed in Section 4. Finally, Section 5 deals 

with conclusions. 

2. Properties of the ZTDL distribution  

In this section, some statistical and reliability properties of the ZTDL distribution are investigated by the 

following theorems, propositions and corollaries.  

Log-concaveity and its implications:  A probability distribution is said to be log-concave if its probability mass 

function (pmf) satisfies the inequality 𝑝𝑥
2 ≥ 𝑝𝑥−1𝑝𝑥+1, ∀  𝑥.  The log-concavity of a distribution has important 

implications on the characteristic of its reliability function, failure rate function, tail probabilities and moments. 

Therefore, the log-concavity produces an increasing failure rate and a monotonically decreasing mean residual 

life time function (see Chakraborty and Ong, 2016). The next proposition shows the log-concavity of the ZTDL 

distribution. Proposition 2.1: If Y~ZTDL(𝑝, 𝛽) then the probability mass function (pmf), of the random variable 

Y is log-concave for all choices of β and independent of p. 

Proof: In order to show that the ZTDL distribution defined by (1.2) is log-concave, it is sufficient to show that 

𝑝𝑥
2 ≥ 𝑝𝑥−1𝑝𝑥+1, 𝑓𝑜𝑟 𝛽 ≥ and   𝑥 = 2,3,4, ….which follows by noting that (1 + 𝛽𝑥)2 ≥ (1 + 𝛽𝑥)2 − 𝛽2. 

Corollary 2.1: The following results are the direct consequence of log-concavity (see Chakraborty and Ong, 

2016): 

i) ZTDL has an increasing failure rate function. ii) Convolution of ZTDL with any other discrete distribution 

will also result in a log concave distribution. iii) For any integer 
𝑝𝑥+𝑘

𝑝𝑥
≥

𝑝𝑦+𝑘

𝑝𝑦
 for  𝑥 < 𝑦 that is 

𝑝𝑥+𝑘

𝑝𝑥
 is non 

increasing in 𝑥. iv) ZTDL has at most an exponential tail, lim
𝑥→∞

𝑒𝑏𝑥𝑃(𝑌 = 𝑥) = 0 ⇒ 𝑃(𝑌 = 𝑥) =

𝑂𝑒−𝑏𝑥  for some  𝑏 > 0 as 𝑥 → ∞.  v) ZTDL has a monotonically decreasing mean residual life time function. 

Now, recall that the log-concave probability mass functions are strongly unimodal, see Nekoukhou et al. (2012), 

and have an increasing failure rate. Therefore, we have the following corollary 
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Corollary 2.2: If Y~ZTDL(𝑝, 𝛽) then the mode of the random variable Y is located at m and m satisfies, 
𝑝 𝛽−(1−𝑝)

(1−𝑝)𝛽
≤ 𝑚 ≤  

 𝛽−(1−𝑝)

(1−𝑝)𝛽
.  

Proof: According to Abouammoh and Mashhour (1981) and Nekoukhou et al., (2012) the unimodality condition 

is defined as 𝑝𝑥 ≥ 𝑝𝑥−1 for 𝑥 ≤ 𝑚 and  𝑝𝑥+1 ≤ 𝑝𝑥  for 𝑥 ≥ 𝑚, so for ZTDL 𝑝𝑥 ≥ 𝑝𝑥−1⇒
 𝛽 𝑝−(1−𝑝)

(1−𝑝)𝛽
≤ 𝑥 and 

𝑝𝑥+1 ≤ 𝑝𝑥  ⇒
 𝛽−(1−𝑝)

(1−𝑝)𝛽
. This completes the proof.  

The following proposition confirms again the increasing failure rate of the ZTDL distribution. 

Proposition 2.2: If Y~ZTDL(𝑝, 𝛽) then hazard function of ZTDL i.e. 0 ≤ ℎ𝑥 ≤ 1 is an increasing failure rate 

(IFR). 

Proof: For a discrete random variable Y with pmf 𝑝𝑥 = 𝑃(𝑌 = 𝑥) and failure rate function ℎ𝑥 =
𝑝𝑥

𝑆𝑥
  and let η𝑥 =

𝑝𝑥−𝑝𝑥+1

𝑝𝑥
 then ∆η𝑥 = 𝜂𝑥+1 − η𝑥 =

𝑝𝑥+1

𝑝𝑥
−

𝑝𝑥+2

𝑝𝑥+1
. Hence, we get the three results (Gupta et al., 1997) 

 

i. ∆η𝑥 > 0, ℎ𝑥  is an increasing failure rate (IFR) 

ii. ∆η𝑥 < 0, ℎ𝑥  is an decreasing failure rate (DFR) 

iii. ∆η𝑥 = 0, ℎ𝑥 is a constant failure rate (CFR) 

 

Therefore, for the ZTDL distribution we find that ∆η𝑥 =
𝑝𝛽2

(1+𝛽𝑥)(1+𝛽(𝑥+1))
> 0, which implies the hazard function 

of ZTDL is an increasing failure rate (IFR). 

For infinitely divisibility, self-decomposability and stability property of ZTDL(p,β), it is noted that according to 

Steutel and Harn (1979) and Nekoukhou et al., (2012), a necessary conditions for infinite divisibility of discrete 

distribution 𝑝𝑥  is that 𝑝0 > 0 >0, which in the ZTDL distribution case is not fulfilled as 𝑝0 = 0. Moreover, 

classes of self-decomposable and stable distributions are subclasses of infinitely divisible distributions, so non 

infinitely divisible distribution is neither self-decomposable nor stable, see Nekoukhou et al., (2012). 

The recognition of any discrete probability distribution is usually based on its probability generating function 

(pgf). The following theorem gives the pgf of ZTDL distribution. 

Proposition 2.3: If Y~ZTDL(𝑝, 𝛽) then the probability generating function (pmf), of the random variable Y is 

expressed as 

𝐺𝑌(𝑡) =
𝑡(1 − 𝑝)2(1 − 𝑝𝑡 + 𝛽)

(1 − 𝑝𝑡)2(1 − 𝑝 + 𝛽)
, 

where  𝛽 ≥ 0, 0 < 𝑝 < 1 for 0 < 𝑝𝑡 < 1. 

Proof: The proof can be obtained by routine calculations. 

Corollary 2.3:  If t is replaced by 𝑒𝑡 , we get the moment generating function (mgf) of the ZTDL distribution as 

   

                                        𝑀𝑌(𝑡) =
𝑒𝑡(1−𝑝)2(1−𝑝𝑒𝑡+𝛽)

(1−𝑝𝑒𝑡)2(1−𝑝+𝛽)
,                                     (2.1) 

where 0 < 𝑝𝑒𝑡 < 1. 
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Corollary 2.4: The 𝑟𝑡ℎ . derivatives of equation (2.1) with respect to 𝑡  to  𝑡 = 0. yield the rth moment 

 

𝜇𝑟
′ =

(1−𝑝)2

𝑝(1−𝑝+𝛽)
(𝐿𝑖−𝑟(𝑝) + 𝛽𝐿𝑖−𝑟−1(𝑝))                                       (2.2) 

 

Hence, from above corollary we have the first four moments about origin as  

𝜇1
′ =

(1−𝑝)2

𝑝(1−𝑝+𝛽)
(𝐿𝑖−1(𝑝) + 𝛽𝐿𝑖−2(𝑝)),    𝜇2

′ = =
(1−𝑝)2

𝑝(1−𝑝+𝛽)
(𝐿𝑖−2(𝑝) + 𝛽𝐿𝑖−3(𝑝)), 

𝜇31
′ =

(1−𝑝)2

𝑝(1−𝑝+𝛽)
(𝐿𝑖−3(𝑝) + 𝛽𝐿𝑖−4(𝑝)),    𝜇4

′ = =
(1−𝑝)2

𝑝(1−𝑝+𝛽)
(𝐿𝑖−4(𝑝) + 𝛽𝐿𝑖−5(𝑝)), 

where  𝐿𝑖−𝑟(𝑝) = ∑ 𝑘𝑟𝑝𝑘∞
𝑘=1  (see Gradshteyn, and Ryzhik, 2008) is the poly logarithm function. Therefore, by 

using these expressions, the mean and variance of the distribution are, respectively, given by 

Mean =
(1+𝛽−𝑝+𝑝𝛽)

(1−𝑝)(1−𝑝+𝛽)
, Variance =

𝑝 (2𝛽+(1−𝑝)2+𝛽(1−𝑝)(3+𝑝))

(1−𝑝)2(1−𝑝+𝛽)2
. 

In statistics, the phenomena of over- and under-dispersion relative to the Poisson distribution is generally observed in 

count data. There are various causes of such phenomenon, like heterogeneity and aggregation for over-dispersion and 

repulsion for under-dispersion although less frequent, see Kokonendji and Mizre (2005). As the index of dispersion 

(ID) is a measure of such phenomena and defined as variance to mean ratio so for the ZTDL distribution it can be 

expressed as 

ID =
1

(1 − 𝑝)
+

𝛽 + 1

1 + 𝛽 − 𝑝
−

𝛽 + 1

1 + 𝛽 − 𝑝 + 𝑝𝛽
− 1. 

From the above expression it is obvious that as 𝑝 → 0 the ID becomes equal to zero, i.e., for smaller values of p the 

distribution is under dispersed. Similarly as 𝑝 → 1 the ID approaches to infinity. Moreover, for 𝛽 → 0 the ID becomes 
𝑝

1−𝑝
  and for 𝛽 → ∞  the ID becomes 

1

1−𝑝
-
1

2
. So the ID depends solely upon the value of p.  

 

Figure 3: Index of Dispersion plots of ZTDL 
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Figure 3 displays plots of the ID for different values of the distribution parameters. It is noted that, for β < 8 and p < 

0.4145, the distribution is under-dispersed and as p → 1 even at smaller values of β the distribution is over dispersed, 

i.e., β → 0 and p → 1, the ID > 1.Another important statistical properties is the skewness which usually refer to the 

departure from symmetry which is the ratio of square of the third mean moments to the cube of the second moment 

about mean, for ZTDL distribution it is expressed as 

Skewness =
1

𝑝(2𝛽2 + (1 − 𝑝)2 + 𝛽(1 − 𝑝)(3 + 𝑝))
3 {(2𝛽3(1 + 𝑝) + (1 − 𝑝)3 + 𝛽(1 − 𝑝)2(4 + 𝑝(7 + 𝑝))

+ 𝛽2(5 + 𝑝(3 + (𝑝 − 9)𝑝)))
2
}. 

While, kurtosis measures the degree of peakedness or flatness of a unimodal frequency curve and defined as the ratio 

of fourth mean moment to the square of the second moment about mean, for the ZTDL distribution it is expressed as 

Kurtosis =
1

𝑝(2𝛽2 + (1 − 𝑝)2 + 𝛽(1 − 𝑝)(3 + 𝑝))
2
{(1 − 𝑝)4(1 +  𝑝(7 +  𝑝))  +  2𝛽4(1 +  𝑝(10 +  𝑝))  

+ 𝛽3(1 − 𝑝)(7 +  𝑝)(1 +  𝑝(10 +  𝑝))  +  𝛽2(1 − 𝑝)2 (9 +  𝑝(89 + (35 − 𝑝)𝑝))  

+  𝛽(−1 + 𝑝)3(5 +  𝑝(45 +  𝑝(21 +  𝑝)))} 

 

 

Figure 4: Skewness and Kurtosis plots for ZTDL 

Figure 4 gives plots of the skewness and kurtosis for different values of the distribution parameters. It is observed that 

the distribution is positively skewed and leptokurtic in nature. Skewness becomes equal to 2 as p and 𝛽 increases and 

peakedness of the distribution gives higher values at smaller p and 𝛽, however as p and 𝛽 increases it settled down to 

6. From the discussion above it is obvious that the ordinary moments are generally helpful in estimating the unknown 

parameters and characterization of the shape of the distributions. 

2.1  Residual life function with some properties 

Residual life random variable is used much in risk analysis and so we investigate some of its properties, like survival 

function, mean, variance and rth moment for the ZTDL distribution. The residual life is defined by the conditional 
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random variable,  R(t)  =  X − t|X >  t, t ≥  0, and described as the the period from time t until the time of failure. 

The survival function of the residual lifetime R(t), for the ZTDL distribution is 

𝑆R(t)(𝑥)  =
 S𝑥+𝑡

S𝑡

=
𝑝𝑥(1 +  𝛽 (𝑥 +  𝑡)  +  𝑝(𝛽 − (1 +  (𝑥 +  𝑡)))) 

1 +  𝛽𝑡 +  𝑝(𝛽 − (1 +  𝛽𝑡))
 , x >  0, 

and the corresponding probability mass function can be obtained by 𝑃(R(t) = 𝑥) =  𝑆R(t)(𝑥) − 𝑆R(t)(𝑥 + 1). The 

mean residual life is defined as 

K𝑡 = 𝐸(R(t)) =  
1

𝑆t

∑ 𝑥𝑝𝑥

∞

𝑥=𝑡

− 𝑡, 

 

K𝑡 =
𝑝(1 +  𝛽 − 𝑝 +  𝑝𝛽)  + (1 − 𝑝)(1 +  𝑝(2𝛽 − 1))𝑡 + (1 − 𝑝)2𝑡2 

(1 − 𝑝)(1 +  𝛽𝑡 +  𝑝(𝛽 − (1 +  𝛽𝑡))
− 𝑡, 

where 𝑝𝑥 and 𝑆t are given in (1.2) and (1.3), respectively. Based on the behaviour of the failure function hx of the 

ZTDL distribution, which is increasing, we conclude that K𝑡 is decreasing. The variance residual life has considerable 

interest in the recent years and for the ZTDL distribution it is given as 

V𝑡 = Var(R(t)) = −𝑡2 + 
1

𝑆t

∑𝑥2𝑝𝑥

∞

𝑥=𝑡

− 2𝑡 K𝑡 − K𝑡
2, 

V𝑡 =
1

(1 − 𝑝)2(1 +  𝛽𝑡 +  𝑝(𝛽 − (1 +  𝛽𝑡)) 
{𝑝(1 +  𝛽 +  4𝛽𝑝 +  𝑝2(𝛽 − 1)) +  𝛽(1 − 𝑝)3𝑡3

+  𝑝(1 − 𝑝)(2(1 − 𝑝) +  3𝛽(1 +  𝑝))𝑡 + (1 − 𝑝)2(1 − 𝑝 +  3𝛽𝑝)𝑡2  } 

−
(𝑝(1 +  𝛽 − 𝑝 +  𝑝𝛽) + (1 − 𝑝)(1 +  𝑝(2𝛽 − 1))𝑡 + (1 − 𝑝)2𝑡2)

2

(1 − 𝑝)2 (1 +  𝛽𝑡 +  𝑝(𝛽 − (1 +  𝛽𝑡)))
2 . 

Moreover, the 𝑟𝑡ℎ moment of the residual life of ZTDL distribution is  

𝑀𝑡  =  𝐸[(𝑌 − 𝑡)𝑟| 𝑌 >  𝑡] =
1

𝑆t

∑(𝑥 − 𝑡)𝑟𝑝𝑥

∞

𝑥=𝑡

=
(𝐿𝑖−𝑟(𝑝)(1 +  𝛽𝑡) +  𝛽𝐿𝑖−𝑟−1(𝑝))(1 − 𝑝)2 

(1 +  𝛽𝑡 +  𝑝(𝛽 − (1 +  𝛽𝑡))
. 

2.2  Entropies 

In statistical mechanics, the entropy may be interpreted as measure of disorder in the distribution. The most frequently 

discussed entropies are Shannon and Renyi entropy. The derived expressions for these entropies when Y is a discrete 

ZTDL random variable are given below. The Shannon entropy is defined by E[−log(P(Y =  x))] and expressed by 

using the Taylor series expansion for ln(1 + z) as 

𝐻(𝑥)  =  𝑙𝑛(1 +  𝛽 − 𝑝) − 2𝑙𝑛(1 − 𝑝) − 𝑙𝑛𝑝(µ − 1) − ∑
(−1)𝑚+1𝛽𝑚µ′𝑚 

𝑚

∞
𝑚=1 , 

where µ′𝑚and µ are the 𝑚𝑡ℎorder moment about origin and mean of the distribution. The Renyi entropy is defined as 

I𝑅(𝜆)  =
1

1 − 𝜆
𝑙𝑛 (∑(P(Y =  x))2

∞

𝑥=1

) , 

hence  
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I𝑅(𝜆)  =
𝜆

1−𝜆
{2𝑙𝑛(1 − 𝑝) − 𝑙𝑛(1 +  𝛽 − 𝑝)} +

𝑝 −𝜆

1−𝜆
𝑙𝑛{∑ ( 𝜆

𝑚
)𝛽𝑚𝐿𝑖−𝑚(𝑝𝜆)∞

𝑚=0 }, 

 

where λ > 0 and λ ≠ 1. 

2.3  Parameter Estimation with Inference 

Let 𝑌1, 𝑌2, . . . , 𝑌𝑛 be a random sample drawn identically independently from the ZTDL distribution with observed 

values𝑥1, 𝑥2, . . . , 𝑥𝑛, then their joint probability function as a log-likelihood function is 

𝑙𝑛(𝐿(𝑝; 𝛽)) =  2𝑛𝑙𝑛(1 − 𝑝) − 𝑛𝑙𝑛((1 + 𝛽 − 𝑝)) + ∑ 𝑥𝑖𝑙𝑛 𝑝 − 𝑛 𝑙 𝑛 𝑝 + ∑ 𝑙 𝑛(1 +  𝛽 𝑥𝑖).                          (2.3)

𝑛

𝑖=1

𝑛

𝑖=1

 

Now on partially differentiating both sides of equation (2.3) with respect to p and β and equating them to zero we get 

MLEs of p and β, respectively, as 

2p

1 − 𝑝
−

𝑝

1 − 𝑝 + 𝛽
= 𝑥̅ − 1, 

and  

∑
 𝑥𝑖

1 + 𝛽 𝑥𝑖

𝑛

𝑖=1

=
𝑛

1 − 𝑝 + 𝛽
. 

The MLEs are computed using computational package such as Mathematica software. 

Proposition 2.4: The MLEs 𝑝̂ and 𝛽̂ of the ZTDL distribution has a bivariate normal distribution with mean (𝑝, 𝛽) 

and variance-covariance matrix (I((𝑝, 𝛽))
−1

, where 

I ((𝑝, 𝛽)|𝑝 = 𝑝̂, 𝛽 = 𝛽̂) =

[
 
 
 
 𝐄 (

−𝜕2𝑙𝑛𝐿(𝑝, 𝛽) 

𝜕𝑝2 
) 𝐄 (

−𝜕2𝑙𝑛𝐿(𝑝, 𝛽) 

𝜕𝑝 𝜕𝛽
)

𝐄(
−𝜕2𝑙𝑛𝐿(𝑝, 𝛽) 

𝜕𝑝 𝜕𝛽 
) 𝐄 (

−𝜕2𝑙𝑛𝐿(𝑝, 𝛽) 

𝜕𝛽2 
)
]
 
 
 
 

, 

and the expected information matrix I(𝑝̂, 𝛽̂) is given by 

I ((𝑝, 𝛽)|𝑝 = 𝑝̂, 𝛽 = 𝛽̂) = 

[
 
 
 
 
 
 
𝑛(2𝛽̂2  +  (1 − 𝑝̂)2  +  ˆ 𝛽(1 − 𝑝̂)(3 + 𝑝̂)) 

(1 + 𝛽̂  −  𝑝̂)
2
(1 − 𝑝̂)2 𝑝̂

𝒏

(1 + 𝛽̂  − 𝑝̂)
2

𝒏

(1 + 𝛽̂  − 𝑝̂)
2

𝑛 (1 − 𝑝̂)2
3
𝐹2 (2,2,1 +

1

𝛽̂
; 2 +

1

𝛽̂
; 𝑝̂)

(1 + 𝛽̂  − 𝑝̂)(1 + 𝛽̂ )
−

𝒏

(1 + 𝛽̂  − 𝑝̂)
2
]
 
 
 
 
 
 

 

 

Proof of Proposition 2.4 is investigated by the next corollaries. 

Corollary 2.5:  
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𝐄(
−𝜕2𝑙𝑛𝐿(𝑝, 𝛽) 

𝜕𝑝2 
) =

𝑛(2𝛽2  +  (1 − 𝑝)2  +  𝛽(1 − 𝑝)(3 +  𝑝)) 

(1 +  𝛽 − 𝑝)2(1 − 𝑝)2𝑝
.                               (2.4) 

Proof: By twice differentiation of equation (2.3) with respect to p and then applying expectation on both sides, we get  

−𝐄(
𝜕2𝑙𝑛𝐿(𝑝, 𝛽)

𝜕𝑝2 
) =

2𝑛

(1 − 𝑝)2
−

𝑛

(1 + 𝛽 − 𝑝)2
+ ∑

𝐸(𝑋𝑖 − 1)

𝑝2
,

𝑛

𝑖=1

 

using the µ = E(X) of ZTDL we get equation (2.4). 

Corollary 2.6:  

𝐄(
−𝜕2𝑙𝑛𝐿(𝑝, 𝛽) 

𝜕𝛽2 
) =

(1 − 𝑝)2
3
𝐹2 (2,2,1 +

1
𝛽

; 2 +
1
𝛽

; 𝑝) 

(1 +  𝛽)(1 +  𝛽 − 𝑝)
−

𝑛

(1 + 𝛽 − 𝑝)2
.                (2.5) 

Proof: By twice differentiation of equation (2.3) with respect to β and then applying expectation on both sides, we get  

−𝐄(
𝜕2𝑙𝑛𝐿(𝑝, 𝛽)

𝜕𝛽2 
) = −

𝑛

(1 + 𝛽 − 𝑝)2
+ ∑ E(

𝑋𝑖
2

(1 +  𝛽𝑋𝑖)
2
) ,

𝑛

𝑖=1

 

where 

E(
𝑋2

(1 +  𝛽𝑋)2
) = ∑

𝑥2

(1 +  𝛽𝑥)2
𝑃(𝑌 = 𝑥)

∞

𝑥=1

=
(1 − 𝑝)2

3
𝐹2 (2,2,1 +

1
𝛽

; 2 +
1
𝛽

; 𝑝) 

(1 +  𝛽)(1 +  𝛽 − 𝑝)
 

 

  and𝑛𝐹𝑚(𝑎1, 𝑎2, … , 𝑎𝑛; 𝑏1, 𝑏2, … , 𝑏𝑛; 𝑧) = ∑
(𝑎1)𝑘(𝑎2)𝑘…,(𝑎𝑛)𝑘 𝑧𝑘

(𝑏1)𝑘(𝑏2)𝑘…,(𝑏𝑚)𝑘 𝑘!

∞
𝑘=0 , 

on using the above expression and then simplifying it, we get (2.5). 

Corollary 2.7:  

𝐄(
−𝜕2𝑙𝑛𝐿(𝑝, 𝛽) 

𝜕𝑝 𝜕𝛽
) = −

𝑛

(1 + 𝛽 − 𝑝)2
.                 

Proof: The proof is simple.  

Corollary 2.8 : The minimum variance bound estimator of the ZTDL (p,β) when  β is known is 𝑥̅with variance   

𝑝(2𝛽2 + 3𝛽 + 1−2𝑝𝛽 −2𝑝 + 𝑝 2−𝛽 𝑝 2) 

𝑛(1−𝑝)2(1 + 𝛽 −𝑝)2
. 

3.  Characterization, convolution and collective risk model 

3.1  Characterization 

Characterization of probability function helps the researcher in resolving the problem of model identification. 

Proposition 3.1: If 𝑋1, 𝑋2  and  𝑌𝑛 are independent random variables such that 𝑋1~ Bernoulli(
𝑝

1−𝑝+𝛽
), 𝑋2~ NB(p,2) 

and 𝑋3~ a degenerate distribution, i.e., P(X = 1) = 1, then Y = 𝑋1 + 𝑋2 + 𝑋3  has the ZTDL(p,β) distribution. 

Proof: As 𝑋1~ Bernoulli(
𝑝

1−𝑝+𝛽
)then its moment generating function(mgf) is expressed as 
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𝑀𝑋1
(𝑡) =

1−𝑝𝑒𝑡+𝛽

1−𝑝+𝛽
. Similarly 𝑋2 and 𝑋3 with their respective mgf are 𝑀𝑋2

(𝑡) =
(1−𝑝)2

(1−𝑝𝑒𝑡)2
and 𝑀𝑋3

(𝑡) = 𝑒𝑡, respectively. 

Since Y = 𝑋1 + 𝑋2 + 𝑋3then, the mgf of Y is given 

𝑀𝑌(𝑡) =
(1 − 𝑝𝑒𝑡 + 𝛽)(1 − 𝑝)2

(1 − 𝑝 + 𝛽)(1 − 𝑝𝑒𝑡)2
𝑒𝑡 , 

𝑀𝑌(𝑡) = 𝑀𝑋1
(𝑡)𝑀𝑋2

(𝑡)𝑀𝑋3
(𝑡). 

Proposition 3.2: If 𝑌𝑖~ZTDL(𝑝, 𝛽) for i = 1,2,3,...n, are identically independently distributed random variables, then 

𝑍 = 𝑌1 + 𝑌2 + 𝑌3 + ⋯+ 𝑌𝑛 also has the ZTDL(𝑛, 𝑝, 𝛽) distribution. 

Proof: As 𝑌𝑖~ZTDL(𝑝, 𝛽)for 𝑖 = 1,2,3,… . , 𝑛, then the moment generating function of 𝑍 = 𝑌1 + 𝑌2 + 𝑌3 + ⋯ + 𝑌𝑛 

is expressed as 

𝑀𝑍(𝑡) = ∏𝑀𝑌𝑖
(𝑡) = (

1 + 𝛽

1 + 𝛽 − 𝑝
−

𝑝 𝑒𝑡

1 + 𝛽 − 𝑝
)

𝑛
(1 − 𝑝)2𝑛

(1 − 𝑝𝑒𝑡)2𝑛
 𝑒𝑛𝑡 ,

𝑛

𝑖=1

  

𝑀𝑍(𝑡) = (1 −
𝑝 (𝑒𝑡 + 1)

1 + 𝛽 − 𝑝
)

𝑛
(1 − 𝑝)2𝑛

(1 − 𝑝𝑒𝑡)2𝑛
 𝑒𝑛𝑡 . 

It can also be rewritten as 

𝑀𝑍(𝑡) = 𝑀𝑋𝐵
(𝑡)𝑀𝑋𝑁𝐵

(𝑡)𝑀𝑋𝐷𝑒𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒
(𝑡), 

𝑋𝐵~ Binomial(
−𝑝

1−𝑝+𝛽
, 𝑛), 𝑋𝑁𝐵~ NB(p,2n) and 𝑋𝐷𝑒𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒~ a degenerate distribution 

i.e., P(X = n) = 1. 

3.2  Convolution 

Convolution is used in the mathematics of many fields, such as probability and statistics. In engineering, convolution 

is used to describe the relationship between three variables of interest: the input signal, the impulse response, and the 

output signal. The following theorem deals with the convolution of the ZTDL distribution. 

Theorem 3.1: If 𝑌𝑖~ZTDL1(𝑝, 𝛽) for 𝑖 = 1, 2 are two i.i.d random variables, then probability function of sum of two 

random variables 𝑌1 + 𝑌2 = 𝑍 is 

P(𝑍 =  𝑧)  =
(1 − 𝑝)4𝑧𝑝𝑧−2

(1 +  𝛽 − 𝑝)2
 { 1 +  𝛽(𝑧 +  𝛽 (

𝑧2 − 1

6
)},                                            (3.1) 

where 𝛽 ≥  0, 0 <  𝑝 <  1, 𝑧 =  2,3, . . ..  

Proof: By definition, probability function of sum of two discrete i.i.d random variables 𝑌1 and 𝑌2 can be expressed as 

𝑃(𝑍 = 𝑧) = ∑ P(𝑌1 = 𝑦1)P(𝑌2 = 𝑧 − 𝑦1)
𝑧
𝑦1=1  where  

P(𝑌𝑖 = 𝑦𝑖) =
(1 + 𝛽 𝑦𝑖)(1 − 𝑝)2

1 + 𝛽 − 𝑝
, 

for 𝑖 =  1,2 and 𝛽 ≥  0 , 0 <  𝑝 <  1,   𝑦𝑖 =  1,2,3, . .. so we get   

P(𝑍 = 𝑧) =
(1 − 𝑝)4𝑧𝑝𝑧−2

(1 +  𝛽 − 𝑝)2
∑ {(1 − (𝛽 𝑦1)

2) + 𝛽𝑧(1 + 𝛽 𝑦1)}

𝑧

𝑦1=1

, 



Pak.j.stat.oper.res.  Vol.16  No. 1 2020 pp 167-190  DOI: http://dx.doi.org/10.18187/pjsor.v16i1.2133 

 
A zero truncated discrete distribution: Theory and applications to count data 178 

 

which on simplification yields equation (3.1). This completes the proof. In the next corollaries, the abbreviations 

ZTDL1(. ), G1(. ), G0(. )and DL0(. )denote the ZTDL zero truncated geometric, geometric and one parameter zero 

truncated discrete Lindley distributions, respectively. 

Corollary 3.1: If 𝑌1~ZTDL1(𝑝, 𝛽)and 𝑌2~G1(1 − 𝑝)are two i.i.d random variables, then the probability function of 

sum of the two random variables, i.e., 𝑌1 + 𝑌2 = 𝑍 is  

P(𝑍 = 𝑧) =
(1 − 𝑝)2𝑧𝑝𝑧−2

1 + 𝛽 − 𝑝
{1 +

𝛽(1 + 𝑧)

2
}, 

where 𝛽 ≥  0, 0 <  𝑝 <  1, 𝑧 =  2,3, . . ..  

Corollary 3.2: If 𝑌1~ZTDL1(𝑝, 𝛽)and 𝑌2~G0(1 − 𝑝)are two i.i.d random variables, then the probability function of 

sum of the two random variables, i.e., 𝑌1 + 𝑌2 = 𝑍 is  

P(𝑍 = 𝑧) =
(1 − 𝑝)3𝑧𝑝𝑧−1

1 + 𝛽 − 𝑝
{1 +

𝛽(1 + 𝑧)

2
}, 

where 𝛽 ≥  0, 0 <  𝑝 <  1, 𝑧 =  2,3, . . ..  

Corollary 3.3: If 𝑌1~ZTDL1(𝑝, 𝛽)and 𝑌2~DL0(𝑝, 𝛽)are two i.i.d random variables, then the probability function of 

sum of the two random variables, i.e., 𝑌1 + 𝑌2 = 𝑍 is  

P(𝑍 = 𝑧) =
(1 − 𝑝)4𝑧𝑝𝑧−1

(1 + 𝛽 − 𝑝)(1 + 𝑝(𝛽 − 1))
{1 + 𝛽𝑧 +

𝛽2(𝑧2 − 1)

6
}, 

where 𝛽 ≥  0, 0 <  𝑝 <  1, 𝑧 = 1, 2,3, . . ..  

3.3  Collective risk model 

Generally, the random sum models are widely used in risk theory, queueing systems, reliability theory, economics, 

communications, and medicine. In insurance contexts, the compound distribution of random sum variables arises 

naturally as follows (see Bakouch and Severini (2009) and Bhati et al., (2015)). Let N be number of claims in a certain 

period which is a random variable and Xi be claim severity random variable, which is independent of N, is the size of 

ith claim. Therefore, aggregate loss is defined as 𝑆 = ∑ 𝑋𝑖
𝑁
𝑖=1 . It is well known that the pdf of S is given as 𝑓𝑆(𝑥) =

∑ 𝑝𝑛𝑓𝑛∗(𝑥)∞
𝑛=1 , where 𝑝𝑛 denotes the probability of n claims (primary distribution) and 𝑓𝑛∗(𝑥)is the 𝑛𝑡ℎ fold 

convolution of 𝑓(𝑥)the claim amount (secondary distribution). Moreover, the distribution of the random variable S is 

known as a compound distribution of the random variables N and 𝑋𝑖. Now, we shall consider two such situations: In 

the first situation, the primary distribution is as defined in equation (1.2) and claim severity distribution as exponential 

distribution with parameter λ. In the second situation, we consider the Erlang distribution with parameters r and λ as 

the secondary distribution which usually arises in insurance settings when the individual claim amount also follow the 

gamma distribution. 

Theorem 3.2:  Suppose that ZTDL(𝑝, 𝛽) acts as primary distribution and an exponential distribution with parameter 

𝜆 acts as secondary a distribution, then the pdf of aggregate loss random variable 𝑆 = ∑ 𝑋𝑖
𝑁
𝑖=1 where 

X~Gamma(𝑛, 𝜆) is given by 

𝑓𝑆(𝑥) =
(1 − 𝑝)2

1 + 𝛽 − 𝑝
{𝜆 𝑒−𝜆𝑥 (1−𝑝)(1 + 𝛽(1 + 𝜆 𝑝 𝑥))}.  𝑓𝑜𝑟  𝑥 > 0 

Proof:  

If the claim severity follows an exponential distribution with parameter λ > 0, since the nth fold convolution 

of exponential distribution is gamma distribution with parameter n and λ, the 𝑛𝑡ℎ fold convolution is given by 
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𝑓𝑛∗(𝑥) =
𝜆𝑛

(𝑛 − 1)!
𝑥𝑛−1𝑒−𝜆 𝑥,   𝑛 ∈ ℵ. 

Hence, the pdf of the random variable S is given by 

𝑓𝑆(𝑥) =
(1 − 𝑝)2𝑒−𝜆 𝑥

𝑝𝑥(1 +  𝛽 − 𝑝)
∑

(1 + 𝛽𝑛)(𝜆𝑝𝑥)𝑛

(𝑛 − 1)!
,

∞

𝑛=1

 

which after simplification yield 

𝑓𝑆(𝑥) =
(1 − 𝑝)2

(1 +  𝛽 − 𝑝)
{𝜆𝑒−𝜆𝑥(1−𝑝)(1 +  𝛽(1 +  𝜆𝑝𝑥))}, 

which is mixture of 𝑋1~Exp(𝜆(1 − 𝑝)) and 𝑋2~TPL(𝑝, 𝜆(1 − 𝑝)) with weights 𝑤1 =
1−𝑝

1+𝛽−𝑝
  and 𝑤2 =

𝛽

1+𝛽−𝑝
. This 

completes the proof. 

In the actuarial literature the mean of the aggregate loss random variable S can be obtained as E(S) = E(X)E(N). 

Hence, if 𝑋~Exp(𝜆) then 

E(𝑆) =
1 +  𝛽 − 𝑝 +  𝑝𝛽

(1 − 𝑝)(1 +  𝛽 − 𝑝)𝜆
. 

Theorem 3.3:  Suppose that ZTDL(𝑝, 𝛽) acts as primary distribution and an Erlang distribution with parameter 

(2, 𝜆)acts as secondary a distribution, then the pdf of aggregate loss random variable 𝑆 = ∑ 𝑋𝑖
𝑁
𝑖=1  is given by 

𝑓𝑆(𝑥) =
(1 − 𝑝)2𝜆𝑒 −𝜆𝑥

2(1 +  𝛽 − 𝑝)√𝑝
{(𝛽 +  2)𝑠𝑖𝑛ℎ(𝜆𝑥√𝑝)  +  𝛽𝜆𝑥√𝑝𝑐𝑜𝑠ℎ(𝜆𝑥√𝑝)) }, 

for 𝑥 >  0, 0 <  𝑝 <  1, 𝜆 >  0 and 𝛽 ≥  0.  

Proof:  

By assuming that the claim severity follows an Erlang distribution with parameter 2, λ > 0, the 𝑛𝑡ℎ fold 

convolution is given by 

𝑓𝑛∗(𝑥) =
𝜆2𝑛

(2𝑛 − 1)!
𝑥2𝑛−1𝑒−𝜆 𝑥,   𝑛 ∈ ℵ. 

hence the pdf of the random variable S is given by 

𝑓𝑆(𝑥) =
𝜆√𝑝 (1 − 𝑝)2𝑒−𝜆 𝑥

𝑝(1 +  𝛽 − 𝑝)
∑

(1 + 𝛽𝑛)(𝜆√𝑝𝑥)
2𝑛−1

(2𝑛 − 1)!
,

∞

𝑛=1

 

Now using the series ∑
𝑦2𝑛−1

(2𝑛+1)!
= 𝑠𝑖𝑛ℎ(𝑦)∞

𝑛=0  and ∑
𝑦2𝑛

(2𝑛!)
= 𝑐𝑜𝑠ℎ(𝑦)∞

𝑛=0    (see Grad 

shteyn and Ryzhik, 2008, pp.42) which after simplification yield 

𝑓𝑆(𝑥) =
(1 − 𝑝)2𝜆𝑒 −𝜆𝑥

2(1 +  𝛽 − 𝑝)√𝑝
{(𝛽 +  2)𝑠𝑖𝑛ℎ(𝜆𝑥√𝑝)  +  𝛽𝜆𝑥√𝑝𝑐𝑜𝑠ℎ(𝜆𝑥√𝑝)) }, 𝑥 > 0. 

 

It is also observed that the mean of the aggregate loss random variable S can be obtained as E(S) = E(X)E(N). Hence, 

if  𝑋~Erlang(2, 𝜆)  then 
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E(𝑆) =
2(1 +  𝛽 − 𝑝 +  𝑝𝛽) 

(1 − 𝑝)(1 +  𝛽 − 𝑝)𝜆
. 

3.4  Stress-strength parameter 

In the context of reliability, the stress-strength model describes the life of a component which has a random strength 

𝑌1 that is subjected to a random stress 𝑌2. The component fails at the instant when the stress applied to it exceeds the 

strength, and the component will function satisfactorily whenever 𝑌1 > 𝑌2. Therefore, 𝐑 = 𝑃(𝑌1 > 𝑌2) is a measure 

of component reliability. It has many applications especially in engineering concepts such as structures, deterioration 

of rocket motors, fatigue failure of aircraft structures, and the ageing of concrete pressure vessels. 

Proposition 3.3: Suppose 𝑌1~ZTDL(𝑝1,   𝛽1) and 𝑌2~ZTDL(𝑝2,   𝛽2) are two independent discrete random variables, 

then stress-strength parameter 

𝐑 =
1

(1 +   𝛽2  −   𝑝2)(1 +    𝛽1 −   𝑝1)(1 −   𝑝1  𝑝2)
3
× 

{((1 −   𝑝2)
2((1 −   𝑝1  𝑝2)(1 +   𝛽1 −   𝑝1  −   𝑝1(1 +  (  𝛽1 − 1)  𝑝1)  𝑝2)  +   𝛽2(1 +   𝛽1 −   𝑝1 +   𝑝1(  𝛽1  

− 1 +   𝑝1  − 2  𝛽1  𝑝1)  𝑝2)))}. 

Proof:The proof obtained by the definition of R and simplification to 

𝐑 =
(1 − 𝑝)2

(1 +   𝛽2  −   𝑝2)(1 +    𝛽1 −   𝑝1)  𝑝1  𝑝2

∑((  𝑝1  𝑝2)
𝑥

∞

𝑥=1

(1 +   𝛽1𝑥)(1 +   𝛽2𝑥)(1 − 𝑝1) +   𝛽1  𝑝1). 

 

Figure 5: Stress Strength Parameter Graph for the indicated values of p and β 

The plots in Figure 5 depict that as the stress parameter   𝑝2 approaches to 1, the probability of the system approaches 

to zero for all values of  𝛽1and   𝛽2. 

4.  Test and Evaluation Statistics with Data Applications 

 

4.1  Test and evaluation statistics 

In order to check the competence of the proposed model we have used the most recommended zero truncated models, 

such as Zero Truncated Poisson (ZTP), Zero Truncated Generalized Poisson (ZTGP), Zero Truncated Negative 

Binomial (ZTNB) and Zero Truncated Poisson Gamma (ZTPG), and probability functions of these models are given 

below 
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Distribution Formula Domain 

PZTGP(Y = 𝑥) =
𝛽(𝛽 + 𝑝 𝑥)𝑒−𝛽−𝑝 𝑥

(1 − 𝑒−𝛽)𝑥!
 𝑥 ∈ ℵ, 𝑝 > −

1

𝛽
 and  𝛽 > 0 

PZTNB(Y = 𝑥) = (
𝛽 + 𝑥 − 1

𝛽 − 1
)
(1 − 𝑝 )𝑥𝑝𝛽

(1 − 𝑝𝛽)
 

𝑥 ∈ ℵ, 0 <  𝑝 < 1 and  𝛽 > 0 

PZTPG(Y = 𝑥) = (
𝛽 + 𝑥 − 1

𝛽 − 1
)

𝑝𝑥

((1 + 𝑝)𝛽 − 1)(1 + 𝑝)𝑥
 

𝑥 ∈ ℵ, 𝑝 > 0 and  𝛽 > 0 

PZTP(Y = 𝑥) =
𝛽𝑥

(𝑒𝛽 − 1)𝑥!
 

𝑥 ∈ ℵ and  𝛽 > 0 

 

For this purpose we have used seven goodness of fit statistics. The computation of these statistics is based on MLEs 

which are computed by using Mathematica 7.0 computational package. These statistics include Log-Likelihood (l), 

Akaike information criterion (AIC), Bayesian information criterion (BIC) and Akaike information certerion 

corrected (AICc), the Anderson-Darling (A0
∗) Statistics and Kolmogrov Simnorov (KS) statistics with 𝑝 −

𝑣𝑎𝑙𝑢𝑒 The formulae of the above mentioned statistics are 

AIC = −2 𝑙(𝜃̂) + 2 𝑞, BIC =  −2 𝑙(𝜃̂) +  𝑞 𝑙𝑛(𝑛), 𝐴𝐼𝐶𝑐 = 𝐴𝐼𝐶 +
2𝑞(𝑞 + 1)

𝑛 − 𝑞 − 1
, 

A0
∗ = (

2.25

𝑘2
+

0.75

𝑘
+ 1) {−𝑘 −

1

𝑘
∑(2𝑖 − 1)

𝑘

𝑖=1

𝑙𝑛(𝑧𝑖(1 − 𝑧𝑘−𝑖+1))}, 

KS = Max {
𝑖

𝑘
− 𝑧𝑖 , 𝑧𝑖 −

𝑖 − 1

𝑘
}, 

where 𝑞 denotes the number of parameters, 𝑙(𝜃̂) denotes the log-likelihood function evaluated at the maximum 

likelihood estimates, 𝑛 denotes the number of observations in a sample, 𝑘 denotes the number of classes and 𝑧𝑖 denotes 

the cumulative distribution function (cdf) of the 𝑖𝑡ℎ class. 

4.2  Data Application   

For comparison purposes, we have used three data sets which are reported by Mir and Ahmad (2009), Kundu and 

Gupta (2009), and Bakouch et al., (2014), respectively. The data sets along with summary statistics and index of 

dispersion are presented in Appendix: For data set-I see Table 1(a), Table 1(b) and Table 1(c), for data set-II, see 

Table 2(a), Table 2(b) and Table 2(c) and for data set III see Table 3(a), Table 3(b) and Table 3(c). Descriptive statistics 

of all data sets are summarized in Table 1(b), Table 2(b)and Table 3(b). Some theoretical statistics of the ZTDL 

distribution for the all data sets are given in Table 1(c), Table 2(c), and Table 3(c), where definitions of mean, variance, 

mean deviation about the mean and entropy are used for computations, noting that the parameters of the ZTDL are 

replaced by their corresponding ML estimates for each data set. From the six tables, it can be noted that the considered 

theoretical statistics of the ZTDL distribution are closed to the sample moments of all data sets. Count Data set: The 

count data set presented in Table 1(a) shows number of mites per leaf, the European red mite belongs to a group of 

plant-feeding mites, called spider mites. The summary descriptive statistics of this data set is presented in Table 1(b) 

also portrays that the data are under dispersed. Table 1(d) portrays the maximum likelihood estimates with estimated 

standard errors, −𝑙,  A0
∗and KS with 𝑝 − 𝑣𝑎𝑙𝑢𝑒 and AIC, BIC and AICc values of competing models. From these 

tables it is evident that proposed model displays its appropriateness by showing smaller 𝐴∗
0 and KS statistics with 

higher p-values. Moreover, the proposed model also shows smaller values of model selection statistics AIC, BIC and 

AICc. These smaller values of the model selection statistics advocate that the proposed model is the best probability 

model among the competing models for this under dispersed data set. Experimental Data sets: The second and third 

data sets are given in Tables 2(a) and 3(a) attached in appendix. The second data set consists of remission times in 

weeks for 20 leukemia patients randomly assigned to a certain treatment. Treatment for leukemia aims to achieve 

remission. Remission means that no leukemia cells can be found in the blood or bone marrow and the bone marrow 

is working normally again. In people treated for acute leukemia, remission may last many years, and then they are 
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considered cured. Whereas the third data set represents at least one goal scored directly from a penalty kick, foul kick 

or any other direct kick (all of them together will be called as kick goal) by any team. These data sets are taken from 

Bakouch et al., (2014) and Kundu and Gupta (2009) respectively. From Table 2 (b) and 3(b) attached in appendix, it 

is evident that these data sets are over dispersed data sets. The KS, 𝐴∗
0 , AIC, BIC and AICc statistics are provided in 

the Tables 2(d) and 3(d). From these results it is observed that the proposed model is also appropriate for over-

dispersed data structure by showing minimum −𝑙,  𝐴∗
0 and KS with higher p-values. Moreover, the corresponding 

distribution plots comparing the fitted and observed distribution functions of the three data sets are shown in Figures 

6–8. Also, the hazard function plots comparing the fitted and empirical functions are displayed by Figures 9–11. A 

distribution plot is a plot of the empirical distribution function against fitted distribution function. For example, the 

zero truncated discrete Lindley distribution, ∑
𝐼𝑥𝑗

≤𝑥−0.375

𝑛+0.25

𝑛
𝑗=1 ,  are plotted versus 1 −

(1+𝛽̂𝑥𝑗+𝑝(𝛽̂−(1+𝛽̂𝑥𝑗)))𝑝
𝑥𝑗−1

1+𝛽̂−𝑝
 as 

recommended by Chambers et al., (1983), where x(j) are the sorted values of the observed data in the ascending order, 

n is the number of observations and I ˆ A denotes the indicator function. An empirical hazard plot is a plot of the 

empirical hazard function against fitted hazard function. For example, the zero truncated discrete Lindley distribution: 

For number of classes less than 10(1 2𝑛 − 𝑗 − 5⁄ )are plotted versus
(1−𝑝)2(1+𝛽̂𝑥𝑗)

1+𝛽̂𝑥𝑗+𝑝(𝛽̂−(1+𝛽̂𝑥𝑗))
, for number of classes greater 

than 10 but less than 20 20(1 2𝑛 − 𝑗 − 10⁄ ) are plotted versus
(1−𝑝)2(1+𝛽̂𝑥𝑗)

1+𝛽̂𝑥𝑗+𝑝(𝛽̂−(1+𝛽̂𝑥𝑗))
 and for number of classes greater 

than 20 20(1 2𝑛 − 𝑗 − 15⁄ ) are plotted versus
(1−𝑝)2(1+𝛽̂𝑥𝑗)

1+𝛽̂𝑥𝑗+𝑝(𝛽̂−(1+𝛽̂𝑥𝑗))
. The distribution plots and empirical hazard function 

show that the proposed ZTDL distribution provides better fits than other competing distributions for at least three 

datasets 
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Figure 6: CDF plots Comparisons for data set –I 
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Figure 7: CDF plots Comparisons for data set -II 
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Figure 8: CDF plots Comparisons for data set -III 
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Figure 9: Hazard Function plots Comparisons for data set-I 

 

Figure 10: Hazard Function plots Comparisons for data set-II 
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Figure 11: Hazard Function plots Comparisons for data set-III 

 

Conclusions 

A Zero truncated discrete Lindley with two parameters is proposed and it contains the zero truncated geometric and 

the one parameter zero truncated discrete Lindley distributions as submodels. Moreover, the distribution represents a 

two-component mixture of a zero truncated geometric distribution and a zero truncated negative binomial distribution 

with certain parameters. Various distributional properties, reliability characteristics and a characterization are studied. 

Also, the collective risk model is discussed by considering the proposed distribution as primary distribution and 

exponential and Erlang as secondary distributions. Moreover, it is found that the distribution has not only simple 

structure, mathematically amenable, more flexible and longer tail than other models but also more appropriate for 

modeling actuarial ecology, health, psychology, sociology and engineering data sets. 
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Appendix 

Table 1(a): Observed number of Red Mites per leaf for Data Set-I 

Number of mites per leaf 1 2 3 4 5 6 7 Total 

Observed Leaf 38 17 10 9 3 2 1 80 

 

Table 1(b): Summary Statistics of number of Red Mites per leaf  

Mean Variance ID Skewness Kurtosis Entropy 

2.1500 2.1037 0.9785 1.2646 3.9613 1.4586 
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Table 1(c): Summary Statistics of number of Red Mites per leaf from ZTDL  

Mean Variance ID Skewness Kurtosis Entropy 

2.1499 2.2703 1.0559 3.6596 8.1462 2.7182 

 

Table 1 (d): Test Summary for Data Set-I with standard error in parenthesis 

Distributi

on 

(𝑝̂, 𝛽)̂ 

𝑝̂ 𝛽̂ KS  p-

value 

𝐴∗
0 -l AIC BIC AICc 

ZTDL 0.4542 

(0.0331) 

0.3371 

(0.2685) 

0.5648 0.107 7.1841 118.6661 241.3322 246.0963 238.4822 

ZTNB 0.5190 

(0.0356) 

1.3843 

(0.2731) 

0.5655 0.106 7.1888 118.7285 241.4571 246.2211 238.6070 

ZTGP 0.2646 

(0.0548) 

0.9986 

(0.1805) 

0.5662 0.106 7.2208 118.9245 241.849 246.6131 238.9990 

ZTPG 0.9265 

(0.1323) 

1.3842 

(0.2732) 

0.5655 0.106 7.1888 118.7285 241.4571 246.2212 238.6071 

ZTP -------- 1.7916 

(0.1705) 

0.5854 0.091 9.8636 122.7947 247.5894 249.9714 245.6394 

 

Table 2(a): Remission times in week for 20 Leukomia patient Data Set-II 

1,3,3,6,7,7,10,12,14, 15,18,19 22,26,28,29,34,40,48,49 

 

Table 2(b): Summary Statistics Remission times in week for 20 Leukomia patient 

Mean Variance ID Skewness Kurtosis Entropy 

19.5500 216.05 11.0512 0.6521 2.3802 2.8571 

 

Table 2(c): Summary Statistics Remission times in week for 20 Leukomia patient from ZTDL 

Mean Variance ID Skewness Kurtosis Entropy 

19.2148 229.557 11.9469 2.2216 6.2589 2. 7182 

 

Table 2 (d): Test Summary for Data Set-II with standard error in parenthesis 

Distrib

ution 

(𝑝̂, 𝛽)̂ 

𝑝̂ 𝛽̂ KS  p-value 𝐴∗
0 -l AIC BIC AICc 

ZTDL 0.9127 

(0.0135) 

0.2514 

(0.3318) 

0.1392 0.706 0.5573 78.3798 160.7596 162.7511 158.3596 

ZTNB 0.0727 

(0.0128) 

1.5026 

(0.2687) 

0.1432 0.691 0.5631 78.4828 160.9656 162.9571 158.5656 

ZTGP 0.7513 

(0.0488) 

4.8236 

(0.7983) 

0.1703 0.593 0.7882 78.4828 160.9656 162.9571 158.5656 

ZTPG 12.7577 

(2.4268) 

1.5026 

(0.2686) 

0.1432 0.691 0.5631 78.4828 160.9656 162.9571 158.5656 

ZTP -------- 19.5499 

(0.5606) 

0.3254 0.3254 ∞ 152.7181 152.7181 308.4316 305.6360 
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Table 3(a): Number of Goal Scored by any team Data Set-III 

20,18,19,85,40,49,8,71,39,48,72,62,9,3,75,18,14,42,52,34, 

39,7,28,64,15,48,16,13,14,11,49,24,30,3,47,28,2 

 

Table 3(b): Summary Statistics of Number of Goal Scored by any team 

Mean Variance ID Skewness Kurtosis Entropy 

32.8649 521.3423 15.8632 0.5444 2.2825 3.3487 

 

Table 3(c): Summary Statistics of Number of Goal Scored by any team from ZTDL 

Mean Variance ID Skewness Kurtosis Entropy 

32.8059 642.3130 19.5435 2.1241 6.1401 2.7182 

 

Table 3(d): Test Summary for Data Set-III with standard error in parenthesis 

Distrib

ution 

(𝑝̂, 𝛽)̂ 

𝑝̂ 𝛽̂ KS  p-value 𝐴∗
0 -l AIC BIC AICc 

ZTDL 0.9463 

(0.0061) 

0.2242 

(0.2349) 

0.1204 0.647 0.3859 163.5039 331.0078 334.2296 328.3321 

ZTNB 0.0508 

(0.0062) 

1.7509 

(0.2029) 

0.1242 0.630 0.4046 163.6472 331.2944 334.5162 328.6187 

ZTGP 0.7984 

(0.0280) 

6.6177 

(0.7277) 

0.1493 0.512 0.6147 165.2130 334.4260 337.6478 331.7503 

ZTPG 18.6680 

(2.3850) 

1.7509 

(0.2030) 

0.1242 0.630 0.4047 163.6471 331.2942 334.5160 328.6185 

ZTP -------- 32.8649 

(0.9424) 

0.4222 0.0050 ∞ 391.0929 784.1858 785.7967 782.2939 
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