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Abstract 

We consider the problem of estimating the finite population mean when some information on auxiliary 

attribute is available. We obtain the mean square error (MSE) equation for the proposed estimators. It has 

been shown that the proposed estimator is better than Naik and Gupta (1996), Singh et al. (2008), Abd-

Elfattah (2010) estimators. The results have been illustrated numerically by taking some empirical 

population considered in the literature. 
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1. Introduction 

In survey sampling the use of auxiliary information can increase the precision of an 

estimator when study variable y is highly correlated with the auxiliary variable x. But in 

several practical situations, instead of existence of auxiliary variables there exists some 

auxiliary attributes, which are highly correlated with study variable y, such as (i) use of 

drugs and gender (ii) amount of milk produced and a particular breed of cow. 

 

Consider a sample of size n drawn by simple random sampling without replacement 

(SRSWOR) from a population of size N. Let yi and i  denote the observations on 

variable y and   respectively for the i
th

 unit (i=1,2,3....N.). It is assumed that attribute   

takes only the two values 0 and 1 according as 

  = 1, if i
th

 unit of the population possesses attribute   

    = 0, if otherwise. 

 

Let 
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1i
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n

1i
ia  denote the total number of units in the population and 

sample possessing attribute   respectively, 
N

A
p   and 

n

a
p   denote the proportion of 

units in the population and sample, respectively, possessing attribute . 

 

Define, 

 
Y

Yy
ey


  

 
,

P

Pp
e


  

    ,yi,0eE i  

  ,fCeE 2
y

2
y      ,fCeE 2

p
2     .pypby CCfeeE   



Rajesh Singh 

Pak.j.stat.oper.res.  Vol.IX  No.4 2013  pp361-369 362 

Where 











N

1

n

1
f  ,

Y

S
C

2

2
y2

y   ,
P

S
C

2

2
p2

p   

and 





SS

S

y

y
pb  is the point biserial correlation coefficient. 
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In order to have an estimate of the population mean Y  of the study variable y, assuming 

the knowledge of the population proportion p, Naik and Gupta (1996) defined following 

ratio and product estimators 
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The mean square error (MSE) of NGRt  and NGPt  up to the first order of approximation, 

respectively, are 
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2.   Other estimators 

Singh et al. (2008) suggested the following ratio estimator 
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where m1 (≠0) and m2 are either real numbers or the functions of the parameters of the 

attribute such as   . and   C pb2,p   

 

In Singh et al. (2008), MSE equation of these ratio- type estimators were given by 

    2
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2
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where R depends on the choice of the parameters. 
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Abd-Elfattah et al. (2010) proposed some ratio type estimators. The minimum MSE 

attained in Abd-Elfattah et al. (2010) was  
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2
yAbdmin 1SftMSE         (2.4) 

 

The minimum MSE of tAbd is equal to the MSE of regression estimator

)pP(ˆyt reg  . 
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2
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Shabbir and Gupta (2007) considered following estimator  
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where 1d and 2d are constants and whose sum is not necessarily equal to one. 

 

The optimum MSE reported by Shabbir and Gupta (2007) of SGt is  
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Unfortunately the expression obtained by Shabbir and Gupta (2007) is incorrect. 

The corrected MSE of SGt is given as- 
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where, 
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3.   The proposed estimator 

We define a family of ratio estimators of population mean Y as 

(3.1)                                                                                  
mpm
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where 1m  and 2m  are same as defined in (2.2) and 1  and 2  are real constants to be 

determined such that the MSE of t  is minimum. 

Remark 1:  Here we would like to mention that the choice of the estimator depends on 

the availability and values of the various parameter(s) used (for choice of the parameters 

1m  and 2m  refer to Singh et al. (2008) and Singh and Kumar (2009)). 
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Expressing t in terms of e’s we have 

      e1e1Yt 2y1        (3.2) 
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Expanding the right hand side of (3.2) and retaining terms up to second power of e’s, we 

have  
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Subtracting Y  from both side of (3.3) and then taking expectations, we get the bias of the 

estimator t up to the first order of approximation, as 
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Subtracting Y from both side of (3.3), squaring and then taking expectations, we get 

MSE of the estimator t up to the first order of approximation, as  
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Substituting these optimum values of *
1 and *

2  in (3.5), we get the minimum MSE of 

t  as- 
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4.   Another estimator 

Singh et al. (2007) suggested exponential ratio type and exponential product type 

estimators, respectively, as 
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MSE expressions for the estimators SRt  and SPt  are given, respectively, as 
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Using (3.1) and Singh et al. (2007) estimator, we define another family of estimators for 

population mean Y as 
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where 1w  and 2w  are  constants and whose sum is not necessarily equal to one. 

 

The Bias and MSE expressions of wt  are respectively, given by  
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Differentiating equation (4.7) with respect to w1 and w2 and than equating to zero we get  
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Substituting these optimum values of *
1w and *

2w  in (4.7), we get the minimum MSE of 

pt  as- 
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5.   Efficiency comparison: 

First, we compare the efficiency of proposed estimator t with usual estimator and than 

with regression estimator. 

 

The variance of the usual estimator y  is given by 
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On solving, we observe that above condition always holds true. Therefore, proposed 

estimator t under optimum condition performs better than usual estimator. 

 

Similarly, it can be shown that  
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This is also true for all values of ).1,0,1(  
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Next, we compare the efficiency of proposed estimator pt  with usual estimator and than 

with regression estimator. 
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On simplification, we observe that above condition is always true. Therefore proposed 

estimator  mint w  performs better than usual estimator in all situations. 

 

Similarly it can be shown that  
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This is also true for all values of .)1,0,1( and .)1,0,1(  

 

Finally we have compared the efficiency of proposed estimator wt with the estimator pt  

   minminp tMSEtMSE 
 

Or if,
 







































2
321

43
2
4122

2
231

542
2
43

2
512

AAA

AA2AAA
1Y

LLL

LLL2LLLL
Y

  (5.6)

 

The conditions depends upon choice of   and  . 

6.   Empirical study 

We have used the data given in Sukhatme and Sukhatme ((1970) p. 256). Where,  

Y : Number of villages in the circle and  

 : represent A circle consisting more than five villages. 

 

The following Table shows percent relative efficiencies (PRE’s) of different estimator’s 

with respect to usual estimator. 

n N Y  P  pb  Cy  pC  

23 89 1102 0.1236 0.643 0.65405 2.19012 
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Table 1:   PRE of different estimators with respect to usual estimator 

Estimator PRE 

y

 

100 

NGRt

 

12.648 

RERt

 

60.603 

)opt(st

 

170.488 

minSG )t(

 

172.120 

.min)t( 

 

173.132 

wt
   

0,1 
 

1,0   

1,1 

 

172.120 

187.804 

392.62 

Conclusion 

From Table 1, one can see that the proposed estimator tα under optimum condition 

performs better than the Shabbir and Gupta (2007) estimator, Singh et al. (2008) 

estimator and usual estimator. Also, the performance of the second proposed estimator tw 

depends upon choice of α and β. For α = 1, β = 1, it attains maximum efficiency.
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