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Abstract

In this article, the problem of estimating unknown parameters of the inverted kumaraswamy (IKum) distribution is
considered based on general progressive Type-Il censored Data. The maximum likelihood (MLE) estimators of the
parameters are obtained while the Bayesian estimates are obtained using the squared error loss(SEL) as symmetric
loss function. Also we used asymmetric loss functions as the linear-exponential loss (LINEX), generalized entropy
(GE) and Al-Bayatti loss function (AL-Bayatti). Lindely’s approximation method is used to evaluate the Bayes
estimates. We also derived an approximate confidence interval for the parameters of the inverted Kumaraswamy
distribution. Two-sample Bayesian prediction intervals are constructed with an illustrative example. Finally,

simulation study concerning different sample sizes and different censoring schemes were reported.

Keywords: Maximum likelihood and bayesian estimation; General progressive Type-II censored
Data; Inverted kumaraswamy distribution; Asymptotic confidence intervals; Two-sample
bayesian prediction.

1. Introduction

In most of life-testing experiments, the censored samples used when the experimenter wants to
terminate the experiment early before all units are failed due to the time limitation and the huge
cost of the experiment. Type-I and Type-11 are the two basic types of censoring schemes, where in
Type-l the experiment is terminated at pre-specified time point and the number of failures is
variable, while the experiment under Type-Il is terminated after a fixed number of failures.
Removing unites at certain time points during the experiment are not allowed in Type-I and
Type-11, so Progressive censoring is applicable, such that the experimenter can remove some units
at pre-specified time points (Progressive Type-1) or remove units at each failure (Progressive
Type-11). For further reading about progressive censoring, see Balakrishnan and Aggarwala (2000)
and Balakrishnan (2007) who presented a study on different features of progressive censoring
schemes.

Now, suppose that we have n units were placed on a lifetime- experiment, suppose that the first
r failures X X X were not observed and the other m—r,0<r<m<n failures

Xiizmns Xraomnseos Xmmn are observed. At the (r+1)th failure time X,,..., R..,, number of
surviving units are randomly selected and removed from the test, at the (r-+2)th failure time
Xiomn» R, number of surviving units are also randomly selected and removed, and so on until
the (m)th failure X

Imin? 2t 2mnittn rmn

r+2

the remaining survived unitess R, =n-m-R. ,-R,,—-..—R , are

mm:n ?
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removed from the lifetime-test. The number of removals RS, m and r are pre-specified
integers with 0<R; <n—i. Then the resulting failures X, .., X

general progressively Type-Il censored data. There are some special cases for which the general
progressive censoring can reduces to other censoring types, as shown in the following table,

X are referred to

r+2mn?t ¥ mimin

r R, n,m Type of censoring
r>0 | R =0,i=r+1,.,m-1,R =n-m | m<n Type-I1 doubly censored sample
r=0 R>0,i=r+1,.,m-1 m<n progressive Type-II right censoring

r=0| R =0,i=r+1,..,m-1,R =n-m | m<n | conventional Type-ll right censoring

r=0 R =0,i=r+1,.,m m=n no censoring (complete sample)

Many authors have been studied the general progressive censoring using different lifetime
distributions, as, Soliman (2008) make an inference for Pareto model using general progressive
censored data. Also Xiuyun and Zaizai (2016) study the Bayesian estimation and prediction for the
inverse Weibull distribution under general progressive censoring, while the Characterization for
Gompertz distribution based on general progressively type-I1 right censored order statistics have
been studied by Mohie EI-Din et. al. (2017).

Bayesian prediction is an important topic in statistical inference where we try to use the previous
data to predict the future observations inside the same population with a specified probability.
When the unobserved failures belong two the same sample, then the prediction called One-sample
Bayesian prediction, while it is called Two-sample Bayesian prediction when we want to predict
by a new sample using an old sample. The Bayesian prediction was discussed by many authors
based on different distributions with different types of censored samples as Mohie EI-Din and
Shafay (2013), they study Bayesian prediction intervals based on progressively Type-1l censored
data. Shafay and Balakrishnan (2012) study the Bayesian prediction intervals based on the Type-I
hybrid censored data. Bayesian prediction intervals of generalized order statistics based on
multiply Type-Il censored data was discussed by Mohie EI-Din et al.(2012), they also studied the
Bayesian prediction for order statistics from a general class of distributions based on left Type-II
censored data, see (2011). Latest Mohie EI-Din et al. (2017) study the One-sample Bayesian
prediction intervals based on Type-II progressively hybrid censored samples.

In 2017 Abd Al-Fattah et. al. (2017) introduced the inverted Kumaraswamy (IKum) distribution
and studied its properties. IKum distribution can be used in long term reliability predictions,
producing optimistic predictions of rare events occurring in the right tail of the distribution
compared with other distributions.

Let X be arandom variable distributed as IKum distribution with shape parameters; « >0 and
£ >0, denoted by X ~ IKum(e, ). Then the probability density function (pdf), cumulative

distribution function (cdf), reliability function (rf)and the hazard rate function (hrf) are given,
respectively, as follows

f(xa, f) = af(l+x) “V(A-1+x)“)"", x=0,a,8>0, (1)
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F(xa, B) = (1-(1+x)“)” = %;)((u X)“* = (1+x) ) )

R(X) =1-F(x) =1-(1-(1+x)™®)”, (3)
and
_ () _ap+x) P A-1+x))"
T R(X) 1-(1-(1+x)“)"*

h(x) (4)

This article is organized as follows. In section 2, the likelihood function and the maximum
likelihood estimates of « and £ are obtained, also the asymptotic confidence intervals are
constructed in the same section. In section 3, Bayes estimates for the parameters « and S are

obtained using four different loss functions (SEL, LINEX, GE and Al-Bayatti). In section 4, the
approximation of Bayesian estimates are obtained using Lindley’s approximation method. In
section 5, a real data example is constructed to compare the proposed methods. In section 6,
simulation study is performed to discover the properties of different estimators proposed in this
paper. Finally, the paper is concluded in section 7.

2. Maximum Likelihood Estimation (MLE)

Suppose that n randomly selected units have a lifetimes follow 1Kum(e, £) distribution are put
on the lifetime-test at time zero. Based on the general progressively Type-Il censoring, then the
sample is given by X Xiomnr Xumn  With  the  progressive censoring scheme
R .1, R..5,..w R, . For simple notation, we use X, instead of X, ., then X=(X_ 4, X 5, X,) be
the general progressive censored sample. The likelihood function is given by

L(xiar, ) = o[F (%) [T F ) [— F O™ 5)

i=r+l

r+Lmn?

Where

c= (:j(n - r)(n —-Ir= Rr+l _1)(n e Rr+1 - Rr+2 _2)

X(n_r_Rr+l_Rr+2 _"'_Rm—l_(m_r)+1)
=(:](n—r)f[ [n- 2R~ j+1] ©

Using (1) and (2), then the likelihood function becomes
Lica, ) = oft- (e )} JeBa+ ) - e )} - @@ x) ) o ()

i=r+l

Taking the logarithm for (7), then the log-likelihood function is

m

I(X; @, B) = logc+ Briog[1— (1+x,,,) “1+ > [loge +log B — (a +1) log(1+ x,)]

i=r+l

+ 3 [(B-DloglL— (14 %) ]+ R log[1— (1— (1+ %) )"]} ®)

i=r+l
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By applying the partial derivatives for (8) with respectto « and £ and putting the derivatives
equal to zero, then we get:

o _ pr(l+x.,) “log(x,,,+1) PR (1+ %) log(x +1)(1 (1+x) )ﬂ
= Kl ©)
oa 1_(1+ Xr+l) i=r+1 ( (1+ X) ar
(,6’ 1)(1+x)“log(1+x,) _
" Zl( 1-(1+x)“ ~log(t+ Xi)J -0
and

; & R-x) Y logl- (g 1))

==l -

op oo G S R Y

+Z(_+'°g( (xi+1)a)):o, (10)

i=r+l

it is obviously that the closed form solution for the parameters « and £ from the likelihood
equations given in (9) and (10) is not possible. However, we can solve these equations by using
Newton’s iteration method. Let &, and f,, denote the maximum likelihood estimators of «
and £, respectively. The maximum likelihood estimators for the reliability function R(x) and
the hazard function h(x), denoted by R(x),, and ﬁ(x)ML can be obtained from (3) and (4) by

replacing ¢ and S by «,, and [i’ML, respectively

2.1 Observed Fisher Information

In this subsection, the observed fisher information based on general progressive censoring are
observed to construct interval estimates for the parameters of Inverted Kumaraswamy distribution.
Using Equations. (9) and (10), we have:

62I -i i (B-1)(x +1)**log® (x +1) (B-1)(x +1) “log’(x +1)
(- (x +1)“f 1—(x +1)

. i AR D) log® (x +DL-(x +1) S
—1-(x, +1)*“)ﬂ)2

_ i (B-DR (% +1) 7 log* (x +1)L— (% +1) )ﬂzj

i=r+1

JuN

i=r+

i 1-(1-(x +1) )
o3[ AROD “og (D=0 ) A+l 04D
et 1-(-(x +1) ) (%, +1)“ —1f

& _ & R-(x+)) log*L-(x +1))
P2 1-(1 X
- -0 +n)
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¥R (- +1)“F log*(L—(x, +1) )} r—m 12

i=r+| ﬁ_(l_(xi+1)’a)ﬂ)z ﬂz ’

and

o _rlog(x.,+1) | i R(% +1) " log(x, +1)— (% +1) )
aaaﬂ (Xr+1 +1)a -1 i=r+l 1_(1_(Xi +1)—ay
B i BR (% +1) " log (%, +1)(1— (x, +1) ) " log{1— (%, +1))

1-(-(x +1)

3] AR D) g (x + D) (6 +1) M loglt—(x +1) ) | | & (x +1)“ log(x, +1) 13

Z{ (1—(1—(xi+1)*a)ﬂ)2 +i;1 -+ ()

Then the asymptotic Variance-Covariance matrix is the inverse of the Fisher information matrix,
which is given by,

i=r+1

i=r+1|

-1

-0’ -d4

v~ aazz 0a0p _ A\?ar(o})ﬂ éqv(&,ﬁ). (14)
SPL Cov(a,B) Var(p)
opoa 0p°

R
Then the asymptotic confidence intervals for the parameters « and £ is given by,

a+Z,\NVar(@) and p+Z,\Var(p). (15)
with 100(1-y)% confidence degree; where Z , is obtained from the table of the standard
normal distribution.

3. Bayesian Estimation

In this section, we derive the Bayesian estimates for the parameters « and £ of the Inverted
Kumaraswamy distribution 1Kum(e, ) based on general progressive Type-1l censoring using

four different loss functions.The squared error loss function (SEL) which is defined as symmetric
loss function, given by:

L,(6.0) = (0-06)",
where 4 is an estimate of . The Bayes estimate for ¢ under the loss function L, is the
posterior mean éBS = E[#] x] ,the second loss function is the linear exponential (LINEX) loss
function, it is an asymmetric loss function and defined as
L,(0,0) =e"*? _h(@-6)-1, h=0,
The Bayes estimate for any parameter 6 under the loss function L, is given as,

s =~ LoglEE™ 9]

the third asymmetric loss function is the generalized entropy function which is given by,
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~ 0 0

L(6,0) = ()" —aLog( ) -1.a=0,
and the Bayes estimate under L, is given by,

O = (E[07 | x])™",
Finally, we have Al-Bayatti loss function L, which introduced by Al-Bayatti (2002), and given
by,

L,(0,0) = 6°(0-6)?,
While the Bayes estimate under L, is given by,
5 kOO0 e )

"7 [oxoinee  E@TY

Assume that the parameters « and S are independent variables having Weibull prior
distributions 7,(«) and 7z,(f) respectively.

1 b ad b5
(@) ca™e™  and (B« e, (16)
where a;,b,a,,b, >0 are the hyper parameters of the priors. Using (7) and (16), then the
posterior distribution of « and A is obtained as

7 (e B X) =%L(a,ﬂ)-ﬂ1(a)ﬁz(ﬂ)

m-r+a,1 m-r+a,—1_—(ba l+b) "

x_ﬁ(1+ %) - @+ x) < T h- - e x) )7 J (17)

where
k=[] L@ B)m(@)r,(B)dadB
- I: J.ow[l— (I+X.,1)™" ]ﬁr a""rp m_Haz_1e_(b1”’a1+b2ﬂ i
<T@ x) < f-@exy <} - a-@ix) <y Tdadp (18)

The Bayes estimates for the parameters « and A under the squared error loss function L, are
given by,

A 1 poopeo —a m—r+ m-r+a,-1_—( o Lib a2)
oy = Elar| 1= [ [ @ax ) fTa g R

[T+ %) -+ x) P f-@-@+x) )T dadp. (19)

i=r+l

PBes =ELBIX]= %j: [B-@rx)efamme B2 )
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< [T@+x)“ -@+x) - - @+x) )’ [ dedp. (20)
i=r+1
For the LINEX loss function L,, the Bayes estimates for « and £ are given by,
Gy = _% Log(E[e™™ | x])h 0 (21)
where
—ha 1 o —a m-r+a, -1 ,m-r+a,—1_—(h+ aal_l a-b, 572
Bl 1= [ L@ x, ) oo g e e e
< [T@+%)o-@+x) < - @—@+x) )" [ dadp. (22)
i=r+l
3, =~ Log(E[e™™ | x])h 23
Pa = hLog E[e™ [x])h=0 (23)
where

_ 1 (oo —a m-r+a,-1 ,m-r+a,-1 - aal—(h+b ﬂaz_l)ﬂ
Ele™ [x]=- [ [l-@en ) fam et e

x ﬁ(1+ %) - @+ x) < T h- - @+ %))’ [ dadp. (24)

i=r+l
The Bayes estimates for ¢ and S depending on the generalized entropy loss function L, is
given by,

e = E(a )™, (25)
where
- 1 (op= _a merta,—q-1 m-r+a,—1 —(ba L+b, 572
E[aqp—(]:ﬂ‘()jo[l_(“)(fﬂ) P et g g (et )
= —a-1 e -a\p Ri
x[L@ex) -@ex) - @+ %)) [ dadp. (26)
i=r+l
Pae =E(B1X), @7
where

[ m-r+a, -1 m-r+a,—q-1_—(ba L+b, g
E(ﬁq|>_<)=%_fo_[o[l—(l+xr+l)“]ﬁ'a A

[T+ %) -+ x) P f-@-@+x) )T dadp. (28)

i=r+l

Finally, the Bayes estimates for « and S depending on Al-Bayatti loss function L, is given

by,

g = £ 10, 29)
E(@ 1)

where
0 (00 Cl a
_ —a m-r+a,-1+A ,m-r+a,-1_ —(ba ++b,p3 ¢)
E@* %)= [ [I-(@x.) = o™ty e
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[T+ %) -+ )P f-@-@+x) )T dadp. (30)
where A=c,c+1 and f,, is given by,

- _E(BX) a1

ST ey

Unfortunately, all estimates have the form of ratio of two integrals, and the closed forms for these
integrals are not obtained. Therefore, the approximated values for these estimates are computed
using the Lindley approximation method.

4. Lindley approximation method

Lindley (1980)was discussed an approximate Bayesian method. His method used to obtain an
approximate for a ratio of two integrals. Suppose u(e, ) isafunctionof o and g, (e, ) is

the logarithm of the likelihood function mentioned in (8) and
pla, p) =log z(a, B) = log(r,()7,(S)) , then the Lindley method defined as,

JO JO u(a, B)e' @0 @hdodp
J“” Iwel(a,ﬂ/z)w(a,ﬁ)d od
=u(é, B)+05> (U, +20,0,)6; +0.5> 10,6, 6
=u(&, B) +0.5((0,, +20,,)6,, + Uy, +20,5,)6
+ (U, +20,0,)6 5+ (U, +20,5,)6 |
+0. 5|_ua M( l,0uGou + |aaﬁ0'ﬁa + Iaﬂaaaﬁ)+ ualaﬂﬁaaﬁ
+0,0

i aﬂ(lﬂﬁa Iﬁaﬂ i Iﬁaa ﬂa) e ﬂﬁ} (32)
where ¢ and ,B are the MLE estimators of « and S, respectively. Also, u; is the second
derivative of the function u with respectto i and j,i.e. 0, is MLE of the second derivative
of u(e, ) with respectto £ . while the other terms are obtained as follows,

P Al ) (e 1) +1)iog’(x,y 1)

E(u(a, p)|x) =

+0

aaa = o0’ |a=o},,8=/§ ((X +1) l)3

r+1

. i{ 2 2(8-1)(x, +1)°" log®(x; +1)+ 3(8-1)(x +1) > log®(x, +1)
) o (1—(xi +1)‘”‘)3 (1—(xi +1)_")2
. (B-1)(x +1)“ Io_g3(xi +1)j . i 28°Ri(x +1)°** log®(x. +1)<1—(xi +1)“ )aﬁ_s
1-(4+1) e (- +2) |
C(B-DAR(x 1) log* (x + - (x +1) [
—
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BB -2R(x +1) * log®(x +1)a— (5 +1)“F*”
(1— (1— (x +1)“ )ﬁ)z
L 3B°R (4 +1) ™ log” (x,+ 1)t (x, +1)
b0 |
_(B-D(B-DR (% +1)* log*(x + DL~ (x +1)
1-f-(x +1)“f
L 3-D/R (% 1) log’ (¢, +1)1—(x, +1) )
1- (- (x +1)“)

p-2

-3

~ AR(% +1)“ log* (% +1)(1—(xi +1) )‘H
1-(-(x +1)“f J 53
| s = i‘s L. e 2(m_3—r) n i {_ 2R, (1—(xi +1)*a )3ﬁ |ogs(1_(xi +1)—a) -
ot B ﬁ—(1—(x 1) )”)3

3R(1-(x +2) " 1og* (¢ +1) ") R -6+ tog (L~ (x +1)" )J
(L—(l—(xi+l)“)ﬂ)z 1— (1 (x, +1) )ﬂ

Also,
P oo = O i _nz_r(x  +1)"log®(x,,, +1)
e ot kel (x +1)° 1)2
n L (x +1) 7 log® (% +1) (% +1)* log®(x; +1)
+i;1_ (1—(xi+1)’”’)2 1 (D) J
s i _2B°Ri(% +1) " log®(x, +1)(1—(xi +1)° )w_z Iog(l—(xi +1)’“)
) |
28R, (%, +1) 7 log®(x, +1)(1— (x, +1)“ )ZH
i
_ B°Ri(x +1)* log®(x +1)(1—(xi +1)“ )ZH Iog(l—(xi +1)’“)
bt |
~ BERA-DR (% +1) > log® (x, +Di— (5 +1)“ " toglL—(x +1) )
(1_(1_(Xi +1)_QY)2
L AR (% +1) log” (x, +1-(x, +1) " loglL—(x, +1))

(1—(1—(xi jtl)"")ﬁ)Z
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(B-DR(x +1)  log? (x, + - (x +1) )~
1- (- (x +2) )
AR(x, +1) 2 log? (x, +1)1— (4 +2)“)
1- (- (x +2) )
(B-DR(%+1) > log? (x +D—(x +1) )/ logli—(x, +1)*)
1-(1— (x5 +1) )
. Rix +1) log? (x + L (4 +1) )
1- {1 (x +1))(“)F . )

BR(% +1)“ log? (x, +1)1—(x +1)“) " logll—(x +1)“

’ 1-(—(x +2) ) ’ )

and
S - o
Iaﬂﬁ’ - Iﬂaﬂ - Iﬂﬁ’a - aﬂ—za |a:d,/}:ﬁ
_ Z”‘: 2R, (x +1)° Iog(xi+1)(1—(xi +1)‘°’)3'IJLl Iogz(l—(xi+1)‘“)
=z (1—(1—(xi +1)‘°’)H)z
~ 2Ry(x +1) " log(x, +1)(1— (x, +1)“ )ZIH Iog(l— (x, +1)’“)
bt )
C3MR (% +1) " Iogx+1)(1 X, +1) )Mllog( X +1)° )
ﬁ (- (x +1) )ﬁ)z
_ 2R/(x +1)“ log( x+1( (x, +1) )ﬁllog( (x, +1) )
1- (- (x +2) )
~ BR(x +1)“ log(x, +1)—(x +1)“f " log? (L (x, +1) ) )
1- {1 (x +1) f |
Using (16)
Iba = 2_2 = a17_1—a1b1aa11 and ﬁﬁ. :Z—Z = azTg:l-—azbzﬁaz—l
Also oy for i, j=1,2. is defined by,
ol & o
Cru = aﬁ |aaﬁﬂ AﬂﬂzaTF{zla:&ﬁ:ﬁ and O-aﬂ O-ﬂ _ﬁla a.p=p (37)

where o is defined by,
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ST e I i 2|
oa’ op* \oap) =P
Now, using the Lindely rule (32)to get approximate for the Bayesian estimates for the parameters

a and g under the squared error loss function L, .For a, we use u(e,f)=a and dgis
given by,

s = E(a|X)

=G+ P,6 0+ Py + 0BG 4266 1b st G20 (39)
For S ,weput u(a, )=/ andthe Sy isgiven by:

Pas =E(BIX)

= B+ PuG Py + O'sl&zﬂrﬂﬂﬁ +26.,,6 5, + &iﬁrﬁ““J 39

Also, the Bayes estimates for ¢ and £ under the LINEX loss function L, can be obtained as

a

follows: for o, we take u(a, f) =" and @, is given by,

Gg = _% log E(e ™" | x), (40)
where

E(e™ | x) =e " +0.5he™ [h&aa ~2P,0 0~ Zlaﬁ&aﬂ]

- O.5he_h& I_a-jaraaa + Z&aaé\-ﬁa raaﬂ + &jﬁraﬁﬁj (41)
Also, the Bayes estimate for S under the LINEX loss function is given by,

BBL = _% log E(eihﬁ | X), (42)
where

E(e™|x)=e" +05he |hé,, -25,6,,-24,6,,]
-hgl~2 [ N A2 1
—0she |62 126,60, +648,. ] (43)
For the Bayes estimate of « under the generalized entropy loss function L,, we use

U(e, f) =a® and ag is given by,

Qe = E(a™|x)™, (44)
where
E(a|X) = & +0.5qa @2|(q+1)6,, —263,6.,, —26p,6.,,]
- O'5qa7(q+l) &ozcaraaa + Z&aa&ﬁa raaﬁ' + &iﬁfaﬁﬁJ (45)
Also, we take u(a, 8) = to obtain the Bayes estimate for B under L,,
P =E(B107, (46)
where

E(B°|X) = B +0.508 2|(q+1)6 ,, — 239,64 — 239,65 |

—(q)| 22 [ AoA A2 1
~05q8 62,1, +26,,6, 8 +620, | (47)
Finally the Bayes estimate of « using Al-Bayatti loss function L, is obtained as follows,
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. E(a®™ | x
Ogg = Q, (48)
E(a”[X)
where
E(@’|X) =& +05pa"2[(p-1)6,, +265,6,, +26/,6.,]
+0.5pa™™? [&jafam +26,,6 sl + 62 ﬂﬁJ (49)

where p=c,c+1. and the Bayes estimate of £ using Al-Bayatti loss function L, is obtained
as follows,

~ _E(Bx)
:—_' 50
eI ©0
where
E(B° %) = B +05p3"2|(p-1)6 ,, + 239,615 + 285 |
+05pB° 62,1, + 26,650+ 62,0 | (51)

and p=c,c+1.

5. Two-Sample Bayesian Prediction

In this section , we consider the Bayesian prediction of a future order statistics based on general
progressively censored data x. Let Y, <Y, <..<Y,, are the order statistics of a future random

sample of size w from the same population, then the marginal density function of the |,, order
statistics y,,1 =1,2,...,w, as obtained by Xiuyun and Zaizai (2016) and is given by,

* _ w! 1-1 w—|
f(y.|a,ﬁ)—m[F(y.|a,ﬁ)] L-Fyla. A" Ty 1ap)

wi w1 I I—1+1
= -1)*F : 1f ). 52
—r _1)!;0[ . J( RO R VALY (52)
Then, the Bayesian predictive density function of y, given x is obtained as follows,
o I0=[ [ (e p)x(a Bl x)dadp. (53)
Then the predictive reliability function is established by

Ry 10=[ f'(z]0dz

=[[([ [ 1 @la.ptap1xda0p i

_ wl wl(w—1Y) (=1)"
_mgi l j m H, (% 1%), (54)
where
H 0110 = [ TE-(F 10 8) " Je(@ 81 )dadB. (55)

The integration in (55) cannot be computed analytically, so we will use Lindely method in (32) to
obtain an approximate for this integration by putting U(«, ) as follows,
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U(a, ) =1-(F(y | A)) ™ =1- (- (@ y) Y. (56)
Then, the 100(1—y) Bayesian prediction bounds for Y, are obtained by solving the following
two equations:
wl (w1 (-1)" "2,
H = 57
(W—I)!(I—l)!,lz(;( l J e, O = s ®7)

Illustrative Example

Assume that we have the set of data with size n =50 generated from the inverted Kumaraswamy
distribution with parameters « =1, # = 2. We assume that the number of failures m =30 and the
number of unobserved failures r =5. The sample is obtained in the following table

0.169, 0.232, 0.410, 0412, 0413, 0.494, 0.637, 0.667, 0.708, 0.881,
1.009, 1.174, 1.232, 1299, 1385 1413, 1415 1540, 1596, 1.627,
1.768, 2.143, 2.247, 2.260, 2.298, 2.794, 2806, 3.006, 3.023, 3.072,

3.194, 3.822, 4.146, 4513, 4.820, 4.921, 5284, 5510, 6.027, 6.507,
7.713, 10.681, 11.182, 13.056, 13.181, 17.468, 24.368, 31.379, 77.184, 96.741.
Now, this sample will used to predict with a future order statistics say Y, <Y, <...<Y,,, where
w =10, the prediction pounds are obtained with » =0.05. the values of the hyper parameters are
(a,,b)=(5.13,0.65) for ¢ and (a,,b,)=(10.81,0.00034) for f . the obtained intervals are

obtained in Table 1.

y Scheme 1 Scheme 2 Scheme 3

L U L U L U
Y, 0.017 1791 | 0.098 1.671 0.017 1.890
Y, 0.099 2.838 | 0.204 2.652 0.097 3.027
Y, 0.223 4.481 | 0.221 3.806 0.207 4.696
Y, 0.528 6.157 | 0.532 5.328 0.339 6.995
Y, 0.644 9.318 | 0.621 7.455 0.499 10.583
Y, 0.776 14.734 | 0.578 11.086 | 0.705 16.925
Y, 1.069 27.633 | 0.843 16.929 0.999 30.25
Ye 1.471 52910 |1.232 29.619 1.606 67.65
Y, 3.253 70.737 | 1.792 75.688 | 1.659 259.64
\ 5.095 576.807 | 3.015 594.42 | 1.728 7885.53

Table 1: Two-sample Bayesian intervals for y, <y, <...<Yy,,

6. Simulation Study
In this section, the performance of the proposed methods is evaluated using Monte Carlo
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simulation study. All calculations are constructed using Wolfram Mathematica 9. We will
compare the MLEs and the Bayesian estimators under four loss functions, also the asymptotic
confidence intervals will constructed with confidence degree 95%. The samples are generated
from the Inverted Kumaraswamy distribution with the parameters « and g, which have the
following chosen real values («, ) = (0.5,1) with sample size n =20,50,100 and the number
of observations m =15,20,30,50 and 70 while the number of unobserved failures r =3,5,10

. Under the general progressive censoring, different schemes will used in this simulation, which
given by:

2(n—m) | _ .. i1 _
1. Schemel: R = [ o —l—B, iisodd &n-m- > R, >B;

0, otherwise.

j=r+l

i=r+l i

for i= r+1,r+2,...,Min[m—1,r+{@J] and R = n—m—zm_1 R.

2(n—m) . L
= — — o> .
2. Scheme Il R, = [ po— —l B, iiseven&n-m- ) R, >B;

0, otherwise.
2(n—m) J] and R,=n-m->""R.

3. Schemelll: R,=n—-m and R, =0 for i=m

j=r+l

for i=r+1,r+2,...,Min[m-1,r {

The Bayesian estimates are obtained using the Lindely method, the hyper parameters of
theWeibull prior distributions for « and S are taken as follows:

Priors Hyper parameters of « =0.5| Hyper parameters of =1
Informative(Weibull) (a,,b) =(2.379,3.905) (a,,b,) =(5.13,0.65)
Informative(Exponential) (a,b)=(12) (a,,b,)=(1,1)
Non-Informative (a,b)=(0,0) (a,,b,) =(0,0)

The Bayesian estimates are obtained using the squared error loss function SEL, the LINEX loss
function with h=1,-0.5, the generalized entropy GE with g =1 and Al-Bayatti loss function
with ¢=0.5,-0.5. The process of simulation will be executed 1000 times, then the average value
are calculated to be the estimate value. Also we obtain the mean of 1000 lower and upper
confidence limits for the asymptotic confidence intervals of the parameters with 95% confidence
limits.

In Tables 2 and 3, we present the the average of estimates and mean square error (MSE) of the
MLEs and the BSEs for the informative Weibull priors, while the estimates using the informative
priors of the exponential special case are obtained in Tables 4 and 5. The asymptotic confidence
intervals with 95% confidence degree for « =0.5 and £ =1 are included in Table 6.

7. Concluding remarks
In this work, we study the estimates for the parameters of inverted Kumaraswamy distribution
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under the general progressive censored samples. The estimates are obtained using the maximum
likelihood method and Bayesian method under four different types of loss functions. Two sample
Bayesian prediction intervals are conducted for a future sample depending on the old sample units.
According to these results of simulation and the introduced example, we can draw the following
conclusions:
* The estimators that obtained from Bayesian method are very close to the real values of
parameters than the estimators of Maximum likelihood method.
* The estimators that depend on samples with large size n and large values of m are better
than those with small values.
* In most cases, the smallest MSEs are obtained under Al-Bayatti loss function with
¢ =-0.5 while the MSE using the LINEX loss function with h=1 is less than that
obtained by h=-0.5.
* In most cases, we noted that the Bayesian estimates using the Weibull priors are better than
that obtained by exponential priors and non-informative priors.
 Small differences are noted, when we use the set of hyper parameters for informative
priors and those for non-informative priors.
* the asymptotic confidence bounds contains the the MLE estimates for ¢ and £, the

width of the intervals become small for large values of n and m
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Table 2: The MLE and Bayesian estimates for ¢« and £ when (a;,b)=(2.379,3.905) and
(a,,b,) =(5.13,0.65) (Weibull priors)

n(m,r}

C.3

Means and MSE for o

Means and MSE for 5

BS

BE

BL

BB

h=1 h=2 | =05 | e=-03

BS

BE

BL

BB

h=1 h=-2

e=05 | e=-0.3

20(15,3)

(0.563
0.0]64

(0.553

0.0035

0558 | 0556
0.0757 | 00786 | (

0549 | 0540
12548 | 0.00T6

1.181
0.0630

1.289
0.1374

L.167 | L163

L1532 | L1007

0.0578 | 00711 | 0575 | 0.0181

I

(0.576
0.0159

(0.563
0.0095

0.ave | 0474
0.0203 | 0.0235 | (

0476 | (0.048
10368 | 0.0082

1.185
(0.0602

1.298
0.1470

1.172 | L168

L157 | L.O08

0.0639 | 00650 | 00511 | 00171

111

0.591
0.0180

0.597
0.1432

0501 | 0589
0.0193 | 00215 | €

(L6809 | (.566
10256 | 0.0110

1.239
0.0844

1445
(0.2069

1.218 | 1213

L1946 | 1.041

0.0726 | 0.0907 | L0652 | 0.0203

50(20.5)

0.563
00114

(0.541
0.0070

0.565 | 0.563
0.0135 | 00165 | €

(L6568 | 0.526
10211 | 0.0049

1.07T8
0.0196

1.074
(0.0185

LOTS | LOTS

LOTS | 0960

0.0199 | 0.0306 | MO2Z11 | 0.0000

I

0.563
00114

(0.565
0.0193

0566 | 0564
0.0125 | 00145 | €

0567 | 0.529
10169 | 0.00:3

1.093
0.0223

1.099
(.0232

1.1 LO8T

LOB% | 04972

0.0223 | 0.034]1 | 000232 | 0.0091

11

0611
0.0247

1.102
10.153

0604 | 0602
0.0363 | 0.0385 | (

0579 | (.585
11673 | 0.0157

1.151
0.0410

1217
(0.0733

1.141 L137

1.131 1.013

00358 | 0.0520 | 00393 | 0OL12

50(30,5)

0.521
0.0051

0.4589
0.0037

0.524 | 0522
0.00656 | 00083 | 0

(634 | 0497
10067 | 0.0041

1.035
0.007

1.009
(0.0048

1038 | LO33

LO44 | 0846

0.0087 | 00177 | O0DE | 00068

I

0.519
0.0053

0.488
0.0038

0.523 | 0521
0.0057 | 00083 | 0

(.632 | 0496
10065 | 0.0043

1.032
(0.0091

L.007
(0.0058

L0366 | 1033

LO41 | 0.944

0.0099 | 00198 | O110 | 00080

11

0.533
0.0052

0.499
0.0026

0.536 | 0.534
0.0058 | 00084 | €

(645 | 0.506
10075 | 0.0024

1.062
0.0118

1.043
(0.0076

L6 | LOG6L

LOGE | 0.954

0.0126 | 0.0224 | 0139 | 00064

100{50,10)

(0.a01
0.0038

0.477
0.0038

0503 | 0501
0.0033 | 0.0069 | €

a1l | 04584
10043 | 0.0038

(097
0.0052

0973
(.0048

1002 | 0.998

Loor | 042

0.0055 | 0.0139 | O058 | 0.0071

I

(0.459
(0.0037

(0.476
0.0038

0502 | 00501
0.0038 | 0.0060 | €

0600 | 0483
10042 | 0.00G8

(004
(0.0052

0.974
(0.00545

Lo0L | 0.997

Lo | 0942

0.0151 | 00049 | 00055 | 00071

111

0.508
0.0037

0.479
0.0032

0511 | 0510
0.0053 | 00069 | 0

(621 | 0487
10047 | 0.0034

1.015
(0.0056

(.991
(0.0041

L.OI8 | LOLG

1024 | 043

0.0061 | 0.0147 | LO0B6S | 00066

100{70,10)

0.495
0.0:031

(0.450
0.0033

0497 | 0485
0.00352 | 0.0054 | €

0602 | 0485
10032 | 0.0032

(987
0.00:46

(96T
(0.0049

0.991 | 0088

099 | 0.042

0.0048 | 0.0132 | 0045 | 0.0068

I

0492
0.0031

0478
0.0033

0495 | 0492
0.0031 | 0.0081 | €

0500 | 0.483
10052 | 0.0032

(991
(0.0042

0.971
(0.0044

0993 | 0.992

0999 | 0.946

0.0044 | 00127 | 00045 | 00062

11

0.497
0.0031

0.451
0.0032

0499 | 0497
0.0032 | 0.0060 | €

0506 | 04586
10034 | 0.0032

0992
(0.0047

0.971
0.0047

0995 | 0.992

LO0D | 0941

00048 | 00142 | 000050 [ 00065

732
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Table 3: the MLE and Bayesian estimates for « and g when (a,b)=(1,2) and
(a,,b,) =(1,1) (Exponential priors case)

Means and MSE for &

Means and MSE for g

njmry | 5 BL BE BL BR
o BS BE BS BE

h=1 h=2 =05 | c—=05 h=1 h=2 c=0% | =05

0435 | 0430 | 0426 | 0424 | 0426 | oam | 1223 | Loa | s | nims | 1rzos | ooes

] (0.015) | (n.023) | (0023 | (0.025) | (0.033) | (0.019) | (0.120) | (0.012) | (0.213) | (0.228) | (0.153) | (0.062)

0432 | 0438 | 0422 | 0421 | o421 | o4z | 1oz | wme | nzn | Lo | rmr | oooo

Ataa ) (0.01s) | (nozs) | (oo | oo2d) | os) | o1y | 013z | 0011 | ooy | 00226y | (008 | (0061

n402 | o471 | o383 | o383 | oavr | odor | 1a3z | woom | rma | e | rzEs | ooom

= (0.019y | (nozs) | (0042 | (0.043) | (0056) | (0.022) | ©.04Z) | (0014) | (027 | (00278) | (0215 | (007

0465 | 0453 | 0462 | 0481 | 04vs | o440 | 1015 | Loar | 1153 | L8 | 1166 | D890

' om3 (0.026) | (002 | 0.023) | (0.014) | 0021) | ©0122) | (0004) | (0.158) | (0.174) | (0153 | (0.041)

wimos | o 0460 | 0453 | 0453 | o452 | o465 | o044y | 1ame | Lol | 1148 | Lud | 1162 | navE

o (0.012) | (0.025) | (0.026) | (0.028) | (0.021) | (0.021) | (0.012) | (0.08T) | (0.146) | (0.150) | (0.140) | (0.040)

ndo6 | 0423 | o369 | oa6r | oae | o4 | 104z [ noan | naee | nims | 1211 | naasz

= (0.017) | (nozs) | (oos1y | 0054 | oty | oy | 007y | 0z | 0243y | (02sT) | (0EEn | (0o

[ | 0803 | Q4ve | 0507 | 0506 | 052 | 0484 | 106 | 1019 | 1066 | 1083 | L108 | 0943

(0.014) | (D.OLG) | (0OL5) | (0.017) | (0.015) | (D.016) | (0.07G) | (0.061) | (0.088) | (D.007) | (0.088) | (0.038)

oo | qp | ©906 | 0480 | 0511 | 0508 | 0523 | 0485 | 1087 [ 1029 | 1108 | 1104 | 1121 | 0.949

o 0,015y | (o1s) | (0o1s) | (0.019) | (0015 | (.016) | (0.070) | (0063 | (0o02y | (00T | (00ed) | (0039

g | 0482 | Q48T | 0487 | 0488 | 0501 | 0463 | LOSS [ 1007 | 1100 | 1105 | 1124 | 0016

(0.014) | (0.O18) | (0014) | (0.017) | (0.013) | (0.017) | (0.002) | (0.072) | (0.100) | (0.123) | (0.008) | (0.042)

[ | 0502 | 0451 | 0506 | 0504 | OIS | 0487 | 1020 | 1007 | 1049 | LO4G | LOST | 0.965

(0.011) | (oin) | (ool1y | (0.013) | (oo11) | (.o11) | @.020) | (0osd) | (oody | (oos1) | (0043 | (0028)

worsooy | g | 007 | 0486 | 0511 | 0500 | 0520 | 0483 | 1047 | LOM4 | LOST | 1054 | 1064 | 0973

s 0011y | (notny | (ool1y | 0014y | o1z | (.011) | .03y | (0osd) | 0oy | (nos4) | (00dd) | ooz

0496 | 0473 | os01 | o409 | osiz | o4m | 1ose [ Lmr | wom | Loes | Loso | nose

- (0.012) | (D.OLE) | (0012) | (0.014) | (0.012) | (0.013) | (0.040) | (0.042) | (D.O0S4) | (D.0GZ) | (0.056) | (0.029)

0501 | 0486 nz02 | o508 | o4 | 1o2e | Lood | Lo36 | Losd | 1043 | 0973

: 0,007y | (oor) | (ool | (0009 | oo | oo | 002 | oes) | ooes) | (0038 | (00 | o021

0503 | 0488 | os04 | o503 | oswo | o4 | 1osr | Lo | noes | Lodn | ros1 | oest

B (0.007) | (0L0DF) | {0.007) | (0.010) | (0.007) | (0.007) | (0.029) [ (0.026) | (0.081) | (L042) | (0.032) | (0.022)

0406 | o4vs | os0l | 49 | osiz | odw | 1oss | Loy | novl | Loes | L& | Doss

" 0oz (0.013) | (0012 | @014) | (0.012) | (0.013) | (0.040) | (0042) | (0.084) | (0.062) | (0O56) | (0.020)
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Table 4: the MLE and Bayesian estimates for « and
(a,,b,) =(0,0) (Non-Informative case).

£ when (a,b)=(0,0) and

Means and MSE for a Means and MSE for 2
n{m,r) C.S . BL BB BL BB
' BS BE BS BE

h=1 h--2 c=05 | =-0.5 h-1 h=-2 05 | e-05

I 0.501 0.469 0.511 0.508 0.531 0.475 1.394 1.193 1.457 1.451 1.493 0.890
(0.036) | (0.039) | (0.038) | (0.043) | (0.038) | (0.038) | (1.110) | (0.706) | (1.185) | (1.209) [ (1.273) | (0.084)

20(15.3) I 0.503 0.471 0.512 0.511 0.533 0.477 1.389 1.192 1453 1.449 1.489 (.88
(0.034) [ (0.037) | (0.035) | (0.037) | (0.025) | (0.035) | (1.092) | (0.689) [ (L.159) | (1.168) | (1.253) | (0.084)

0.479 0.459 (.483 (. 482 0.502 0.459 1.584 1.788 L1615 1.614 1.676 0.876
o (0.032) | (0.041) | (0.034) | (0.034) | (0.031) | (0.036) | (3.353) | (15.302) | (2.281) | (2.386) | (3.034) [ (0.095)

I 0.514 0.473 0.526 0.525 0.551 0.481 1.179 1.083 1.213 1.211 1.232 0.925
(0.042) | (0.044) | (0.045) | (0.046) | (0.045) | (0.044) | (0.209) | (0.211) | (0.329) | (0.245) | (0.346) | (0.067)

50(20.5) I 0.508 0.467 (.520 0.519 0.546 0.475 1.196 1.095 1.231 1.228 1.250 0.921
: (0.036) | (0.039) | (0.039) | (0.040) | (0.039) | (0.039) | (0.327) | (0.241) | (0.377) | (0.383) | (0.388) [ (0.069)

" 0.467 0.438 0.475 0.474 0.502 0.437 1.265 1.589 1.295 1.293 1.323 0.878
(0.032) | (0.044) | (0.034) | (0.037) | (0.029) | (0.040) | (0.790) | (20.75) | (0.675) | (0.681) | (0.759) | (0.078)

I 0.516 0.486 0.522 0.520 0.535 0.495 1.112 1.049 1.132 1.129 1.145 (.969
(0.019) | (0.018) | (0.020) | (0.022) | (0.021) | (0.019} | (0.119) | (0.091) | (0.134) | (0.143) | (0.137) | (0.053)

50(30.5) I 0.507 0.477 (1.512 (.510 0.526 0.486 1.088 1.027 L107 1.104 1.121 0.949
y (0.020) | (0.019) | (0.021) | (0.024) | (0.021) | (0.020) | (0.112) | (0.087) | (©.125) | (0.136) | (0.127) | (0.053)

0.510 AT8 0.516 0.515 0.533 0.488 1.146 1.070 L171 1.167 1.186 0.955
i (0.024) | (0.025) | (0.026) | (0.028) | (0.026) | (0.025) | (0.194) | (0.145) | (0.217) | (0.232) | (0.222) | (0.063)

I 0.511 0.488 0.514 0.513 0.524 0.495 1.053 1.019 1.062 1.059 1.070 0.976
(0.015) | (0.014) | (0.013) | (0.018) | (0.016) | (0.013) | (0.051) | (0.044) | (0.054) | (0.063) | (0.055) | (0.033)

100(50.10) | 11 0.517 0.495 0.521 0.520 0.531 0.502 1.057 1.024 1067 1.065 1.075 0.982
: : (0.015) | (0.014) | (0.015) | (0.017) | (0.016) | (0.015} | (0.046) | (0.039) | (0.049) | (0.056) | (0.051) | (0.030)

1 0.507 0.481 0.512 0.511 0.524 0.489 1077 1.034 1.090 1.087 1.099 0.971
(0.017) | (v.o17) | (0.018) | (0.020) | (0.018) | (0.017) | (0.069) | (0.057) | (0.075) | (0.083) | (0.077) | (0.039)

I 0.501 0.486 (.503 0.501 0.508 0.401 1.039 1.012 1.046 1.043 1.053 0.982
(0.008) [ (0.008) [ (0.008) | (0.O11) | (0.008) | (0.008) | (0.032) | (0.029) | (0.035) | (0.045) | (0.035) | {0.025)

100(70.10) | 11 0.502 0.488 0.504 0.503 0.510 0.493 1.036 1.009 1.043 1.040 1.049 0.979
(0.008) | (0.008) | (0.008) | (0.012) [ {0.008) | (0.008) | (0.036) | (0.033) | (0.038) | (0.049) | (0.039) | (0.027)

" 0.506 0.491 0.508 0.507 0.515 0.496 1.052 1.022 1.060 1.056 1.067 0.985
(0.000) | (0.009) | (0.009) | (0.012) | (0.010) | (0.009} | (0.043) | (0.037) | (0.045) | (0.057) | (0.046} | (0.020)
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Table 5: MLE and the asymptotic confidence bounds for «=0.5 and g =1

n(m.r) as MLE “f, @ MLE of 7 | Asymp. C[ for o | Asymp. Cl for 3
anr(MSE) | Bun(MSE) Lo U, Lz U;s
I 0.624 (0.081) | 1.291 (0.454) 0.178 1.071 0.268 2.214
20(15,3) | II | 0.627(0.084) | 1.299 (0.449) | 0.176 1.077 0.264 2.334
[T | 0.628(0.092) 1.297(0.462) 0.156 1.099 0.224 2.370
| 0.631(0.092) 1.210(0.231) 0.170 1.092 0.492 1.928
50(20.5) 11 0.643(0.099) 1.209(0.225) 0.163 1.125 0.478 1.940
[T | 0.659(0.115) | 1.247(0.294) 0.115 1.205 0.411 2.085
| 0.560(0.031) 1.111(0.105) 0.263 0.856 0.581 1.641
50(30.5) I1 0.567(0.033) | 1.124(0.108) 0.265 0.868 0.583 1.665
[IT | 0.565(0.038) 1.123(0.127) 0.234 0.895 0.538 1.707
I 0.534(0.016) | 1.056(0.046) 0.297 0.770 0.680 1.432
100(50,10) | 1II 0.539(0.017) | 1.064(0.046) 0.303 0.776 0.686 1.442
1T | 0.546(0.023) | 1.077(0.058) 0.273 0.820 0.647 1.507
I 0.519(0.008) | 1.038(0.030) 0.339 0.699 0.708 1.367
100(70,10) | II 0.522(0.009) 1.046(0.032) 0.342 0.701 0.714 1.378
[T | 0.529(0.011) | 1.059(0.038) 0.336 0.722 0.705 1.414
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