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Abstract

Providing extended and generalized distribution is usually precious for many statisticians. A new
distribution, called odds generalized exponential-inverse Weibull distribution (OGE-IW) is suggested for
modeling lifetime data. Some structural properties of the new distribution are obtained. Three different
estimation procedures, namely; maximum likelihood, percentiles and least squares, are used to estimate the
model parameters of subject distribution. The consistency of the parameters of the OGE-IW distribution is
demonstrated through a simulation study. A real data application is presented to illustrate the importance of
the new distribution compared with some known distributions.

Keywords: T-X family, Inverse Weibull distribution; Maximum likelihood estimators;
Least squares estimators, Percentiles estimators.

1. Introduction

The inverse Weibull (IW) distribution has been received some attention in the literature.
The IW distribution can be used to a diverse model of failure characteristics, such as
infant mortality, age of production, and periods of erosion. The inverse Weibull
distribution can also be used to determine the cost-effectiveness and maintenance periods
of reliability centered maintenance activities. An early study about IW model has been
developed by Erto in 1989. The shapes of the density and failure rate functions for the
basic inverse model have been studied by Keller and Kamath (1982). The maximum
likelihood and least squares estimators of IW distribution have been studied by Calabria
and Pulcini (1990). Bayes two-sample prediction of the IW distribution has been
developed by Calabria and Pulcini (1994). Hassan and AL-Thobety (2012) provided an
optimal design of failure step stress partially accelerated life tests with type Il inverse
Weibull data. Hassan et al. (2015) studied constant stress partially accelerated life tests
with Type Il inverse Weibull data using multiple censored data. The probability density
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function (pdf) and cumulative distribution function (cdf) of IW distribution with shape
parameter o and scale parameter £ are given, respectively, by

a

gX;B,a)=apfx “e a, >0, x>0, (1)

a

GX;B a)=e"*". (2)

Extended and generalized forms of IW distribution are studied by some authors, among
them; Khan (2010) introduced and studied the beta inverse Weibull distribution. de
Gusmado et al. (2011) introduced three-parameter inverse Weibull distribution, called the
generalized inverse Weibull distribution, with unimodal, increasing and decreasing
failure rates. Khan and King (2012) proposed four-parameter modified inverse Weibull
distribution. Shahbaz et al. (2012) suggested the Kumaraswamy inverse Weibull
distribution. Elbatal and Muhammed (2014) introduced the exponentiated generalized
inverse Weibull distribution. The generalized inverse Weibull distribution including the
exponentiated or proportional reverse hazard and Kumaraswamy generalized inverse
Weibull distributions have been suggested by Oluyede and Yang (2014). Pararai et al.
(2014) introduced gamma-inverse Weibull distribution based on gamma generated
family. Khan et al. (2014) studied characterizations of the transmuted inverse Weibull
distribution with an application to bladder cancer remission time's data. Khan and King
(2016) introduced the four-parameter new generalized inverse Weibull distribution and
investigated its potential usefulness with application to reliability data from engineering
studies. Rodrigues et al. (2016) introduced exponentiated Kumaraswamy inverse Weibull
distribution. Okasha et al. (2017) introduced the Marshall-Olkin extended inverse
Weibull distribution.

The statistics literature is filled with lots of continuous univariate distributions for
describing real data. In recent years, there has been a great interest among statisticians
and applied researchers in constructing flexible distribution to facilitate better modeling
of lifetime data in various situations. Several methods have been developed for
generating new family of lifetime distributions. One approach of generalization was
suggested by Marshall and Olkin (1997) by adding one parameter to the survival function
G (x). In the same trend, Gupta et al. (1998) added one parameter to the cdf G (x ) of the

baseline distribution to define the exponentiated-G class of distribution. Following
Gupta’s et al. class, Gupta and Kundu (1999) studied the two-parameter generalized
exponential distribution as an extension of the exponential distribution. Our interest here
with T-X family proposed by Alzaatreh et al. (2013), the cdf of T-X family is specified

by

W (G (x)

F(x)= j f (t)dt, 3)
0
where, the random variable T called the transformer and W (G (x)) be a function of

G(x). Based on T-X family; Tahir et al. (2015) introduced the odd generalized
exponential by using the generalized exponential as generator in (3) and taking the upper
limit to be G (x)/G(x), the odds function of any distribution. Maiti and Pramanik
(2015) defined a generalized class of any distribution by taking the exponential
distribution as a generator in (3) and taking the upper limit to be G (x )/G (x ). Further,
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Alizadeh et al. (2017) proposed and studied a new generated family called the
generalized odd generalized exponential.

Our motivation here is to introduce and study a new extended form for the inverse
Weibull distribution with three parameters. We call the new distribution; the odds
generalized exponential-inverse Weibull distribution, which is a particular case of T-X
family of distributions. The rest of the paper contains the following sections. The new
distribution is provided in Section 2. Some statistical properties are given in Section 3.
Then, in Section 4, maximum likelihood, least squares and percentiles estimators are
obtained. Simulation study and results are presented in Section 5. An application of the
OGE-IW model to real data is presented in Section 6. At the end, concluding remarks are
addressed in Section 7.

2. Construction of the OGE-IW Distribution

In this section, the pdf, cdf, reliabilty function, hazard rate function (hrf), reversed-hazard
rate function and cumulative hazard rate function of OGE-IW distribution are derived.
Expansions for its pdf and cdf are also provided.

We obtain the OGE-IW distribution by considering the exponential distribution as
transformer in cdf (3); also, taking; W (G (x)) =G (x )/G (x ), the odds ratio of inverse

Weibull distribution defined in (2) as follows
g e
16 (x) 1eh

FGa,AB)= | 2dt= [ 2e™dt.
0 0

a

Hence, the cdf of OGE-IW distribution is as follows
A
F(x;a,A,B)=1—exp— — , x>0 4
(xiand p)=1-exp-( 2 @

The corresponding pdf is obtained as follows

Y -2 )
f (X;a,A,B)=apix e ™ (1-e - - : 5
(x;a,4, B) = afiAx (1 e ) exp (eﬂx - _J (5)

For o =2, the OGE-IW reduces to a new model named as odds generalized exponential
inverse Rayleigh distribuiton. For « =1, OGE-IW reduces to another new model named
as odds generalized exponential inverse exponential distribuiton.

Plots of the pdf of OGE-IW distribution for some selected parameter values are displayed

in Figure 1. As seems from this figure, the pdf of OGE-IW distribution can be symmetric,
unimodel and right skewed according to the selected values of parameters.
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Probability density function

Figure 1: Plots of the pdf of OGE-IW distribution for selected values of the parameters

2.1 Expansion for Densities of OGE-IW Distribution

Two useful expansions of OGE-IW pdf and cdf are derived. Since, the pdf (5) can be
rewritten as follows

f(x;2 ax e (1-e ) exp 4| S 6
(X;4,a, ) = afix ( —e ) exp— o | (6)

Then, by using the exponential expansion for the last term in (6) and further the binomial
expansion for a positive real power yields

. _ S _ jaﬁﬂ’jﬂ F(J+2+I) —a-1,-B(j+i+1)x~*
f(x,ﬂ,a,ﬁ)—jéo( 1) i F(j+2)i!x e . ©)

Then the pdf (7) can be formed as follows

f X//i’aﬂ chlgﬂ]+l+l (8)

j,i=0
j ATT(j+1+1)
it T(j+2)i!

where, denotes the pdf of IW distribution g, ; ,,(x)and c;; =(-1)

with parameters £(j +i +1) and a.
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Further, an expansion for[F(x;}t,a,,B)]t, for t a positive real power is derived as follows

o0

[Foc2am] =3 3 00118 . (%), ©

m=01,p=0

|
where, @, =(-1)"" (tm)(/lmzlll;(zlgp) and G, (x) is the cdf of W with
1 ST

parameters S(l +p) and a.

2.2 Reliability Analysis

This subsection gives expressions for the reliability function, hazard function, and
reversed hazard function.

The survival function and hrf of the OGE-IW distribution are respectively given by

Fxia,2p) =exp—(eﬂf: _J,
h(x;a,,B)=Aafx " (l—e’ﬂ“ )72 :

Figure 2 gives the plots of the hrf of OGE-IW distribution for some selected parameter
values. Figure 2 indicates that OGE-IW hrfs can have increasing, decreasing and
constant. This fact implies that the OGE-IW can be very useful for fitting data sets with
various shapes.

1.5

Hazard function

0.5

Figure 2: Plots of hrf of OGE-IW distribution for selected values of the parameters
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The reversed-hazard rate function of the OGE-IW distribution is as follows
Aafx e Fx

e e (2T

Additionaly, the cumulative hazard rate function of the OGE-IW is given by
satos
e —1)|

3. Some Mathematical Properties

v(X;a, A, )=

H (x;a,4,8)=-In

In this section, some mathematical properties of the OGE-IW distribution, including,
moments, probability weighted moments, incomplete moments, order statistics and
entropy measure are derived.

3.1 Moments
The rth moment of OGE-IW is derived by using pdf (8) as follows
. » z - < r
= cj‘ij.o X Gy (X)X = D0 [ BT +i+1) ] F(l—;j, r=123.. (10)
j,i=0 j,i=0

In particular, the mean and variance of the OGE-IW distribution are given by

E(X)= i c;i [ A(j+i +1)]ir[1—1),

j,i=0 a

var(X) = icj’i [ﬂ(j+i+1):|ir(1_§j_|:icjvi [,B(j+i+1)]olzr(1—lﬂz

j,i=0 Ji=0 o

The skewness (g, ) of the OGE-IW distribution is given by

g =t _ (=3 +2u’)’
1 : , .
ﬂ23 (/uz _/112)3

The kurtosis (g,) of the OGE-IW is given by

My My = +6,0° = 3u
gZ - 2 = T _ 272 .
H, (ﬂz H )

Table (1) provides the mean (u) and variance (var) of the OGE-IW distribution for
various parameter values. From Table (1), we notice that both values of the mean and
variance of the OGE-IW decrease as the values of « and A increases. Also, the values of
the mean and variance increase as the values of S increase. Table (2) contains the
skewness and kurtosis of the OGE-IW distribution for various values of parameters  and
A .We notice that both the skewness and the kurtosis are decreasing functions of ¢ and
A.
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Table 1:  Mean and variance of OGE-IW distribution for various values of «, A
and g
B=05 B=1 p=25
a A H var H var H var
1 0.7900 0.0800 | 1.1180 0.1600 | 1.7670  0.4000
2 2 0.6330 0.0370 | 0.8960 0.0470 | 1.4160 0.1840
3 0.5660 0.0240 | 0.8010 0.0470 | 1.2660  0.1180
1 0.8870  0.0200 | 1.0350 0.0270 | 1.2680  0.0400
4.5 2 0.8070  0.0120 | 0.9420 0.0160 | 1.1540  0.0240
3 0.7700 0.0085 | 0.8980 0.0740 | 1.1010 0.0170
1 0.8970  0.0160 | 1.0300 0.0220 | 1.2370  0.0310
5 2 0.8240  0.0098 | 0.9470 0.0130 | 1.1370 0.0190
3 0.7900 0.0072 | 0.9070 0.0096 | 1.0890 0.0140
Table 2:  Skewness and kurtosis of OGE-IW distribution for various values of «
and A
a A 9, 9,
1 0.7910 3.6220
2 2 0.7530 3.6210
3 0.7040 3.5700
1 0.2940 2.7570
45 2 0.3100 2.8560
3 0.2950 2.8980
1 0.2550 2.7230
S 2 0.2750 2.8240
3 0.2630 2.8690

Furthermore, the moment generating function of OGE-IW can be obtained as follows

ML ()=YLE(X)=2 S i, +1)]ar(1_“j,r=1,2,...

i cC..
r| ]l
r=0 ' - r=0j,i=0

r!

3.2 Probability Weighted Moments (PWMs)

Greenwood et al. (1979) introduced the probability weighted moments to derive
estimators of the parameters and quantiles of distributions. The PWMs of OGE-IW
distribution is defined by

r =EX[FOOT] :]ix“[F 0] (<), (11)
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where, t and r are positive integers. Inserting pdf (8) and cdf (9) in (11), then the PWMs
of the OGE-IW distribution is obtained as follows

. B(j+i +1)F(1—rj
z-r,t=z Z a)m,l,pcj,i <

m=0l.p.]i=0 [ﬂ(j+i+p+l+1):|1—§

3.3 Incomplete Moments

Theis defined by £, (a), moment, sayincomplete sth

£ (a)= jxs f (x)dx. (12)

Hence, the sth moment of OGE-IW is derived by inserting (8) in (12) as follows
£.(a)= ¢, B(j +i +1)a r(l—i,ﬁ(j +i +l)a“j. (13)
i o

j,i=0
where, F(l—i,ﬁ(j +i +1)a“j is the upper incomplete gamma function. In particular,
(94

the first incomplete moments of the OGE-IW distribution can be obtained by puttings =1
in (13), as follows

£(a)= 3¢, p(j+i+1) r(l—l,ﬂ(j T +1)a‘“j. (14)
i a

j.i=0

Bonferroni and Lorenz curves are useful applications to first incomplete moments. These
curves are very useful in economics, reliability, demography, insurance and medicine.
The Lorenz and Bonferroni curves are obtained, respectively, as follows

icj,iﬁ(j +1i +1)ir(1—i'ﬂ(j +i +1)Xaj

Lo (x)= Xjaf (a)da =12 - :
E(X)s = .. - _i
,—,Z:ocj'i [,3(] +i +1)] F(l aj
and
. Zw:c“ﬂ(jﬂ+1)olz1“(1—015,ﬂ(j+i+1)x‘“j
BF(X): FF((;())Z 1i=0 l » 1 1 .
{1—exp—(eﬂxa —1]}j;ocj’i [ﬂ(j +i +1)]a F(l—aj

Another application of the first incomplete moments refers to the mean deviations which
provide useful information about the characteristics of a population. Indeed, the amount
of dispersion in a population may be measured to some extent by the totality of the
deviations from the mean and median. The mean deviations of X about the meanand u

about the median m can be calculated from the following relations
0, =2uF (1) =21 (n) and 0, = =21 (m),
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q
where, T(q):Ixf (x)dx which is the first incomplete moment, then from (14)
0

T (w) and T (m) are obtained, respectively, as follows

T (1) = fo(x)dx—Zc“ﬂjHJrl) (1—l,ﬂ(j+i+1)y‘“}
(04

j.i=0

T(m)= jxf (x)dx = ch B +i +1) [1—1,ﬁ(j +i +1)m"‘j.
j,i=0 a
3.4 Rényi Entropy

The entropy of a random variable X with density function f (x) is a measure of the
uncertainty variation. The Rényi entropy is defined as

I“&)z%lﬂ{?f‘s(x)dx}, (15)

where 6>0 and &=1. Applying the exponential and binomial expansions, then
f °(x;A,a, B) can be expressed as follows
aﬂ) 5]AJ+5 5a+1 (J+|+2§) P(j+6+)X )(J+2(3)

fichaf)= Z jIr(j+20)i! 1-e”

(16)

Inserting (16) in (15), then the Rényi entropy of OGE-IW distribution becomes

|R(§):$|n i(_l)j (B) a”61 211 (] +25+§:a)+1)_1r(5(a;1)—1] |

=0 JUIT(j+25)[B(i+o+i)] =

3.5 Order Statistics

Let X, <X,,<..<X,_,denote the order statistics for a random sample X, X,,..., X,

from OGE-IW distribution with pdf (8) and cdf (9). The pdf of rth order statistics is
defined by

k=0

K+r-1

Using the binomial expansion for[F (x )]~ ", replacing t in (9) withk +r —1. Hence the

pdf (17) becomes
n—rk+r-1 oo
. x@L @ Alivisepetpc 18
o (X) = B(r,n- r+1)ZZ 2 MegimoX e -

k=0 m=0 j,il,p=0
where

R ey
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In particular, the pdf of the smallest order statistics is obtained by substituting r =1 in
(18) as follows

~ —B(j+i+l+p+1)x
fln =N Z ﬂ-k jim,l, p e )

k=0 m=0 j,i,l,p=0
where

T (nk_lj(;jaﬂim (] +_2+i )(/1m_)' F(p +1 )

r(j+2)r()jtintp!

Also, the pdf of largest order statistics is obtained by substituting r =n in (18) as follows

k+r-1 ©
—a-1 ~-B(j+i+l+p+L)x*
fn:n(X)ZnZ Z Vk,j,i,m,l,px ¢ € ( ) !
m=0 j,il,p=0

N k+n—1a i (J+2+|)(/1m)'r(p+l)
Vesamp =(-1) [ m jﬂ/l r(j+2)r()jtitp:

4. Parameter Estimation

In this section, the parameter estimators of the OGE-IW model parameters are obtained
based on maximum likelihood (ML), least squares (LS) and percentiles methods.

4.1 Maximum Likelihood Estimators

In this subsection, the estimation of the unknown parameters of the OGE-IW distribution
is considered using the ML method. Let X,,..., X, be observed values from the OGE-IW

distribution. The total log-likelihood function, denoted byInL, for the parameters A, «
and g in complete sample is as follows

InL =nlnac+nlnﬂ+nIn/l—(onrl)Zn:Inxi —ﬂzn:xi“—i(
i=1 i=1

i=1

- _J—Zgln(l—e‘ﬂxia).

e/

The partial derivatives of the log-likelihood function with respect to A, @ and S
components of the score vector U, = (Ul,Um,Uﬁ)T can be obtained as follows

olnL n
oot 3

U, = 6InL =£—ZInx +ﬂZX @ Inx. _wa “Inxiefx' +2§n:'gxi “Inx;e |
i1 (e"“ —1) i1 (1—e‘ﬁxl )
olnL n n n Zx_‘aeﬁxiw n x. @
u,= =——_ M x Ly - 9 i .
! aﬂ ﬂ |Z:1: I iz;(eﬁxia _1)2 izzll(eﬁxia _1)
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Then the maximum likelihood estimates (MLESs) of the parameters, denoted by 1, & and
A are obtained by setting U,.U, and U ,to be zero and solving them numerically.

4.2. Least Squares Estimator

Suppose that X , X ,,...,X
and suppose X, <X, <..<X, . denotes the corresponding ordered sample. The LS

estimators of the unknown parameters A, & and S denoted by Ao&and ﬁ" of the OGE-

IW distribution can be obtained by minimizing the sum of squares errors with respect to
A, a and g,

. 2
> I
F.(x)-—
Z{ i ()= J
So the LS estimators #%%and ,Z?"of the OGE-IW model can be obtained by minimizing
the following quantity

gﬂl_exp_(eﬁxﬁ —J } . LJ |

with respectto A, « and g respectively.

is a random sample of size n from the OGE-IW distribution

n

4.3. Percentiles Estimator
Let X,,X,,..., X, be a random sample from the OGE-IW, let X, denotes the ith order
statistic, i.e, X, < X,, <...<X_,,. If p, denotes some estimates of F (x,,,; 4,, B), then

the estimator of unknown parameters, denoted by A, @ and S, can be obtained by
minimizing the following equation with respectto 4, « and f

)

In percentiles method (PM) of estimate, p, takes a several possible choice as estimates

for F (x,,,;4,a, B), in this study, the formula p, :'—l , is the expected value of the
n+

OGE-IW distribution and will be used.

5. Numerical Study

In this section, numerical study is performed to evaluate and compare the performance of
the estimates with respect to their biases, and mean square errors (MSEs) for different
sample sizes and for different parameter values. The numerical procedures are described
through the following algorithm.

Pak.j.stat.oper.res. Vol.XIV No.1 2018 ppl-22 11
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Step(1): A random sample X,,..., X, of sizes n=(10,20,30,50,100) are selected, these

random samples are generated from the OGE-IW distribution by using the following
transformation

-1

X, = 1In LH ,i =1,2,...,nand u, are random sample from uniform(0,1).
B | In(1-u;)

Step(2): Eight different set values of the parameters are selected as,
setl=(1=0.2,a =0.5, #=0.1),set 2 = (1=0.2,x =0.5, 3=0.3), 56t 3= (1=0.2, =0.5, 3=0.5),
set4=(1=0.2,a =0.5, 5=0.7),set5=(1=0.2,x =0.75, =0.3),set 6 = (1=0.2, =1, =0.3),
set7=(4=0.2,a =1.25, $=0.3) and set8=(1=0.2,a =1.5, 5=0.3).

Step(3): For each model parameters and for each sample size, the MLEs, LS estimates
and percentiles estimates (PEs) of A,a and [ are computed.

Step(4): Steps from 1 to 3 are repeated 1000 times for each sample size and for selected
sets of parameters. Then, the biases and MSEs of the estimates of the unknown
parameters are computed.

Numerical results are reported in Tables (3) to (6) and represented through some Figures

from (3) to (6). From these tables, the following conclusions can be observed on the

properties of estimated parameters from the OGE-IW distribution.

1- The biases of « in the percentiles method decrease as the value of S increases.
Also, the biases of £ increase as the value of g increases, for different set of
parameters, in approximately all sets of parameters.

2- The biases and MSEs of MLEs, for # and « are smaller than the corresponding for
A.
3- For fixed values of 1, and as the values of g increase, the biases and MSEs are

decreasing, in approximately most of situations (see Table 4). As the values of
a increase and for fixed values ofMSEs for all , the biases and gand 4

estimates decrease in approximately, most sample sizes (see Table 5).

4- The biases and MSEs of ML estimates, for fandco are smaller than the
corresponding for 4.

5- The MSEs of the MLEs, LS estimates and PEs decrease as the sample sizes
increase for different selected set of parameters (see for example Figures 3 and 4).

12 Pak.j.stat.oper.res. Vol.XIV No.1 2018 ppl-22
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Figure 3: MSE for MLE for the set 2
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Figure 4: MSE for PE for the set 4

6- The MSEs for the LS estimates, 4 and AXtake the smallest value among the
corresponding MSEs for the other methods in almost all of the cases (see Tables
(3) and (4)).

7- The biases of « in the PM decrease as the value of £ increases. Also, the biases
of f increase as the value of g increases, for different set of parameters, in
approximately all sets of parameters.

8- As it seems from Figure (5), the MSEs of the MLEs of « take the smallest values
corresponding to the other estimates #and a for the same sample size and for all
set of parameters. Also, from Figure (5) the MSEs of MLEs of « for all set of
parameters have the smallest values for the same sample size. Generally, the set 3
of parameters has the smallest MSEs corresponding to other set of parameters.
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Figure 5: MSEs ofa, &anda for all set of parameters

For fixed values of 4, and as the values of £ increase, the biases and MSEs are

decreasing, in approximately most of situations (see Table 4). As the values of
a increase and for fixed values ofMSEs for all , the biases and gand 4

estimates decrease in approximately, most sample sizes (see Table 5).
As it seems from Figure (6), the MSEs of the MLEs of g take the smallest values

corresponding to the other estimates ﬁand B for the same sample size. Also the
MSEs of g for all sets of parameters have the smallest values for the same sample
size. The set 6 of parameters gives the smallest MSEs for different /S estimates
corresponding to other set of parameters.

B estimate

04

0.35
03 /
O 028
™M 52
C 0415
0.1
0.05 —
o b_—\
0.0000 0.5000 1.0000 1.5000 2.0000 2.5000 3.0000 3.5000

(A=0.2,a =0.5, B=0.1) w——

(A=0.2,a=0.5, B=0.3)

(A=0.2,a =0.5, B=0.5) e—

(A=0.2,a =0.5, §=0.7) (A=0.2,a =0.75, B=0.3)

— (A0.2,0 =1, 0.3) e— e (A=), 2,2 =1.25, Pp=0.3)

—e (A ),2 0 =1.5, f=0.3)

Figure 6: MSEs of 2, f'and S for all set of parameters
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Table 3: Biases and MSEs of estimates for setland set2, for the Odds Generalized
Exponential Inverse Weibull distribution

Set1=(2=0.2,0. =0.5, p=0.1) | Set2=(1=0.2,a=0.5, p=0.3)
Sample Size | Method | Properties A a B A a B
ML MSE 0.8860 | 0.0370 | 0.0770 | 0.2400 | 0.0460 | 0.1050
Bias 0.4290 | 0.0610 | 0.1210 | 0.1120 | 0.0990 | 0.0350
10 LS MSE 0.0230 | 0.2850 | 0.0065 | 0.0160 | 0.2690 | 0.0390
Bias -0.1170 | -0.5060 | 0.0070 | -0.1140 | -0.4950 | -0.1850
Bh MSE 0.0530 | 0.3050 | 0.0150 | 0.0310 | 0.2960 | 0.0470
Bias -0.1060 | -0.5110 | 0.0150 | -0.1250 | -0.5030 | -0.1880
ML MSE 0.7060 | 0.0200 | 0.0630 | 0.1340 | 0.0210 | 0.0670
Bias 0.3580 | 0.0190 | 0.1110 | 0.0530 | 0.0650 | -0.0017
20 LS MSE 0.0170 | 0.2560 | 0.0041 | 0.0160 | 0.2560 | 0.0390
Bias -0.1200 | -0.4970 | 0.0046 | -0.1140 | -0.4960 | -0.1850
oM MSE 0.0290 | 0.2670 | 0.0082 | 0.0270 | 0.2650 | 0.0480
Bias -0.1330 | -0.5000 | 0.0046 | -0.1360 | -0.4980 | -0.1920
ML MSE 0.5010 | 0.0140 | 0.0470 | 0.0640 | 0.0130 | 0.0460
Bias 0.2660 | 0.0110 | 0.0850 | 0.0018 | 0.0540 | -0.0380
MSE 0.0180 | 0.2530 | 0.0039 | 0.0150 | 0.2560 | 0.0380
30 LS Bias -0.1220 | -0.4960 | 0.0023 | -0.1130 | -0.4960 | -0.1840
MSE 0.0250 | 0.2610 | 0.0056 | 0.0240 | 0.2600 | 0.0460
"M Bias -0.1440 | -0.4990 | -0.0021 | -0.1460 | -0.4980 | -0.2000
MSE 0.4320 | 0.0086 | 0.0320 | 0.0340 | 0.0074 | 0.0310
ML Bias 0.1850 | 0.0047 | 0.0600 | -0.0300 | 0.0430 | -0.0620
MSE 0.0180 | 0.2570 | 0.0042 | 0.0150 | 0.2560 | 0.0370
>0 LS Bias -0.1210 | -0.5030 | 0.0050 | -0.1100 | -0.5030 | -0.1800
MSE 0.0240 | 0.2620 | 0.0042 | 0.0240 | 0.2620 | 0.0450
PM Bias -0.1490 | -0.5060 | -0.0045 | -0.1500 | -0.5050 | -0.2030
MSE 0.1420 | 0.0044 | 0.0160 | 0.0150 | 0.0036 | 0.0190
ML Bias 0.1040 | -0.0012 | 0.0370 | -0.0540 | 0.0350 | -0.0780
100 LS MSE 0.0170 | 0.2530 | 0.0043 | 0.0130 | 0.2530 | 0.0330
Bias -0.1200 | -0.5020 | 0.0079 | -0.1010 | -0.5010 | -0.1690
oM MSE 0.0240 | 0.2560 | 0.0039 | 0.0230 | 0.2560 | 0.0430
Bias -0.1500 | -0.5020 | -0.0015 | -0.1490 | -0.5020 | -0.2000

Pak.j.stat.oper.res. Vol.XIV No.1 2018 ppl-22 15



Amal Soliman Hassan, Elsayed Ahmed Elsherpieny, Rokaya Elmorsy Mohamed

Table 4: Biases and MSEs of estimates for set3and set4, for the Odds Generalized
Exponential Inverse Weibull distribution

Set3=(0=0.2,0. =0.5, B=0.5) | Setd=(A=0.2,0=0.5, p=0.7)
Sample Size | Method | Properties A a B A a p
MSE 0.0650 | 0.0540 | 0.1300 | 0.0460 | 0.0560 | 0.2800
ML Bias -0.0780 | 0.1370 | -0.2410 | -0.1370 | 0.1480 | -0.4850
MSE 0.0200 | 0.2710 | 0.1500 | 0.0170 | 0.2660 | 0.3420
10 LS Bias -0.1050 | -0.4950 | -0.3760 | -0.1060 | -0.4930 | -0.5800
Bh MSE 0.0750 | 0.2890 | 0.1600 | 0.0550 | 0.2840 | 0.3570
Bias -0.1180 | -0.4990 | -0.3870 | -0.1110 | -0.4950 | -0.5830
ML MSE 0.0360 | 0.0250 | 0.1080 | 0.0290 | 0.0260 | 0.2730
Bias -0.1000 | 0.0980 | -0.2570 | -0.1510 | 0.1090 | -0.5010
20 LS MSE 0.0170 | 0.2550 | 0.1500 | 0.0170 | 0.2550 | 0.3420
Bias -0.1080 | -0.4950 | -0.3790 | -0.1090 | -0.4950 | -0.5800
oM MSE 0.0250 | 0.2640 | 0.1630 | 0.0300 | 0.2620 | 0.3570
Bias -0.1380 | -0.4960 | -0.3940 | -0.1290 | -0.4950 | -0.5850
ML MSE 0.0260 | 0.0160 | 0.1020 | 0.0270 | 0.0170 | 0.2810
Bias -0.1110 | 0.0820 | -0.2660 | -0.1590 | 0.0940 | -0.5200
30 LS MSE 0.0500 | 0.2520 | 0.1530 | 0.0220 | 0.2520 | 0.3430
Bias -0.1040 | -0.4950 | -0.3780 | -0.1070 | -0.4950 | -0.5790
oM MSE 0.0230 | 0.2590 | 0.1650 | 0.0220 | 0.2590 | 0.3590
Bias -0.1450 | -0.4970 | -0.3990 | -0.1420 | -0.4970 | -0.5950
ML MSE 0.0200 | 0.0096 | 0.0940 | 0.0270 | 0.0110 | 0.2830
Bias -0.1200 | 0.0690 | -0.2760 | -0.1610 | 0.0800 | -0.5220
MSE 0.0150 | 0.2560 | 0.1480 | 0.0160 | 0.2560 | 0.3400
>0 LS Bias -0.1080 | -0.5030 | -0.3780 | -0.1070 | -0.5030 | -0.5780
MSE 0.0230 | 0.2610 | 0.1660 | 0.0230 | 0.2610 | 0.3640
"M Bias -0.1500 | -0.5050 | -0.4040 | -0.1470 | -0.5040 | -0.6000
MSE 0.0190 | 0.0056 | 0.0920 | 0.0270 | 0.0069 | 0.2910
ML Bias -0.1250 | 0.0590 | -0.2810 | -0.1640 | 0.0700 | -0.5350
MSE 0.0170 | 0.2530 | 0.1470 | 0.0150 | 0.2530 | 0.3370
100 LS Bias -0.1040 | -0.5010 | -0.3750 | -0.1050 | -0.5010 | -0.5750
MSE 0.0230 | 0.2550 | 0.1650 | 0.0230 | 0.2550 | 0.3620
PM Bias -0.1500 | -0.5020 | -0.4020 | -0.1480 | -0.5020 | -0.5990
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Table 5: Biases and MSEs of estimates for setband set6, for the Odds Generalized
Exponential Inverse Weibull distribution

Set5=(0=0.2,0 =0.75, $=0.3) Set6=(0=0.2,0 =1, p=0.3)
Sample Size Method Properties A a B A a B
MSE 0.3540 0.1070 0.1370 0.3190 0.1860 0.1040
Mt Bias 0.1810 0.1390 0.0740 0.1050 0.2060 0.0110
MSE 0.0150 0.6060 0.0370 0.0150 1.0770 0.0370
10 LS Bias -0.1100 -0.7430 -0.1800 -0.1090 -0.9900 -0.1780
MSE 0.0390 0.6570 0.0480 0.0320 1.1690 0.0450
oM Bias -0.1130 -0.7530 -0.1750 -0.1140 -1.0020 -0.1720
MSE 0.2520 0.0480 0.1110 0.1710 0.0830 0.0670
Mt Bias 0.1370 0.0750 0.0570 0.0420 0.1300 -0.0230
MSE 0.0150 0.5780 0.0380 0.0150 1.0270 0.0380
20 LS Bias -0.1120 -0.7450 -0.1830 -0.1110 -0.9930 -0.1820
MSE 0.0260 0.2700 0.0470 0.0290 1.0640 0.0460
oM Bias -0.1340 0.6010 0.0470 -0.1330 -0.9960 -0.1890
MSE 0.1690 0.0300 0.0860 0.0890 0.0500 0.0510
Mt Bias 0.0990 0.0520 0.0400 0.0073 0.0990 -0.0370
MSE 0.0150 0.5790 0.0370 0.0150 1.0290 0.0370
% LS Bias -0.1090 -0.7520 -0.1790 -0.1090 -1.0030 -0.1780
MSE 0.0270 0.5970 0.0460 0.0230 1.0620 0.0430
PV Bias -0.1390 -0.7550 -0.1920 -0.1380 -1.0070 -0.1870
MSE 0.1020 0.0200 0.0590 0.0330 0.0310 0.0280
Mt Bias 0.0470 0.0430 0.0031 -0.0410 0.0880 -0.0720
MSE 0.0150 0.5770 0.0380 0.0150 1.0260 0.0370
>0 LS Bias -0.1130 -0.7550 -0.1840 -0.1110 -1.0060 -0.1810
MSE 0.0230 0.5870 0.0430 0.0220 1.0440 0.0420
PV Bias -0.1480 -0.7570 -0.2000 -0.1450 -1.0090 -0.1950
MSE 0.0400 0.0091 0.0320 0.0150 0.0150 0.0180
Mt Bias 0.0052 0.0320 -0.0200 0.0410 0.0700 -0.0820
MSE 0.0150 0.5680 0.0370 0.0140 1.0100 0.0360
100 LS Bias -0.1110 -0.7510 -0.1810 -0.0820 -0.0820 -0.1770
MSE 0.0230 0.5720 0.0430 0.0220 1.0170 0.0410
PV Bias -0.1500 -0.7510 -0.2000 -0.1450 -1.0020 -0.1920
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Table 6: Biases and MSEs of estimates for set7and set8, for the Odds Generalized
Exponential Inverse Weibull distribution
Set7=(A=0.2,a. =1.25, p=0.3) Set8=(A=0.2,0.=1.5, =0.3)
Sample Size Method | properties A (04 p A (04 B
MSE 0.1240 | 02790 | 02790 | 05260 | 04040 | 0.1700
M- Bias -0.0089 | 0.2890 | -0.0500 | 0.2100 | 0.2730 | 0.0930
MSE 0.9730 | 1.4260 | 1.4260 | 00160 | 24260 | 0.0380
1 - Bias -0.0500 | -1.1360 | -0.1360 | -0.1100 | -1.4860 | -0.1800
MSE 14260 | 1.3760 | 0.0230 | 00370 | 25950 | 0.0460
oM Bias 05750 | -1.0910 | -0.1350 | -0.1080 | -1.5000 | -0.1650
MSE 0.0250 | 0.0250 | 0.0290 | 03260 | 0.1870 | 0.1150
M- Bias -0.0550 | 0.1910 | -0.0790 | 0.1280 | 0.1640 | 0.0420
MSE 0.3690 | 15120 | 0.0170 | 00160 | 2.3140 | 0.0390
% - Bias 0010 | -1.2010 | -0.1230 | -0.1130 | -1.4910 | -0.1840
MSE 0.7390 | 1.4770 | 0.0200 | 00200 | 2.3920 | 0.0460
i Bias 0.2380 | -1.1670 | -0.1230 | -0.1270 | -1.4940 | -0.1810
MSE 0.0330 | 0.0730 | 0.0300 | 02020 | 0.1160 | 0.0900
M- Bias -0.0490 | 0.1440 | -0.0740 | 0.0790 | 0.1230 | 0.0200
MSE 0.1360 | 1.5800 | 0.0150 | 0.0160 | 2.3180 | 0.0390
* - Bias -0.0001 | -1.2410 | -0.1180 | -0.1130 | -1.5050 | -0.1840
MSE 0.3430 | 15750 | 0.0160 | 0.0240 | 2.3850 | 0.0410
oM Bias 0.0530 | -1.2230 | -0.1200 | -0.1340 | -1.5090 | -0.1820
MSE 0.0180 | 0.0460 | 0.0210 | 00720 | 0.0710 | 0.0410
M- Bias -0.0620 | 0.1190 | -0.0870 | 0.0000 | 0.1120 | -0.0360
MSE 0.0140 | 1.5970 | 0.0140 | 0.0160 | 2.3090 | 0.0400
0 - Bias -0.0550 | -1.2560 | -0.1160 | -0.1150 | -1.5100 | -0.1870
MSE 0.0800 | 1.6100 | 0.0150 | 0.0220 | 2.3490 | 0.0410
oM Bias -0.0720 | -1.2530 | -0.1180 | -0.1420 | -1.5130 | -0.1900
MSE 0.0078 | 0.0210 | 0.0120 | 00280 | 0.0310 | 0.0210
M- Bias -0.0650 | 0.0890 | -0.0860 | -0.0320 | 0.0860 | -0.0540
MSE 0.0035 | 15760 | 0.0130 | 00170 | 2.2740 | 0.0420
100 LS
Bias -0.0580 | -1.2520 | -0.1130 | -0.1200 | -1.5030 | -0.1930
MSE 00110 | 1.5890 | 0.0140 | 0.0220 | 2.2890 | 0.0400
oM Bias -0.1060 | -1.2530 | -0.1200 | -0.1430 | -1.5030 | -0.1890
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6. Data Analysis

In this section, we provide a data analysis in order to assess the goodness-of-fit of the
OGE-IW model comparing with some known distributions such as the exponential (E)
generalized exponential (GE) generalized inverse Weibull (GIW), Kumaraswamy inverse
Weibull (KIW), Marshpall-Olkin extended inverse Weibull (MOEIW) and IW. The data
set refers to Lee and Wang (2003) which represent remission times (in months) of a
random sample of 128 bladder cancer patients. The data are as follows:

0.08 2.09 3.48 4.87 6.94 8.66 13.11 23.63 0.2 2.23 0.52 4.98 6.97 9.02 13.29 0.4 2.26
3.575.06 7.09 0.22 13.8 25.74 0.5 2.46 3.46 5.09 7.26 9.47 14.24 0.82 0.51 2.54 3.7 5.17
7.28 9.74 14.76 26.31 0.81 0.62 3.28 5.32 7.32 10.06 14.77 32.15 2.64 3.88 5.32 0.39
10.34 14.38 34.26 0.9 2.69 4.18 5.34 7.59 10.66 0.96 36.66 1.05 2.69 4.23 5.41 7.62
10.75 16.62 43.01 0.19 2.75 4.26 5.41 7.63 17.12 46.12 1.26 2.83 4.33 0.66 11.25 17.14
79.05 1.35 2.87 5.62 7.87 11.64 17.36 0.4 3.02 4.34 5.71 7.93 11.79 18.1 1.46 4.4 5.85
0.26 11.98 19.13 1.76 3.25 4.5 6.25 8.37 12.02 2.02 0.31 4.51 6.54 8.53 12.03 20.28 2.02
3.36 6.76 12.07 0.73 2.07 3.36 6.39 8.65 12.63 22.69 5.49 .

Measures of fit statistic using the maximized log-likelihood (—2logL), Akaike
information criterion (AIC), the corrected Akaike information criterion (CAIC), and
Hannan-Quinn information criterion (HQIC ) are provided in Table 7. The model with

minimum values for —2logL or AIC or BIC or CAIC or HQIC can be chosen as the

best model to fit the data. The ML estimates and their standard errors (SE) for OGE-IW,
GE, E, GIW, KIW, MOEIW and IW models are given in Table 8.

Table7: The statistics—2logL ,AIC, CAIC, BIC, and HQIC, for the 128
bladder cancer patients data

Distribution | -2logL AIC BIC CAIC HQIC

OGE-IW 801.263 807.263 807.585 807.457 810.740

GE 805.022 809.022 809.236 809.118 811.339
E 827.296 829.296 829.403 829.328 830.455
GIW 874.450 880.450 863.673 880.644 883.926
KIwW 971.574 979.574 980.003 979.899 984.209

MOEIW 810.707 816.707 817.029 816.901 820.183

w 857.352 861.352 861.566 861.448 863.669
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Table 8: ML estimates of the model parameters and the corresponding SEs for
the 128 bladder cancer patient's data

Distribution A & B a b 0
OGE-IW 0.057 0.87 0.336 - - -
(0.05) | (0.076) | (0.244) | - i i
GE 0.111 0.922 - - - -
(0.013) | (0.107) | - i i i
E 0.075 - - - - -
(0.008) | - i i i i
GIwW 0.75 0.53 1.797 - - -
(0.25) | (0.038) | (0.324) i i i
KIW - 3.796 2.239 0.0077 0.093 -
- | ©0238) | (2.846) | (0.006) | (0.012) i
MOEIW - 0.047 1.39 - - 198.304
- | 0.049) | (0.104) i - | (221.399)
w 16.142 0.464 - - - -
(0.125) | (0.042) i i i i

The results show that the OGE-IW distribution provides a significantly better fit than the
other models.

7. Conclusion

In this article, we propose a new model, called the odds generalized exponential-inverse
Weibull distribution based on T-X family presented by Alzaatreh et al. (2013). Some
statistical properties of current distribution are derived and discussed. The estimation of
the model parameters is approached by maximum likelihood, least squares and
percentiles methods. Simulation study is carried out to compare the performance of
different estimates. Simulation study revealed that the PEs perform well than the MLEs
and LS estimates, in approximately, most of situations. An application to a real data set
indicates that the new model is superior to the fits than the other well-known
distributions.
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