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Abstract 

In this article, the problem of estimating unknown parameters of the inverted kumaraswamy (IKum) distribution is 

considered based on general progressive Type-II censored Data. The maximum likelihood (MLE) estimators of the 

parameters are obtained while the Bayesian estimates are obtained using the squared error loss(SEL) as symmetric 

loss function. Also we used asymmetric loss functions as the linear-exponential loss (LINEX), generalized entropy 

(GE) and Al-Bayatti loss function (AL-Bayatti). Lindely’s approximation method is used to evaluate the Bayes 

estimates. We also derived an approximate confidence interval for the parameters of the inverted Kumaraswamy 

distribution. Two-sample Bayesian prediction intervals are constructed with an illustrative example. Finally, 

simulation study concerning different sample sizes and different censoring schemes were reported. 

Keywords: Maximum likelihood and bayesian estimation; General progressive Type-II censored 

Data; Inverted kumaraswamy distribution; Asymptotic confidence intervals; Two-sample 

bayesian prediction. 

1. Introduction 

In most of life-testing experiments, the censored samples used when the experimenter wants to 

terminate the experiment early before all units are failed due to the time limitation and the huge 

cost of the experiment.Type-I and Type-II are the two basic types of censoring schemes, where in 

Type-I the experiment is terminated at pre-specified time point and the number of failures is 

variable, while the experiment under Type-II is terminated after a fixed number of failures. 

Removing unites at certain time points during the experiment are not allowed in Type-I and 

Type-II, so Progressive censoring is applicable, such that the experimenter can remove some units 

at pre-specified time points (Progressive Type-I) or remove units at each failure (Progressive 

Type-II). For further reading about progressive censoring, see Balakrishnan and Aggarwala (2000) 

and Balakrishnan (2007) who presented a study on different features of progressive censoring 

schemes. 

 

Now, suppose that we have n  units were placed on a lifetime- experiment, suppose that the first 

r  failures nmrnmnm XXX ::::2::1 ,...,,  were not observed and the other nmrrm − <,0  failures 

nmmnmrnmr XXX ::::2::1 ,...,, ++  are observed. At the thr 1)( +  failure time nmrX ::1+ , 1+rR  number of 

surviving units are randomly selected and removed from the test, at the thr 2)( +  failure time 

nmrX ::2+ , 2+rR  number of surviving units are also randomly selected and removed, and so on until 

the thm)(  failure nmmX :: , the remaining survived unites 121 ...= −++ −−−−− mrrm RRRmnR  are 
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removed from the lifetime-test. The number of removals sRi , m  and r  are pre-specified 

integers with inRi −<<0 . Then the resulting failures nmmnmrnmr XXX ::::2::1 ,...,, ++  are referred to 

general progressively Type-II censored data. There are some special cases for which the general 

progressive censoring can reduces to other censoring types, as shown in the following table, 

 

 r  
iR   n,m   Type of censoring  

r>0  mnRmriR mi −−+ =1,1,...,=0,=  nm    Type-II doubly censored sample  

r=0  11,...,=0,> −+ mriRi  nm    progressive Type-II right censoring  

r=0  11,...,=0,= −+ mriRi , mnRm −=  nm    conventional Type-II right censoring  

r=0  mriRi 1,...,=0,= +  nm =   no censoring (complete sample)  

 

Many authors have been studied the general progressive censoring using different lifetime 

distributions, as, Soliman (2008) make an inference for Pareto model using general progressive 

censored data. Also Xiuyun and Zaizai (2016) study the Bayesian estimation and prediction for the 

inverse Weibull distribution under general progressive censoring, while the Characterization for 

Gompertz distribution based on general progressively type-II right censored order statistics have 

been studied by Mohie El-Din et. al. (2017). 

 

Bayesian prediction is an important topic in statistical inference where we try to use the previous 

data to predict the future observations inside the same population with a specified probability. 

When the unobserved failures belong two the same sample, then the prediction called One-sample 

Bayesian prediction, while it is called Two-sample Bayesian prediction when we want to predict 

by a new sample using an old sample. The Bayesian prediction was discussed by many authors 

based on different distributions with different types of censored samples as Mohie El-Din and 

Shafay (2013), they study Bayesian prediction intervals based on progressively Type-II censored 

data. Shafay and Balakrishnan (2012) study the Bayesian prediction intervals based on the Type-I 

hybrid censored data. Bayesian prediction intervals of generalized order statistics based on 

multiply Type-II censored data was discussed by Mohie El-Din et al.(2012), they also studied the 

Bayesian prediction for order statistics from a general class of distributions based on left Type-II 

censored data, see (2011). Latest Mohie El-Din et al. (2017) study the One-sample Bayesian 

prediction intervals based on Type-II progressively hybrid censored samples. 

 

In 2017 Abd Al-Fattah et. al. (2017) introduced the inverted Kumaraswamy (IKum) distribution 

and studied its properties. IKum distribution can be used in long term reliability predictions, 

producing optimistic predictions of rare events occurring in the right tail of the distribution 

compared with other distributions.  

 

Let X  be a random variable distributed as IKum distribution with shape parameters; 0>  and 

0> , denoted by ),( IKumX ~ . Then the probability density function (pdf), cumulative 

distribution function (cdf), reliability function (rf)and the hazard rate function (hrf) are given, 

respectively, as follows  

 0,>,0,,))(1(1)(1=),;( 11)(   +−+ −−+− xxxxf   (1) 
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This article is organized as follows. In section 2, the likelihood function and the maximum 

likelihood estimates of   and   are obtained, also the asymptotic confidence intervals are 

constructed in the same section. In section 3, Bayes estimates for the parameters   and   are 

obtained using four different loss functions (SEL, LINEX, GE and Al-Bayatti). In section 4, the 

approximation of Bayesian estimates are obtained using Lindley’s approximation method. In 

section 5, a real data example is constructed to compare the proposed methods. In section 6, 

simulation study is performed to discover the properties of different estimators proposed in this 

paper. Finally, the paper is concluded in section 7.  

2. Maximum Likelihood Estimation (MLE) 

Suppose that n randomly selected units have a lifetimes follow ),( IKum  distribution are put 

on the lifetime-test at time zero. Based on the general progressively Type-II censoring, then the 

sample is given by nmmnmrnmr XXX ::::2::1 ,...,, ++  with the progressive censoring scheme 

mrr RRR ,...,, 21 ++ . For simple notation, we use iX  instead of nmiX :: , then ),...,,(= 21 mrr xxx ++x  be 

the general progressive censored sample. The likelihood function is given by  

.)]()[1()]([=),;(
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Using (1) and (2), then the likelihood function becomes  
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Taking the logarithm for (7), then the log-likelihood function is  
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By applying the partial derivatives for (8) with respect to   and   and putting the derivatives 

equal to zero, then we get:  
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it is obviously that the closed form solution for the parameters   and   from the likelihood 

equations given in (9) and (10) is not possible. However, we can solve these equations by using 

Newton’s iteration method. Let ML̂  and ML̂  denote the maximum likelihood estimators of   

and  , respectively. The maximum likelihood estimators for the reliability function )(xR  and 

the hazard function )(xh , denoted by MLxR )(ˆ  and MLxh )(ˆ  can be obtained from (3) and (4) by 

replacing   and   by ML̂  and ML̂ , respectively  

2.1 Observed Fisher Information 

In this subsection, the observed fisher information based on general progressive censoring are 

observed to construct interval estimates for the parameters of Inverted Kumaraswamy distribution. 

Using Equations. (9) and (10), we have:  
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Then the asymptotic Variance-Covariance matrix is the inverse of the Fisher information matrix, 

which is given by,  
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Then the asymptotic confidence intervals for the parameters   and   is given by,  

 .)ˆ(ˆˆ)ˆ(ˆˆ
/2/2   arVZandarVZ      (15) 

with )%100(1 −  confidence degree; where /2Z  is obtained from the table of the standard 

normal distribution.  

3. Bayesian Estimation 

In this section, we derive the Bayesian estimates for the parameters   and   of the Inverted 

Kumaraswamy distribution ),( IKum  based on general progressive Type-II censoring using 

four different loss functions.The squared error loss function (SEL) which is defined as symmetric 

loss function, given by:  

,)ˆ(=)ˆ,( 2

1  −L  

where ̂  is an estimate of  . The Bayes estimate for   under the loss function 1L  is the 

posterior mean ]|[=ˆ xEBS  ,the second loss function is the linear exponential (LINEX) loss 

function, it is an asymmetric loss function and defined as  

0,1,)ˆ(=)ˆ,( )ˆ(

2 −−−− hheL h    

 The Bayes estimate for any parameter   under the loss function 2L  is given as,  
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 −−  

 the third asymmetric loss function is the generalized entropy function which is given by,  
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 Finally, we have Al-Bayatti loss function 4L  which introduced by Al-Bayatti (2002), and given 

by,  
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Assume that the parameters   and   are independent variables having Weibull prior 

distributions )(1   and )(2   respectively.  

1
1

1
1

1 )(
a

ba
e




−−
    and     ,)(

2
2

1
2

2

a
ba

e



−−

     (16) 

where 0>,,, 2211 baba  are the hyper parameters of the priors. Using (7) and (16), then the 

posterior distribution of   and   is obtained as  
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The Bayes estimates for the parameters   and   under the squared error loss function 1L  are 

given by,  
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For the LINEX loss function 2L , the Bayes estimates for   and   are given by,  
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The Bayes estimates for   and   depending on the generalized entropy loss function 3L  is 

given by,  

 ,)|(=ˆ 1/qq

BE xE −−         (25) 

 where  

   )2
2

1
1

(1
2

1
1

1
00

)(11
1

=]|[
a

b
a

barmqarmr

r

q ex
k

xE
 

+−−+−−−+−−

+


− +−  

     .))(1(11)(11)(1
11

1=

 ddxxx i
R

iii

m

ri

−−−−−

+

+−−+−+   (26) 

 

 ,)|(=ˆ 1/qq

BE xE −−         (27) 

where  

   )2
2

1
1

(1
2

1
1

1
00

)(11
1

=)|(
a

b
a

bqarmarmr

r

q ex
k

xE
 

+−−−+−−+−−

+


− +−  

     .))(1(11)(11)(1
11

1=

 ddxxx i
R

iii

m

ri

−−−−−

+

+−−+−+   (28) 

Finally, the Bayes estimates for   and   depending on Al-Bayatti loss function 4L  is given 

by,  
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where 1,= +ccA  and BB̂  is given by,  
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Unfortunately, all estimates have the form of ratio of two integrals, and the closed forms for these 

integrals are not obtained. Therefore, the approximated values for these estimates are computed 

using the Lindley approximation method.  

4. Lindley approximation method 
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where   is defined by,  
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Now, using the Lindely rule (32)to get approximate for the Bayesian estimates for the parameters 

  and   under the squared error loss function 1L .For  , we use  =),(u  and BS̂ is 

given by,  
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 For  , we put  =),(u  and the 
BS̂  is given by:  
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Also, the Bayes estimates for   and   under the LINEX loss function 2L  can be obtained as 
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For the Bayes estimate of   under the generalized entropy loss function 3L , we use 

qu − =),(  and BE̂  is given by,  
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 where  
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 Also, we take 
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 Finally the Bayes estimate of   using Al-Bayatti loss function 4L  is obtained as follows,  
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 where  

    ˆˆˆ2ˆˆˆ2ˆ1)(ˆ0.5ˆ=)|( 2 ++−+ − ppxE ppp  

  .ˆˆˆˆˆ2ˆˆˆ0.5 221

  lllp p +++ −      (49) 

 where 1.,= +ccp  and the Bayes estimate of   using Al-Bayatti loss function 4L  is obtained 

as follows,  
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 where  

    ˆˆˆ2ˆˆˆ2ˆ1)(ˆ0.5ˆ=)|( 2 ++−+ − ppxE ppp  

  .ˆˆˆˆˆ2ˆˆˆ0.5 221

  lllp p +++ −

     
(51) 

and 1.,= +ccp  

5. Two-Sample Bayesian Prediction 

In this section , we consider the Bayesian prediction of a future order statistics based on general 

progressively censored data x . Let wYYY  ...21  are the order statistics of a future random 

sample of size w  from the same population, then the marginal density function of the thl  order 

statistics ,1,2,...,=, wlyl  as obtained by Xiuyun and Zaizai (2016) and is given by,  
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−



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 −

−−
   (52) 

Then, the Bayesian predictive density function of ly  given x  is obtained as follows,  

.)|,(),|(=)|( *

00
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Then the predictive reliability function is established by  
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where  

( )  .)|,(),|(1=)|( 1

001
 ddxyFxyH

ll

lll

+

−     (55) 

The integration in (55) cannot be computed analytically, so we will use Lindely method in (32) to 

obtain an approximate for this integration by putting ),( U  as follows,  
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Then, the )100(1 −  Bayesian prediction bounds for lY  are obtained by solving the following  

two equations:  
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Illustrative Example 

Assume that we have the set of data with size 50=n  generated from the inverted Kumaraswamy 

distribution with parameters 2=1,=  . We assume that the number of failures 30=m  and the 

number of unobserved failures 5=r . The sample is obtained in the following table  

 

96.741.77.184,31.379,24.368,17.468,13.181,13.056,11.182,10.681,7.713,

6.507,6.027,5.510,5.284,4.921,4.820,4.513,4.146,3.822,3.194,

3.072,3.023,3.006,2.806,2.794,2.298,2.260,2.247,2.143,1.768,

1.627,1.596,1.540,1.415,1.413,1.385,1.299,1.232,1.174,1.009,

0.881,0.708,0.667,0.637,0.494,0.413,0.412,0.410,0.232,0.169,

 

Now, this sample will used to predict with a future order statistics say wYYY <...<< 21 , where 

10=w , the prediction pounds are obtained with 0.05= . the values of the hyper parameters are 

)(5.13,0.65=),( 11 ba  for   and 0034)(10.81,0.0=),( 22 ba  for  . the obtained intervals are 

obtained in Table 1.   

 

y Scheme 1 Scheme 2 Scheme 3 

 L  U L   U L   U 

1Y  0.017   1.791 0.098  1.671 0.017  1.890 

2Y  0.099   2.838 0.204  2.652 0.097  3.027 

3Y  0.223   4.481 0.221  3.806 0.207  4.696 

4Y  0.528   6.157 0.532  5.328 0.339  6.995 

5Y  0.644   9.318 0.621  7.455 0.499  10.583 

6Y  0.776   14.734 0.578  11.086 0.705  16.925 

7Y  1.069   27.633 0.843  16.929 0.999  30.25 

8Y  1.471  52.910 1.232  29.619 1.606  67.65 

9Y  3.253  70.737 1.792  75.688 1.659  259.64 

10Y  5.095  576.807 3.015  594.42 1.728  7885.53 

Table  1: Two-sample Bayesian intervals for 1021 <...<< yyy  

6. Simulation Study 

In this section, the performance of the proposed methods is evaluated using Monte Carlo 
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simulation study. All calculations are constructed using Wolfram Mathematica 9. We will 

compare the MLEs and the Bayesian estimators under four loss functions, also the asymptotic 

confidence intervals will constructed with confidence degree 95% . The samples are generated 

from the Inverted Kumaraswamy distribution with the parameters   and  , which have the 

following chosen real values (0.5,1)=),(   with sample size 20,50,100=n  and the number 

of observations 70015,20,30,5= andm  while the number of unobserved failures 3,5,10=r

. Under the general progressive censoring, different schemes will used in this simulation, which 

given by: 

1.  Scheme I: 







−−
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= . 

3.  Scheme III: mnRm −=  and 0=iR  for mi   

 

The Bayesian estimates are obtained using the Lindely method, the hyper parameters of 

theWeibull prior distributions for   and   are taken as follows:  

Priors  Hyper parameters of 0.5=  Hyper parameters of 1=  

Informative(Weibull)  05)(2.379,3.9=),( 11 ba  )(5.13,0.65=),( 22 ba  

Informative(Exponential)  (1,2)=),( 11 ba  (1,1)=),( 22 ba  

Non-Informative  (0,0)=),( 11 ba  (0,0)=),( 22 ba  

 

The Bayesian estimates are obtained using the squared error loss function SEL , the LINEX loss 

function with 0.51,= −h , the generalized entropy GE with 1=q  and Al-Bayatti loss function 

with 0.50.5,= −c . The process of simulation will be executed 1000 times, then the average value 

are calculated to be the estimate value. Also we obtain the mean of 1000 lower and upper 

confidence limits for the asymptotic confidence intervals of the parameters with 95%  confidence 

limits.  

In Tables 2 and 3, we present the the average of estimates and mean square error (MSE) of the 

MLEs and the BSEs for the informative Weibull priors, while the estimates using the informative 

priors of the exponential special case are obtained in Tables 4 and 5. The asymptotic confidence 

intervals with 95%  confidence degree for 0.5=  and 1=  are included in Table 6. 

7. Concluding remarks  

In this work, we study the estimates for the parameters of inverted Kumaraswamy distribution 
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under the general progressive censored samples. The estimates are obtained using the maximum 

likelihood method and Bayesian method under four different types of loss functions. Two sample 

Bayesian prediction intervals are conducted for a future sample depending on the old sample units. 

According to these results of simulation and the introduced example, we can draw the following 

conclusions:   

• The estimators that obtained from Bayesian method are very close to the real values of 

parameters than the estimators of Maximum likelihood method.  

• The estimators that depend on samples with large size n  and large values of m  are better 

than those with small values.  

• In most cases, the smallest MSEs are obtained under Al-Bayatti loss function with 

0.5= −c  while the MSE using the LINEX loss function with 1=h  is less than that 

obtained by 0.5= −h .  

• In most cases, we noted that the Bayesian estimates using the Weibull priors are better than 

that obtained by exponential priors and non-informative priors.  

• Small differences are noted, when we use the set of hyper parameters for informative 

priors and those for non-informative priors.  

• the asymptotic confidence bounds contains the the MLE estimates for   and  , the 

width of the intervals become small for large values of n  and m  
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Table 2: The MLE and Bayesian estimates for   and   when 05)(2.379,3.9=),( 11 ba  and 

)(5.13,0.65=),( 22 ba  (Weibull priors) 
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Table  3: the MLE and Bayesian estimates for   and   when (1,2)=),( 11 ba  and 

(1,1)=),( 22 ba  (Exponential priors case) 
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Table 4: the MLE and Bayesian estimates for   and   when (0,0)=),( 11 ba  and 

(0,0)=),( 22 ba  (Non-Informative case). 
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Table  5: MLE and the asymptotic confidence bounds for 0.5=  and 1=  
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